MATH2242/MATH6242 Homework 4

Due Date: October 6, 2020.

1. Fix $\phi \in (0, \frac{\pi}{2})$. Let

 $\mathbf{x}(u,v) = (u\cos v\sin \phi, u\sin v\sin \phi, u\cos \phi), \quad (u,v) \in (0,\infty) \times (-\pi,\pi)$

be a parametrization of a cone $z = \frac{\sqrt{x^2 + y^2}}{\tan \phi}$ (of aperture ϕ) minus the line through the origin in the direction $(-1, 0, \cot \phi)$.

- (a) Sketch this cone S. Indicate what it means for this cone to have aperture ϕ . Draw in red a few curves where u is constant, and draw in blue a few curves where v is constant.
- (b) Find the inward unit normal N to this cone at $\mathbf{x}(u, v)$. Henceforth we orient this cone by this inward unit normal.
- (c) Compute the coefficients of the second fundamental form in this parametrization, i.e. $e = \langle \mathbf{x}_{uu}, N \rangle, f = \langle \mathbf{x}_{uv}, N \rangle, g = \langle \mathbf{x}_{vv}, N \rangle$, and evaluate these at the point $(\sin \phi, 0, \cos \phi)$.
- (d) The second fundamental form on this cone is defined to be

$$\mathbf{II}_p(w) = -\langle dN_p(w), w \rangle \quad \text{for } w \in T_p(S).$$

Using part (c), find $\mathbf{II}_p(8\mathbf{x}_u + 9\mathbf{x}_v)$ if $p = \mathbf{x}(6, 4)$.

- (e) (i) By differentiating the identity $\langle N, N \rangle = 1$, show that $dN(\mathbf{x}_u)$ and $dN(\mathbf{x}_v)$ are both orthogonal to N at $\mathbf{x}(u, v)$.
 - (ii) If

$$\begin{cases} dN(\mathbf{x}_u) = a_{11}\mathbf{x}_u + a_{12}\mathbf{x}_v \\ dN(\mathbf{x}_v) = a_{21}\mathbf{x}_u + a_{22}\mathbf{x}_v \end{cases}$$

find a_{11} , a_{12} , a_{21} and a_{22} . Using this, find the Gaussian and the mean curvatures of this cone at a general point $\mathbf{x}(u, v)$.

- (f) Let $\gamma(t)$ be a curve on this cone satisfying $\gamma(0) = (1, 0, \cot \phi)$ and $\gamma'(0) = (\sin \phi, -1, \cos \phi)$. Find the normal curvature of $\gamma(t)$ at t = 0.
- 2. Fix two positive real numbers a and b. Let

$$\mathbf{x}(u,v) = (a\cos u\cos v, a\cos u\sin v, b\sin u), \quad (u,v) \in (-\frac{\pi}{2}, \frac{\pi}{2}) \times (-\pi, \pi)$$

be a parametrization of the ellipsoid $\frac{x^2}{a^2} + \frac{y^2}{a^2} + \frac{z^2}{b^2} = 1$ minus a longitude, and orient the ellipsoid by choosing the outward unit normal vector N.

- (a) Compute the coefficients of the second fundamental form in this parametrization, i.e. $e = \langle \mathbf{x}_{uu}, N \rangle, f = \langle \mathbf{x}_{uv}, N \rangle, g = \langle \mathbf{x}_{vv}, N \rangle$, and evaluate these at the point $(\frac{a}{\sqrt{2}}, 0, \frac{b}{\sqrt{2}})$.
- (b) Find the Gaussian curvature and the mean curvature of this ellipsoid at a general point $\mathbf{x}(u, v)$. Hence evaluate the Gaussian and the mean curvatures at the point (a, 0, 0).
- (c) Let N_u be a shorthand for $dN_p(\mathbf{x}_u)$ where $p = \mathbf{x}(u, v)$. If $N_u = A(u, v)\mathbf{x}_u(u, v) + B(u, v)\mathbf{x}_v(u, v)$, find A(u, v) and B(u, v). In particular, express N_u in terms of \mathbf{x}_u and \mathbf{x}_v at the point $(0, \frac{a}{2}, \frac{\sqrt{3}}{2}b)$.
- (d) Find the principal curvatures of this ellipsoid at a general point $\mathbf{x}(u, v)$. What are the principal directions at the point $(\frac{a}{2}, \frac{a}{2}, \frac{b}{\sqrt{2}})$?
- (e) Show that \mathbf{x}_u and \mathbf{x}_v are principal directions to this ellipsoid at any $(u, v) \in (-\frac{\pi}{2}, \frac{\pi}{2}) \times (-\pi, \pi)$. Are they orthogonal to each other?

- 3. Let S be a regular surface in \mathbb{R}^3 and p_1, p_2, p_3 be three points on S.
 - (a) If the principal curvatures of S at p_1 are 5 and -7, find the Gaussian curvature and the mean curvature of S at p_1 .
 - (b) If the Gaussian curvature and the mean curvature of S at p_2 are -24 and 1 respectively, find the principal curvatures of S at p_2 .
 - (c) Suppose there exists two non-zero tangent vectors $v_1, v_2 \in T_{p_3}(S)$ such that

$$dN_{p_3}(v_1) = 8v_1$$
 and $dN_{p_3}(v_2) = (0, 0, 0)$.

Can you determine the Gaussian and the mean curvatures of S at p_3 ? Can you say something about the angle between v_1 and v_2 at p_3 ? Explain your answers.

- 4. Let S be a regular surface in \mathbb{R}^3 and $\alpha: I \to \mathbb{R}^3$ be a regular curve in \mathbb{R}^3 lying entirely on S. Show that for any $t_0 \in I$, the normal curvature k_n of $\alpha(t)$ at $t = t_0$ is always less than or equal to the curvature of $\alpha(t)$ at $t = t_0$. (Hint: Start from the definition of the normal curvature and take absolute value. Then apply Cauchy-Schwarz. The proof is just one line.)
- 5. Let

$$\mathbf{x}(u,v) = (u,v,\frac{u^2 + v^2}{2}), \quad (u,v) \in \mathbb{R}^2$$

be a parametrization of the paraboloid $z = \frac{x^2+y^2}{2}$. Compute the dot products of \mathbf{x}_{uu} , \mathbf{x}_{uv} , \mathbf{x}_{vv} with \mathbf{x}_u and \mathbf{x}_v at a general point $\mathbf{x}(u, v)$. Use these to compute the Christoffel symbols Γ_{ij}^k , for $i, j, k \in \{1, 2\}$. Hence evaluate the covariant derivatives $\nabla_{\mathbf{x}_u} \mathbf{x}_u$, $\nabla_{\mathbf{x}_v} \mathbf{x}_u$ and $\nabla_{\mathbf{x}_v} \mathbf{x}_v$ at the point p = (1, 1, 1) on this paraboloid.