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1. Review

This week we concluded our study of Fourier series with some further applications
towards the heat equation on the unit circle. We then began to study Fourier trans-
form on the real line, and saw many properties of the Fourier transform analogous
to those of the Fourier series of a periodic function. In the following I shall highlight
the similarities and the di�erences of the two theories, and hopefully this could put
things in a slightly di�erent perspective.

The central question in both the study of Fourier series and Fourier transform is the
following: How well can a function be reconstructed from its Fourier decomposition?
Several aspects of the theories are really parallel of each other:

(1) Decay of Fourier coe�cients vs smoothness of the functions
(2) Behaviour of Fourier coe�cients under translation, modulation and dilation

of functions
(3) Convolutions and their close relation to Fourier transform, as illustrated by

the formula f̂ ∗ g = f̂ · ĝ
(4) Representation of a bounded (uniformly) continuous function as the (uni-

form) limit of its convolution with a good kernel
(5) Parseval or Phancherel's formula

There are, however, also signi�cant di�erences in our considerations of the two
theories:

(1) The most important one is now that we are always working with Schwartz
functions, or at least (continuous) functions which together with its Fourier
transform are of moderate decrease. This guarantees automatically the
absolute convergence of the Fourier inversion integral∫ ∞

−∞
f̂(ξ)e2πixξdξ;

in other words, we are only dealing with analogues of absolutely convergent
Fourier series on the real line. Therefore the Fourier inversion formula is
easy to derive and holds pointwise; we never had to write `partial integrals'∫ N

−N

f̂(ξ)e2πixξdξ

as convolutions of f against some kernels DN and study the behaviour
of such convolutions (although we could in principle, and that leads to
interesting mathematics when f is allowed to be more general functions).

(2) One important formula in this theory is the multiplication formula, which
states that for Schwartz functions f and g,∫ ∞

−∞
f(x) · ĝ(x)dx =

∫ ∞

−∞
f̂(ξ) · g(ξ)dξ.

This can be proved by interchanging the order of integration, and can be
justi�ed by some version of the Fubini's theorem.
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(3) There is just one important good kernel in the theory of Fourier trans-
form, namely (the scaled versions of) the Gaussian. The key feature of the
Gaussian is that it is its own Fourier transform:

ê−πx2 = e−πξ2
.

Since its Fourier transform can be computed explicitly, it is tempting to
plug it into the multiplication formula above and see what we can get.

(4) Let f be a Schwartz function. If we now take g to be a scaled version of
the Gaussian, say

g(ξ) = e−πδξ2
,

and apply the multiplication formula, we then get∫ ∞

−∞
f(x)δ−

1
2 e−

πx2
δ dx =

∫ ∞

−∞
f̂(ξ)e−πδξ2

dξ

for all δ > 0. Letting δ → 0 we get

f(0) =
∫ ∞

−∞
f̂(ξ)dξ,

which is the Fourier inversion formula for Schwartz functions at 0.
(5) By translating the above identity (considering y 7→ f(x + y) for a given x),

we get the Fourier inversion formula for Schwartz functions f at any point
x.

(6) The role of orthogonality is apparently suppressed in the Phancherel's iden-
tity, because now that we have the Fourier inversion formula already the
Phancherel's identity (at least for Schwartz functions) is an easy conse-
quence of that. Nevertheless, the orthogonality is still implicitly there, and
this is an important aspect of the theory. (By the way, it may be of in-
terest to know that the Phancherel's identity can also be derived using the
multiplication formula.)

2. Hints to Problem set 5

One theme in this course (indeed any analysis course) is the prevalence of estimates.
This week in the problem set we shall deal with a number of them. If you are not
familiar with how these things go, or if you don't understand why you would want
to do this and that in doing these estimates, it may be a good time now to sit down
and think for yourself why the estimates have to be done this way.

A few good places to look up some sample estimates are:

(1) Corollary 2.2.4, p.43
(2) Proposition 2.3.1(v), p.46-47
(3) Theorem 2.4.1, p.49
(4) Theorem 3.1.1, p.79
(5) Theorem 3.2.1, p.82
(6) Estimates on p.84
(7) Lemma 4.2.2, p.109
(8) Lemma 4.3.2, p.116
(9) Proposition 5.1.1, p.133
(10) Proposition 5.1.2, p.136
(11) Corollary 5.1.7, p.140

The exercises are taken from Chapters 4 and 5 of Stein and Shakarchi.

4.7. Approximate f uniformly by step functions.
4.10(a). Approximate f uniformly by trigonometric polynomials.
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4.10(b). What identity should you use when the integral of a function squared comes
up?

4.11. Use Parseval, and split the sum into two parts. Deal with the two parts of
the sum separately. (Think intuitively: why should each of them be small?)
Also compare with 4.10(b).

4.13(b) You may wonder why one could come up with the idea of using x2 ≤
C sin2(πx) if it were not given to you as a hint. However, remember mul-
tiplying by x on the function side basically corresponds to `di�erentiation'
on the frequency side. So it is natural to try to come up with some terms
that involve the di�erence of the Fourier coe�cients of the heat kernel.


