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REVIEW SESSION 2

In the following we shall review two major ideas that have been covered in class.
The �rst one concerns how well a function is determined by its Fourier series. The
second one relates the study of pointwise convergence and summability of Fourier
series to convolutions with bad and good kernels.

A little extra about convolutions that arise in number theory is included for those
interested, and some hints to the harder problems follow.

1. Review

We have seen that if the Fourier coe�cients of a Riemann integrable function are
all zero, then it is zero at its points of continuity. Moreover, if a Fourier series
converges absolutely at one point (for instance when the function is C2), then it
converges uniformly on the unit circle, and the function is equal to its Fourier series
at its points of continuity.

We have also seen that the partial sums of a Fourier series of a function can be
obtained by convolution with the Dirichlet kernel. The Cesaro and Abel means can
be obtained by convolutions with the Fejer kernel and the Poisson kernel respec-
tively. These last two kernels are good, and give us summabilities of Fourier series
of a function at its points of continuity (uniform summabilities if the function is
uniformly continuous to begin with). The Dirichlet kernel, however, is not a good
kernel and does not give any good result so far. Next week we will see how the
Abel means of the Fourier series of a function solves the Dirichlet problem on the
unit disk in R2.

2. A little extra

You may have seen some versions of convolutions before. A complex-valued function
de�ned on the positive integers is sometimes called an arithmetic function. If f
and g are two arithmetic functions then we can de�ne their convolution to be the
arithmetic function de�ned by

f ∗ g(n) =
∑
d|n

f(d)g
(n

d

)
.

It is easy to verify that this makes the set of all arithmetic functions a commutative
ring with unit, and the famous Mobius µ function is just the inverse of the function
on N that is identically 1. The Mobius inversion formula then becomes particularly
transparent.

You will see more on arithmetic functions if you take MAT 331, Complex Analysis.

3. Hints to Problem set 2

The problems are taken from Chapter 2 of Stein and Shakarchi.

6(d). You need to show why the Fourier series converges to the original function
(say by quoting an appropiate theorem from the book).
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7(a). This is just a discrete version of integration by parts. (What are the bound-
ary terms and where are the derivatives?) So one can adapt the proof of
integration by parts here.

7(b). Cauchy's criterion is a good way to show convergence when you don't know
what the limit should be.

12. Compute σn − sn and show that it converges to 0 as n → ∞. You may
want to exhibit σn − sn as an explicit sum, and see why (intuitively �rst)
that the sum should be small.

13(a). Let
∑

cn converge to s. To show Abel convergence of this series, we have
to consider the series ∑

cnrn

for r < 1. Since we expect it to converge back to s, one natural thing
to do is to relate the above sum to sn, the partial sums of

∑
cn. Since

sn = c1 + · · ·+ cn, it is natural to use summation by parts here.


