MATH2242/MATH6242 Homework 5

Due Date: October 20, 2020.

1. Let $\mathbf{x}: U \rightarrow \mathbf{x}(U) \subset \mathbb{R}^{3}$ be a local parametrization of a regular surface S in \mathbb{R}^{3}, and E, F, G be the coefficients of the first fundamental form in the parametrization \mathbf{x}.
(a) Show that

$$
\mathbf{x}_{u v} \cdot \mathbf{x}_{u}=\frac{1}{2} E_{v} \quad \text { and } \quad \mathbf{x}_{v v} \cdot \mathbf{x}_{u}=F_{v}-\frac{1}{2} G_{u}
$$

where the subscripts u and v denote partial derivatives with respect to u and v.
(b) If $E=1, F=0$ and $G=1+u^{2}$ at every point of U (this is the case e.g. if we parametrize a helicoid by $\mathbf{x}(u, v)=(u \cos v, u \sin v, v))$, find Γ_{12}^{1} and Γ_{12}^{2} at the point $(u, v)=(2,3)$. Hence express $\nabla_{\mathbf{v}} \mathbf{w}$ at $(u, v)=(2,3)$ as a linear combination of \mathbf{x}_{u} and \mathbf{x}_{v} if $\mathbf{w}=\left(\cos u+u v^{3}\right) \mathbf{x}_{u}$ and $\mathbf{v}=\left(1+u^{2}\right) \mathbf{x}_{v}$.
2. Let x: $\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(-\pi, \pi) \rightarrow S$ be a local parametrization of an ellipsoid S, and E, F, G be the coefficients of the first fundamental form in this local coordinate chart. Suppose

$$
E=a^{2} \sin ^{2} u+c^{2} \cos ^{2} u, \quad F=0, \quad G=a^{2} \cos ^{2} u
$$

where $a, c>0$ are constants (this is the case, e.g. if $\mathbf{x}(u, v)=(a \cos u \cos v, a \cos u \sin v, c \sin u)$ as in Assignment 3).
(a) Express $\nabla_{\mathbf{x}_{u}} \mathbf{x}_{u}$ and $\nabla_{\mathbf{x}_{v}} \mathbf{x}_{u}$ as a linear combination of \mathbf{x}_{u} and \mathbf{x}_{v}.
(b) Show that

$$
\nabla_{\mathbf{x}_{v}} \nabla_{\mathbf{x}_{u}} \mathbf{x}_{u}=-\frac{\left(a^{2}-c^{2}\right) \sin ^{2} u}{a^{2} \sin ^{2} u+c^{2} \cos ^{2} u} \mathbf{x}_{v}, \quad \text { and } \quad \nabla_{\mathbf{x}_{u}} \nabla_{\mathbf{x}_{v}} \mathbf{x}_{u}=-\mathbf{x}_{v} .
$$

Hence show that

$$
R_{211}^{2}=\frac{c^{2}}{a^{2} \sin ^{2} u+c^{2} \cos ^{2} u} \quad \text { and } \quad R_{2112}=\frac{a^{2} c^{2} \cos ^{2} u}{a^{2} \sin ^{2} u+c^{2} \cos ^{2} u} .
$$

Deduce from this that the Gaussian curvature of the ellipsoid S at $\mathbf{x}(u, v)$ is

$$
K=\frac{c^{2}}{\left(a^{2} \sin ^{2} u+c^{2} \cos ^{2} u\right)^{2}}
$$

(which agrees with the answer we found in Assignment 4).
3. (a) Let $\mathbf{x}: U \rightarrow \mathbf{x}(U) \subset \mathbb{R}^{3}$ be a local parametrization of a regular surface S in \mathbb{R}^{3}, and E, F, G be the coefficients of the first fundamental form in the parametrization \mathbf{x}. Suppose E, F, G are all constant functions on U. What can you say about the Gaussian curvature of S on $\mathbf{x}(U)$? (Hint: What can you say about the Christoffel symbols first?)
(b) Let $\mathbf{x}: U \rightarrow \mathbf{x}(U) \subset \mathbb{R}^{3}$ be a local parametrization of a regular surface S in \mathbb{R}^{3}. Show that the coefficients of the first and second fundamental forms in the parametrization \mathbf{x} cannot satisfy all of the following at once:

$$
E=1, \quad F=0, \quad G=1 \quad \text { and } \quad e=1, \quad f=0, \quad g=1 .
$$

