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By now we have seen several ways in which a Fourier series could converge. Each
happens under a di�erent set of hypothesis. We summarize this below. Some hints
to the homework problems are given.

1. Review

We have discussed four kinds of convergence, namely mean-square convergence,
summability, pointwise convergence and absolute convergence. Roughly speaking,
the �rst two are rather weak and hold under fairly general assumptions. The last
two are stronger and only hold for su�ciently smooth functions.

At this early stage we need a function to be Riemann integrable (and in particular,
bounded) on the unit circle to talk about its Fourier series. So we shall assume all
functions to be periodic and Riemann integrable in this section.

1.1. Mean-square convergence. The exponentials {e2πinx}n∈Z form a complete
orthonormal set under the L2 inner product on [0, 1], and hence (the symmetric
partial sums of) the Fourier series of every Riemann integrable function f(x) con-
verges in L2 norm to f(x); in fact f(x) 7→ {f̂(n)} maps the space of Riemann
integrable functions isometrically into the complete inner product space l2, and the
Parseval's identity ∫ 1

0

|f(x)|2dx =
∞∑

n=−∞
|f̂(n)|2

holds.

1.2. Summability. A function f(x) is both Cesaro and Abel summable at a point
x0 to the function value at x0 if it is continuous at x0. In particular, if the Fourier
series of f(x) converges at a point x0 and if f is continuous at x0, then the limit
of (the symmetric partial sums of) the Fourier series of f at x0 is equal to the
function value f(x0). (Compare with the Taylor series of a C∞ function, which
may converge to something other than the function value even when it is given that
it converges.) Also, a function is uniformly Cesaro and Abel summable on a set E
if it is uniformly continuous on E. The Abel sum of a continuous function gives
the solution to the Dirichlet problem on the unit disc.

1.3. Pointwise convergence. If f(x) is di�erentiable (or just Lipschitz) at a point
x0 then (the symmetric partial sums of) its Fourier series converges to f(x0) at
x0. This follows from the Riemann-Lebesgue lemma, which states that the n-th
Fourier coe�cients of an integrable function tends to 0 as n tends to in�nity. This
establishes the localization principle of Riemann: if f(x) = g(x) in an open interval
containing a point x0, then the Fourier series of the two functions either both
converge to the same value at x0 or both diverge at x0.
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1.4. Absolute convergence. If the Fourier series of a function converges abso-
lutely, then it converges uniformly. This happens, for instance, if the function is
C2 on the whole unit circle because then the Fourier coe�cients decay like 1/n2.
(This also happens for functions that are globally in Cα for some α > 1/2; this
can be shown by estimating

∑
2k≤|n|≤2k+1 |f̂(n)|2 using the Parseval's formula. See

Exercises 14 and 16 in Chapter 3.)

1.5. Pointwise Divergence. We have also seen an example of pointwise diver-
gence: there is a continuous periodic function on [0, 1] whose Fourier series diverges
at a point.

Finally, all the above are about summability or convergence of Fourier series. There
are, however, examples of trigonometric series that converges everywhere on the unit
circle without being the Fourier series of any (Riemann integrable) functions. (See
Exercise 7 in Chapter 3.)

So to conclude, we have seen the following function spaces, in decreasing order
of generality: the spaces of Riemann integrable functions, continuous functions,
Holder continuous functions, Lipschitz functions, di�erentiable functions, C1 func-
tions and C2 functions. All except the �rst one are characterized by local conditions,
and we may require them to hold either globally or locally. The space of continuous
functions, while good enough for summability, is usually too weak for convergence
of Fourier series; the space of (locally) di�erentiable (or just Lipschitz) functions is
good for pointwise convergence, while the space of globally C2 (or just Cα, α > 1/2)
is good for absolute (and hence, in this case, uniform) convergence.

2. A little extra

The space of Riemann integrable functions on the unit circle is not complete under
the L2 inner product. Hence it is natural to seek a completion of this space, namely
the smallest complete inner product space containing it. This is usually called the
space of L2 functions; it is an interesting space with many nice properties, and also
a prototype of complete inner product spaces. For instance, this is isometric to the

complete inner product space l2 under the map f 7→ {f̂(n)}n∈Z. You will learn
more about it when you study real analysis.

We can also consider the completion of the space of Riemann integrable functions
under the Lp norm, namely

‖f‖Lp =
(∫

|f |pdx

) 1
p

,

where 1 ≤ p < ∞. This is usually called the space of Lp functions. The Riemann-
Lebesgue lemma still holds for all L1 functions on the unit circle. It is then easy to
see that if f(x) satisfy a Dini condition at x0, i.e.∫ 1

−1

|f(x0 + t)− f(x0)|
t

dt < ∞

(this holds for instance if f is Cα at x0 for some α > 0), then the Fourier series
of f converges at x0, generalizing our previous su�cient condition for pointwise
convergence of Fourier series.

Concerning the convergence of Fourier series, other than the results we have seen,
two more important results are often mentioned. The �rst one is a generalization of
mean-square convergence, and says that if 1 < p < ∞ and f ∈ Lp, then the partial
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sums of the Fourier series of f converges to f in Lp, i.e.∫
|Sn(f)(x)− f(x)|pdx → 0

as n → ∞. This is one of the landmarks in harmonic analysis in the early 20th
century, and the result is rather delicate; in fact it is false when p = 1 or p = ∞.
Another concerns the pointwise convergence of Fourier series of an L2 function, and
says that the Fourier series of an L2 function converges pointwisely except possibly
on a set of measure zero. This is an even deeper result (due to Carleson in 1966); in
fact while the analogous statement for Lp is true for 1 < p < ∞ (this is also hard),
the analogous statement for L1 fails so miserably that there exists an L1 function
on the unit circle whose Fourier series diverges at every point (Kolomorgov, 1920s).

3. Hints to Problem set 3

The exercises are taken from Chapters 2 and 3 of Stein and Shakarchi.

2.19. The formula is simpler if you �rst extend f to be odd and write the solution
in the form ∫ 1

−1

f(t)Q(x− t, y)dt

for a suitable kernel Q. Just work formally here since no condition about
f has been given to guarantee convergence etc.

3.2 Given ε > 0, there exists N such that

‖An −Am‖ < ε

for all n, m ≥ N . In particular,

‖An −AN‖ < ε

for all n ≥ N . Hence if K is chosen such that
∞∑

k=K+1

|aN,k|2 < ε2

(why does such K exist?), then
∞∑

k=K+1

|an,k|2 < (2ε)2

for all n ≥ N (why?). It follows that B ∈ l2 (why?), and it is now easy to
show that An → B in l2 by observing that

‖An −B‖2 ≤
K∑

k=1

|an,k − bk|2 + 2
∞∑

k=K+1

|an,k|2 + 2
∞∑

k=K+1

|bk|2.

(Why does the last inequality hold?)
3.3 Draw pictures of what you guess fk might be.

3.10. Since u is just known to be C1 and no better, the best way to proceed is
to use the explicit solution formula

u(x, t) = F (x + ct) + G(x− ct)

in Chapter 1 and argue that E(t) = E(0). If more di�erentiability were
known, however, then the conservation of energy can also deduced by dif-
ferentiating E(t) and using the wave equation to argue that E′(t) = 0 for
all t. It might also help to renormalize the functions so that c = 1.


