MATH2242/MATH6242 Homework 3

Due Date: September 21, 2020.

1. Compute the coefficients of the first fundamental forms of the following surfaces:
(a) $\mathbf{x}(u, v)=(a \sin u \cos v, b \sin u \sin v, c \cos u), \quad(u, v) \in(0, \pi) \times(-\pi, \pi) \quad$ (ellipsoid)
(b) $\mathbf{x}(u, v)=\left(a u \cosh v, b u \sinh v, u^{2}\right), \quad(u, v) \in(0, \infty) \times \mathbb{R} \quad$ (half of a hyperbolic paraboloid)
(c) $\mathbf{x}(u, v)=\left(\frac{2 u}{1+u^{2}+v^{2}}, \frac{2 v}{1+u^{2}+v^{2}}, \frac{1-u^{2}-v^{2}}{1+u^{2}+v^{2}}\right) \quad$ (unit sphere parametrized by stereographic projection)

In other words, compute $E=\left\langle\mathbf{x}_{u}, \mathbf{x}_{u}\right\rangle, F=\left\langle\mathbf{x}_{u}, \mathbf{x}_{v}\right\rangle$, and $G=\left\langle\mathbf{x}_{v}, \mathbf{x}_{v}\right\rangle$. For each of the surfaces, it may be instructive to try to draw a picture, that features families of curves on which u is constant, and on which v is constant.
2. Show that the area A of a bounded region R of the surface $z=f(x, y)$ is

$$
A=\iint_{Q} \sqrt{1+\left(\partial_{x} f\right)^{2}+\left(\partial_{y} f\right)^{2}} d x d y
$$

where Q is the projection of R onto the $x-y$ plane. Use this to evaluate the area of the hemisphere $\left\{(x, y, z) \in \mathbb{R}^{3}: x^{2}+y^{2}+z^{2}=R^{2}, z>0\right\}$ where $R>0$ is the radius of the hemisphere.
3. Let $\mathbf{x}(u, v)=(\sin u \cos v, \sin u \sin v, \cos u)$ be a local parametrization of the unit sphere where $(u, v) \in(0, \pi) \times(-\pi, \pi)$ (this is the special case of Question 1(a) with $a=b=c=1)$. Let $\alpha:(-1,1) \rightarrow \mathbb{S}^{2}$ be a curve on the unit sphere defined by $\alpha(t)=\mathbf{x}(u(t), v(t))$ for some functions $u:(-1,1) \rightarrow(0, \pi)$ and $v:(-1,1) \rightarrow(-\pi, \pi)$. Find a formula for the length of α from $t=-1$ to $t=1$. As a result, find the length of the latitude that corresponds to $\alpha(t)=\mathbf{x}\left(\frac{\pi}{2}+\theta, \pi t\right), t \in(-1,1)$ where $\theta \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right)$ is fixed once we fix the latitude.
4. Let $\mathbf{x}(u, v)=\left(u, v, u^{2}-v^{2}\right)$ for $(u, v) \in \mathbb{R}^{2}$; it parametrizes the hyperbolic paraboloid $z=$ $x^{2}-y^{2}$. Let's orient this hyperbolic paraboloid with a unit normal N that has a positive third component in \mathbb{R}^{3}.
(a) Find an explicit expression for this unit normal N at $\mathbf{x}(u, v)$ for every $(u, v) \in \mathbb{R}^{2}$.
(b) Hence, evaluate the coefficients of the second fundamental form, namely

$$
e=\left\langle\mathbf{x}_{u u}, N\right\rangle, \quad f=\left\langle\mathbf{x}_{u v}, N\right\rangle, \quad g=\left\langle\mathbf{x}_{v v}, N\right\rangle
$$

(c) In addition, directly from the expression you obtained for N, compute

$$
d N_{p}\left(\mathbf{x}_{u}\right), \quad d N_{p}\left(\mathbf{x}_{v}\right) \quad \text { where we abbreviated } p=\mathbf{x}(u, v)
$$

(Hint: Differentiate $N(\mathbf{x}(u, v))$ with respect to u and v respectively.)
(d) Finally, use this to verify that indeed

$$
e=-\left\langle\mathbf{x}_{u}, d N_{p}\left(\mathbf{x}_{u}\right)\right\rangle, \quad f=-\left\langle\mathbf{x}_{u}, d N_{p}\left(\mathbf{x}_{v}\right)\right\rangle=-\left\langle\mathbf{x}_{v}, d N_{p}\left(\mathbf{x}_{u}\right)\right\rangle, \quad g=-\left\langle\mathbf{x}_{v}, d N_{p}\left(\mathbf{x}_{v}\right)\right\rangle
$$

in this specific example, without resorting to general theory.

