MATH2242/MATH6242 Homework 4

Due Date: October 6, 2020.

1. Fix $\phi \in\left(0, \frac{\pi}{2}\right)$. Let

$$
\mathbf{x}(u, v)=(u \cos v \sin \phi, u \sin v \sin \phi, u \cos \phi), \quad(u, v) \in(0, \infty) \times(-\pi, \pi)
$$

be a parametrization of a cone $z=\frac{\sqrt{x^{2}+y^{2}}}{\tan \phi}$ (of aperture ϕ) minus the line through the origin in the direction $(-1,0, \cot \phi)$.
(a) Sketch this cone S. Indicate what it means for this cone to have aperture ϕ. Draw in red a few curves where u is constant, and draw in blue a few curves where v is constant.
(b) Find the inward unit normal N to this cone at $\mathbf{x}(u, v)$. Henceforth we orient this cone by this inward unit normal.
(c) Compute the coefficients of the second fundamental form in this parametrization, i.e. $e=\left\langle\mathbf{x}_{u u}, N\right\rangle, f=\left\langle\mathbf{x}_{u v}, N\right\rangle, g=\left\langle\mathbf{x}_{v v}, N\right\rangle$, and evaluate these at the point $(\sin \phi, 0, \cos \phi)$.
(d) The second fundamental form on this cone is defined to be

$$
\mathbf{I I}_{p}(w)=-\left\langle d N_{p}(w), w\right\rangle \quad \text { for } w \in T_{p}(S) .
$$

Using part (c), find $\mathbf{I I}_{p}\left(8 \mathbf{x}_{u}+9 \mathbf{x}_{v}\right)$ if $p=\mathbf{x}(6,4)$.
(e) (i) By differentiating the identity $\langle N, N\rangle=1$, show that $d N\left(\mathbf{x}_{u}\right)$ and $d N\left(\mathbf{x}_{v}\right)$ are both orthogonal to N at $\mathbf{x}(u, v)$.
(ii) If

$$
\left\{\begin{array}{l}
d N\left(\mathbf{x}_{u}\right)=a_{11} \mathbf{x}_{u}+a_{12} \mathbf{x}_{v} \\
d N\left(\mathbf{x}_{v}\right)=a_{21} \mathbf{x}_{u}+a_{22} \mathbf{x}_{v}
\end{array},\right.
$$

find a_{11}, a_{12}, a_{21} and a_{22}. Using this, find the Gaussian and the mean curvatures of this cone at a general point $\mathbf{x}(u, v)$.
(f) Let $\gamma(t)$ be a curve on this cone satisfying $\gamma(0)=(1,0, \cot \phi)$ and $\gamma^{\prime}(0)=(\sin \phi,-1, \cos \phi)$. Find the normal curvature of $\gamma(t)$ at $t=0$.
2. Fix two positive real numbers a and b. Let

$$
\mathbf{x}(u, v)=(a \cos u \cos v, a \cos u \sin v, b \sin u), \quad(u, v) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(-\pi, \pi)
$$

be a parametrization of the ellipsoid $\frac{x^{2}}{a^{2}}+\frac{y^{2}}{a^{2}}+\frac{z^{2}}{b^{2}}=1$ minus a longitude, and orient the ellipsoid by choosing the outward unit normal vector N.
(a) Compute the coefficients of the second fundamental form in this parametrization, i.e. $e=\left\langle\mathbf{x}_{u u}, N\right\rangle, f=\left\langle\mathbf{x}_{u v}, N\right\rangle, g=\left\langle\mathbf{x}_{v v}, N\right\rangle$, and evaluate these at the point $\left(\frac{a}{\sqrt{2}}, 0, \frac{b}{\sqrt{2}}\right)$.
(b) Find the Gaussian curvature and the mean curvature of this ellipsoid at a general point $\mathbf{x}(u, v)$. Hence evaluate the Gaussian and the mean curvatures at the point $(a, 0,0)$.
(c) Let N_{u} be a shorthand for $d N_{p}\left(\mathbf{x}_{u}\right)$ where $p=\mathbf{x}(u, v)$. If $N_{u}=A(u, v) \mathbf{x}_{u}(u, v)+$ $B(u, v) \mathbf{x}_{v}(u, v)$, find $A(u, v)$ and $B(u, v)$. In particular, express N_{u} in terms of \mathbf{x}_{u} and \mathbf{x}_{v} at the point $\left(0, \frac{a}{2}, \frac{\sqrt{3}}{2} b\right)$.
(d) Find the principal curvatures of this ellipsoid at a general point $\mathbf{x}(u, v)$. What are the principal directions at the point $\left(\frac{a}{2}, \frac{a}{2}, \frac{b}{\sqrt{2}}\right)$?
(e) Show that \mathbf{x}_{u} and \mathbf{x}_{v} are principal directions to this ellipsoid at any $(u, v) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times$ $(-\pi, \pi)$. Are they orthogonal to each other?
3. Let S be a regular surface in \mathbb{R}^{3} and p_{1}, p_{2}, p_{3} be three points on S.
(a) If the principal curvatures of S at p_{1} are 5 and -7 , find the Gaussian curvature and the mean curvature of S at p_{1}.
(b) If the Gaussian curvature and the mean curvature of S at p_{2} are -24 and 1 respectively, find the principal curvatures of S at p_{2}.
(c) Suppose there exists two non-zero tangent vectors $v_{1}, v_{2} \in T_{p_{3}}(S)$ such that

$$
d N_{p_{3}}\left(v_{1}\right)=8 v_{1} \quad \text { and } \quad d N_{p_{3}}\left(v_{2}\right)=(0,0,0)
$$

Can you determine the Gaussian and the mean curvatures of S at p_{3} ? Can you say something about the angle between v_{1} and v_{2} at p_{3} ? Explain your answers.
4. Let S be a regular surface in \mathbb{R}^{3} and $\alpha: I \rightarrow \mathbb{R}^{3}$ be a regular curve in \mathbb{R}^{3} lying entirely on S. Show that for any $t_{0} \in I$, the normal curvature k_{n} of $\alpha(t)$ at $t=t_{0}$ is always less than or equal to the curvature of $\alpha(t)$ at $t=t_{0}$. (Hint: Start from the definition of the normal curvature and take absolute value. Then apply Cauchy-Schwarz. The proof is just one line.)
5. Let

$$
\mathbf{x}(u, v)=\left(u, v, \frac{u^{2}+v^{2}}{2}\right), \quad(u, v) \in \mathbb{R}^{2}
$$

be a parametrization of the paraboloid $z=\frac{x^{2}+y^{2}}{2}$. Compute the dot products of $\mathbf{x}_{u u}, \mathbf{x}_{u v}$, $\mathbf{x}_{v v}$ with \mathbf{x}_{u} and \mathbf{x}_{v} at a general point $\mathbf{x}(u, v)$. Use these to compute the Christoffel symbols $\Gamma_{i j}^{k}$, for $i, j, k \in\{1,2\}$. Hence evaluate the covariant derivatives $\nabla_{\mathbf{x}_{u}} \mathbf{x}_{u}, \nabla_{\mathbf{x}_{v}} \mathbf{x}_{u}$ and $\nabla_{\mathbf{x}_{v}} \mathbf{x}_{v}$ at the point $p=(1,1,1)$ on this paraboloid.

