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1. Review

This week we have completed our study of Fourier analysis on Rd. In particular,
we have seen how radial functions are transformed under the Fourier transform,
and the relation of the Fourier transform of the surface measure of the unit sphere
with the Bessel function. These considerations also arose in the study of the wave
equation in d + 1 dimensions, and we have seen explicit solution formula for the
wave equation both using spherical averages and using the Fourier transform. The
concepts of light cones and �nite speeds of propagation were introduced, and the
di�erence between odd dimensions and even dimensions were emphasized. Finally
we studied the Radon transform in R3, and saw how that could be inverted.

2. A little extra

If T is a linear operator that sends a (say Schwartz) function g(x) on Rd to a
solution of the wave equation 

∂2
t u = ∆u

u(x, 0) = 0
∂tu(x, 0) = g(x)

then T is said to be the fundamental solution of the wave equation. This is because
from T we can build the solutions of all other related problems in wave equations:
for instance ∂t(Tf)(x, t) is then a solution of

∂2
t u = ∆u

u(x, 0) = f(x)
∂tu(x, 0) = 0

and we can then solve the general initial value problem
∂2

t u = ∆u

u(x, 0) = f(x)
∂tu(x, 0) = g(x)

by superposition. More generally, one can even solve
∂2

t u−∆u = K(x, t)
u(x, 0) = f(x)
∂tu(x, 0) = g(x)

using the above fundamental solution T , using the Duhamel's formula. The idea is
to think of u(x, t) as a map from time t to the space of functions of x, and think of
the wave equation as an ordinary di�erential equation in t then.
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3. Hints to Problem set 8

The exercises are taken from Chapters 5 and 6 of Stein and Shakarchi.

5.20. This question is about sampling theory in Fourier analysis. The crucial
observation is that when a function f is compactly supported, say on the
unit interval and say f is also smooth, then there are two ways of taking
the Fourier transform of f , namely as a function de�ned on the unit circle
or as a function de�ned on R; these two ways agree on the integers, and we

shall denote both by f̂ . Now the function f can be reconstructed from f̂
in two ways: either

f(x) =
∞∑

n=−∞
f̂(n)e2πinx

or

f(x) =
∫ ∞

−∞
f̂(ξ)e2πixξdξ

(both converges absolutely because f is Schwartz). This says to reconstruct

f , all that we need to know is only f̂(n) at the integers, and the rest
is determined by that (note how we took advantage of the fact that we
are working with a compactly supported function). This is the crucial
observation behind sampling theory.

In part (a), note that f̂ is supported on [−1/2, 1/2]. Applying the above

to f̂ in place of f , we get

f̂(ξ) =
∞∑

n=−∞
f(n)e−2πinξ

with the sum converging uniformly, for ξ ∈ [−1/2, 1/2]. Fourier inverting
this, we get the desired formula.

In part (b), we should think of f̂ as a function supported on [−λ/2, λ/2]
and expand it in Fourier series; then

f̂(ξ) =
∞∑

n=−∞

1
λ

f
(n

λ

)
e−2πinξ/λ

for all ξ ∈ [−λ/2, λ/2]. In fact if χ is the continuous function supported
in [−λ/2, λ/2] (λ > 1), identically equal to 1 on [−1/2, 1/2] and linear
in between [−λ/2,−1/2] ∪ [1/2, λ/2], then we can insert χ into the above
expression and still obtain

f̂(ξ) = χ(ξ)
∞∑

n=−∞

1
λ

f
(n

λ

)
e−2πinξ/λ

for all ξ ∈ [−λ/2, λ/2].
Finally in part (c), one just needs to apply both the Parseval's identity

(for functions on the unit circle) and Phancherel's formula (for functions
on the real line) correctly.

6.7. To show in�nite di�erentiability in t, note that it is easier to write u as

u(x, t) =
∫

Rd

f̂(ξ)e−4π2t|ξ|2e2πix·ξdξ
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(Note that this formula holds at every x and t > 0.) Then for �xed x and
t > 0, one can write

(1)

∣∣∣∣u(x, t + h)− u(x, t)
t

−
∫

Rd

f̂(ξ)
d

dt
e−4π2t|ξ|2e2πix·ξdξ

∣∣∣∣
=

∣∣∣∣∣
∫

Rd

f̂(ξ)

(
e−4π2(t+h)|ξ|2 − e−4π2t|ξ|2

h
− d

dt
e−4π2t|ξ|2

)
e2πix·ξdξ

∣∣∣∣∣ ,
split the integral into integral over |ξ| > R and |ξ| ≤ R for a suitable R
(the choice of R could depend on both f , x and t now because we are
�xing these for the moment) and argue that if R is su�ciently large then
the �rst integral is smaller than ε (why?). Now pick h to be su�ciently
small (depending on R as well). Then the second integral is also less than
ε (why?). This proves di�erentiability at (x, t), and that the derivative is
also of the form ∫

Rd

ĝ(ξ)e−4π2t|ξ|2e2πix·ξdξ

where g is Schwartz. The same argument thus shows that u(x, t) is in�nitely
di�erentiable in t. It is not hard to show by the same argument that u(x, t)
is in�nitely di�erentiable in both x and t.

Note that although the integrand in (1) converges uniformly to 0, this
is not enough to guarantee the convergence of that integral to 0. This is
because we are integrating over a region of in�nite volume.

6.8 To compute the inverse Fourier transform of e−2π|ξ| in Rd, note that �rst
of all it is easy when d = 1. There by splitting the integral into integral
over the positive and negative real axis one gets

(2)

∫ ∞

−∞
e−2π|ξ|e2πixξdξ =

1
π(1 + x2)

.

Now when d > 1, to compute∫
Rd

e−2π|ξ|e2πix·ξdξ,

we try to express e−2π|ξ| as a weighted average of scaled versions of the

Gaussians e−π|ξ|2/t, whose inverse Fourier transform is easy to compute;
this roughly amounts to replacing |ξ| by |ξ|2, and we proceed as follows.
First we take the equation (2) and write, for β ∈ R,

e−2π|β| =
∫ ∞

−∞

1
π(1 + α2)

e−2πiαβdα;

then observe that

1
π(1 + α2)

=
∫ ∞

0

e−π(1+α2)tdt.

Combining the two, and using Fubini's theorem, we get

e−2π|β| =
∫ ∞

0

e−πt

∫ ∞

−∞
e−πα2te−2πiαβdαdt.

The inner integral is just the Fourier transform of the Gaussian, and we get

e−2π|β| =
∫ ∞

0

e−πte−πβ2/t dt

t1/2
.

For ξ ∈ Rd, if we take β = |ξ|, then

e−2π|ξ| =
∫ ∞

0

e−πte−π|ξ|2/t dt

t1/2
.
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Taking inverse Fourier transform of both sides now, and using the Gamma
function, we get an explicit formula of the inverse Fourier transform of
e−2π|ξ|.