(Hint: Compare the curvature tensor R_{2112} with the determinant of the second fundamental form, namely $e g-f^{2}$.)
4. Let $\mathbf{x}: \mathbb{R}^{2} \rightarrow S$ be a local parametrization of a regular surface S in \mathbb{R}^{3}, and E, F, G be the coefficients of the first fundamental form in the parametrization \mathbf{x}. Suppose F is identically 0 .
(a) Show that the Gaussian curvature at the point $\mathbf{x}(u, v)$ is given by

$$
K=-\frac{1}{2 \sqrt{E G}}\left[\left(\frac{G_{u}}{\sqrt{E G}}\right)_{u}+\left(\frac{E_{v}}{\sqrt{E G}}\right)_{v}\right]
$$

where the subscripts u and v denote partial differentiation.
(b) If we further have $E=G=\lambda$ for some function λ of $(u, v) \in \mathbb{R}^{2}$, then the Gaussian curvature at the point $\mathbf{x}(u, v)$ is given by

$$
K=-\frac{1}{2 \lambda} \Delta(\log \lambda)
$$

where $\Delta=\frac{\partial^{2}}{\partial u^{2}}+\frac{\partial^{2}}{\partial v^{2}}$ is the Laplacian on the (u, v) plane.
(c) Hence, find the Gaussian curvature of S at $\mathbf{x}(1,0)$ if $E=G=\cosh ^{2} u$ and $F=0$ under some local parametrization \mathbf{x} (this will be the case e.g. if

$$
\mathbf{x}(u, v)=(\cosh u \cos v, \cosh u \sin v, u)
$$

parametrizes the catenoid in \mathbb{R}^{3}).
5. Let $\mathbf{x}(u, v)=(\cos u \cos v, \cos u \sin v, 4 \sin u)$ be a local parametrization of an ellipsoid S, where $(u, v) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(-\pi, \pi)$. Let $\gamma(t)=\mathbf{x}\left(\frac{\pi}{6}, 7 t\right)$ where $t \in\left(-\frac{\pi}{7}, \frac{\pi}{7}\right)$.
(a) Show that along γ, the Christoffel symbols $\Gamma_{12}^{1}, \Gamma_{12}^{2}, \Gamma_{22}^{1}$ and Γ_{22}^{2} are constants; furthermore, we have

$$
\Gamma_{12}^{1}=0, \quad \Gamma_{12}^{2}=-\frac{1}{\sqrt{3}}, \quad \Gamma_{22}^{1}=\frac{\sqrt{3}}{49}, \quad \Gamma_{22}^{2}=0
$$

(b) Let $\mathbf{w}(t)=w_{1}(t) \mathbf{x}_{u}+w_{2}(t) \mathbf{x}_{v}$ be a vector field along the curve γ. Show that

$$
\frac{D \mathbf{w}}{d t}=\left(w_{1}^{\prime}(t)+\frac{\sqrt{3}}{7} w_{2}(t)\right) \mathbf{x}_{u}+\left(w_{2}^{\prime}(t)-\frac{7}{\sqrt{3}} w_{1}(t)\right) \mathbf{x}_{v}
$$

(c) Suppose now $\mathbf{w}(t)$ is the parallel transport of $\gamma^{\prime}(0)$ along γ. By solving a system of ordinary differential equations, show that

$$
\mathbf{w}(t)=-\sqrt{3} \sin (t) \mathbf{x}_{u}+7 \cos (t) \mathbf{x}_{v}
$$

for $t \in\left(-\frac{\pi}{7}, \frac{\pi}{7}\right)$.

