MAT 330 SPRING 2009 PRACTICE EXERCISES FOR MIDTERM

Determine whether each of the following statements is true or false, and give a brief reason or a counterexample as is appropiate.
(1) If f is a continuous periodic function on $[0,1]$, then its Fourier series converge pointwise at each point of $[0,1]$.
(2) Let f be a periodic function that is twice differentiable and whose second derivative is continuous. Then its Fourier series converge absolutely.
(3) If the Fourier series of a periodic function converges absolutely, then it converges uniformly.
(4) If the Fourier series of a periodic function f converges at a point x_{0} and if f is continuous at x_{0}, then the limit of the Fourier series at x_{0} is equal to $f\left(x_{0}\right)$.
(5) Every continuous function on $[0,1]$ is differentiable at at least one point in $(0,1)$.
(6) If f is the periodic function on $[0,1]$ defined by $f(x)=e^{x}$ for all $x \in[0,1)$, then the Fourier series of f converges at every $x \in(0,1)$.
(7)

$$
\sum_{n=1}^{\infty} \frac{1}{\sqrt{n}} e^{2 \pi i n x}
$$

is the Fourier series of a Riemann integrable periodic function on $[0,1]$.
(8)

$$
K_{n}(x):=\sum_{k=-\infty}^{\infty}\left(1-\frac{1}{n}\right)^{|k|} e^{2 \pi i k x}
$$

is a good kernel on $[0,1]$ as $n \rightarrow \infty$.
(9) The convolution of two continuous periodic function on $[0,1]$ is continuous.
(10) If $\left\{\xi_{n}\right\}_{n=1}^{\infty}$ is equidistributed on $[0,1]$, then $\left\{\xi_{2 n}\right\}_{n=1}^{\infty}$ is also equidistributed on $[0,1]$.
(11) There is a Schwartz function f on the real line that satisfies

$$
\widehat{f}\left(\frac{x}{2}\right)=2 f(2 x) .
$$

(12) The Fourier inversion formula

$$
f(x)=\int_{-\infty}^{\infty} \widehat{f}(\xi) e^{2 \pi i x \xi} d \xi
$$

holds pointwise (with right hand side being a convergent integral at every x) if f is a smooth function on the real line with compact support.
(13) If f and g are functions on the real line and are both of moderate decrease then so is their product $f \cdot g$.
(14) If f and g are Schwartz functions on the real line, then

$$
\int_{-\infty}^{\infty} \widehat{f}(\xi) \widehat{g}(\xi) e^{2 \pi i x \xi} d \xi
$$

is a convergent integral and is equal to $f * g(x)$ pointwise.
(15) Let \mathbb{T} be the unit circle in the plane and \mathbb{D} be the open unit disk it encloses. For any continuous function f on \mathbb{T}, there exists a function u on \mathbb{D} such that u is twice continuously differentiable in \mathbb{D}, continuous on the closure of \mathbb{D}, and satisfies

$$
\begin{cases}\Delta u=0 & \text { in } \mathbb{D} \\ u=f & \text { on } \mathbb{T}\end{cases}
$$

(16) If f is a Schwartz function on the real line and $\widehat{f}(\xi)=0$ for all $\xi \in[-1,1]$, then

$$
\int_{-\infty}^{\infty}|f(x)|^{2} d x \leq C \int_{-\infty}^{\infty}\left|f^{\prime}(x)\right|^{2} d x
$$

for some absolute constant C (that does not depend on f).

