MATH2242/MATH6242 Homework 5

Due Date: October 20, 2020.

- 1. Let $\mathbf{x}: U \to \mathbf{x}(U) \subset \mathbb{R}^3$ be a local parametrization of a regular surface S in \mathbb{R}^3 , and E, F, G be the coefficients of the first fundamental form in the parametrization \mathbf{x} .
 - (a) Show that

$$\mathbf{x}_{uv} \cdot \mathbf{x}_u = \frac{1}{2}E_v$$
 and $\mathbf{x}_{vv} \cdot \mathbf{x}_u = F_v - \frac{1}{2}G_v$

where the subscripts u and v denote partial derivatives with respect to u and v.

- (b) If E = 1, F = 0 and $G = 1 + u^2$ at every point of U (this is the case e.g. if we parametrize a helicoid by $\mathbf{x}(u, v) = (u \cos v, u \sin v, v)$), find Γ_{12}^1 and Γ_{12}^2 at the point (u, v) = (2, 3). Hence express $\nabla_{\mathbf{v}} \mathbf{w}$ at (u, v) = (2, 3) as a linear combination of \mathbf{x}_u and \mathbf{x}_v if $\mathbf{w} = (\cos u + uv^3)\mathbf{x}_u$ and $\mathbf{v} = (1 + u^2)\mathbf{x}_v$.
- 2. Let $\mathbf{x}: (-\frac{\pi}{2}, \frac{\pi}{2}) \times (-\pi, \pi) \to S$ be a local parametrization of an ellipsoid S, and E, F, G be the coefficients of the first fundamental form in this local coordinate chart. Suppose

$$E = a^2 \sin^2 u + c^2 \cos^2 u, \quad F = 0, \quad G = a^2 \cos^2 u$$

where a, c > 0 are constants (this is the case, e.g. if $\mathbf{x}(u, v) = (a \cos u \cos v, a \cos u \sin v, c \sin u)$ as in Assignment 3).

- (a) Express $\nabla_{\mathbf{x}_u} \mathbf{x}_u$ and $\nabla_{\mathbf{x}_v} \mathbf{x}_u$ as a linear combination of \mathbf{x}_u and \mathbf{x}_v .
- (b) Show that

$$\nabla_{\mathbf{x}_v} \nabla_{\mathbf{x}_u} \mathbf{x}_u = -\frac{(a^2 - c^2) \sin^2 u}{a^2 \sin^2 u + c^2 \cos^2 u} \mathbf{x}_v, \quad \text{and} \quad \nabla_{\mathbf{x}_u} \nabla_{\mathbf{x}_v} \mathbf{x}_u = -\mathbf{x}_v.$$

Hence show that

$$R_{211}^2 = \frac{c^2}{a^2 \sin^2 u + c^2 \cos^2 u} \quad \text{and} \quad R_{2112} = \frac{a^2 c^2 \cos^2 u}{a^2 \sin^2 u + c^2 \cos^2 u}.$$

Deduce from this that the Gaussian curvature of the ellipsoid S at $\mathbf{x}(u, v)$ is

$$K = \frac{c^2}{(a^2 \sin^2 u + c^2 \cos^2 u)^2}$$

(which agrees with the answer we found in Assignment 4).

- 3. (a) Let $\mathbf{x}: U \to \mathbf{x}(U) \subset \mathbb{R}^3$ be a local parametrization of a regular surface S in \mathbb{R}^3 , and E, F, G be the coefficients of the first fundamental form in the parametrization \mathbf{x} . Suppose E, F, G are all constant functions on U. What can you say about the Gaussian curvature of S on $\mathbf{x}(U)$? (Hint: What can you say about the Christoffel symbols first?)
 - (b) Let $\mathbf{x} \colon U \to \mathbf{x}(U) \subset \mathbb{R}^3$ be a local parametrization of a regular surface S in \mathbb{R}^3 . Show that the coefficients of the first and second fundamental forms in the parametrization \mathbf{x} cannot satisfy all of the following at once:

$$E = 1$$
, $F = 0$, $G = 1$ and $e = 1$, $f = 0$, $g = 1$.

(Hint: Compare the curvature tensor R_{2112} with the determinant of the second fundamental form, namely $eg - f^2$.)

- 4. Let $\mathbf{x} \colon \mathbb{R}^2 \to S$ be a local parametrization of a regular surface S in \mathbb{R}^3 , and E, F, G be the coefficients of the first fundamental form in the parametrization \mathbf{x} . Suppose F is identically 0.
 - (a) Show that the Gaussian curvature at the point $\mathbf{x}(u, v)$ is given by

$$K = -\frac{1}{2\sqrt{EG}} \left[\left(\frac{G_u}{\sqrt{EG}} \right)_u + \left(\frac{E_v}{\sqrt{EG}} \right)_v \right]$$

where the subscripts u and v denote partial differentiation.

(b) If we further have $E = G = \lambda$ for some function λ of $(u, v) \in \mathbb{R}^2$, then the Gaussian curvature at the point $\mathbf{x}(u, v)$ is given by

$$K = -\frac{1}{2\lambda} \Delta(\log \lambda)$$

where $\Delta = \frac{\partial^2}{\partial u^2} + \frac{\partial^2}{\partial v^2}$ is the Laplacian on the (u, v) plane.

(c) Hence, find the Gaussian curvature of S at $\mathbf{x}(1,0)$ if $E = G = \cosh^2 u$ and F = 0 under some local parametrization \mathbf{x} (this will be the case e.g. if

$$\mathbf{x}(u, v) = (\cosh u \cos v, \cosh u \sin v, u)$$

parametrizes the catenoid in \mathbb{R}^3).

- 5. Let $\mathbf{x}(u, v) = (\cos u \cos v, \cos u \sin v, 4 \sin u)$ be a local parametrization of an ellipsoid S, where $(u, v) \in (-\frac{\pi}{2}, \frac{\pi}{2}) \times (-\pi, \pi)$. Let $\gamma(t) = \mathbf{x}(\frac{\pi}{6}, 7t)$ where $t \in (-\frac{\pi}{7}, \frac{\pi}{7})$.
 - (a) Show that along γ , the Christoffel symbols $\Gamma_{12}^1, \Gamma_{12}^2, \Gamma_{22}^1$ and Γ_{22}^2 are constants; furthermore, we have

$$\Gamma_{12}^1 = 0, \quad \Gamma_{12}^2 = -\frac{1}{\sqrt{3}}, \quad \Gamma_{22}^1 = \frac{\sqrt{3}}{49}, \quad \Gamma_{22}^2 = 0.$$

(b) Let $\mathbf{w}(t) = w_1(t)\mathbf{x}_u + w_2(t)\mathbf{x}_v$ be a vector field along the curve γ . Show that

$$\frac{D\mathbf{w}}{dt} = \left(w_1'(t) + \frac{\sqrt{3}}{7}w_2(t)\right)\mathbf{x}_u + \left(w_2'(t) - \frac{7}{\sqrt{3}}w_1(t)\right)\mathbf{x}_v.$$

(c) Suppose now $\mathbf{w}(t)$ is the parallel transport of $\gamma'(0)$ along γ . By solving a system of ordinary differential equations, show that

$$\mathbf{w}(t) = -\sqrt{3}\sin(t)\mathbf{x}_u + 7\cos(t)\mathbf{x}_v$$

for $t \in \left(-\frac{\pi}{7}, \frac{\pi}{7}\right)$.