MATH2242/MATH6242 Homework 6

No need to turn in.

1. Let $R>0$, and let $\mathbf{x}:\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(-\pi, \pi) \rightarrow S$ be a local parametrization of the sphere S of radius 2 in \mathbb{R}^{3}, given by

$$
\mathbf{x}(u, v)=(2 \cos u \cos v, 2 \cos u \sin v, 2 \sin u), \quad(u, v) \in\left(-\frac{\pi}{2}, \frac{\pi}{2}\right) \times(-\pi, \pi)
$$

Let

$$
\Omega=\left\{\mathbf{x}(u, v) \in S: u \in\left[0, \frac{\pi}{3}\right], v \in\left[0, \frac{\pi}{2}\right]\right\}
$$

and let $\partial \Omega$ be parametrized by the union of 4 curves, given by

$$
\begin{gathered}
\gamma_{1}=\mathbf{x}(0, t), \quad t \in\left[0, \frac{\pi}{2}\right], \\
\gamma_{2}=\mathbf{x}\left(t, \frac{\pi}{2}\right), \quad t \in\left[0, \frac{\pi}{3}\right], \\
\gamma_{3}=\mathbf{x}\left(\frac{\pi}{3}, \frac{\pi}{2}-t\right), \quad t \in\left[0, \frac{\pi}{2}\right], \\
\gamma_{4}=\mathbf{x}\left(\frac{\pi}{3}-t, 0\right), \quad t \in\left[0, \frac{\pi}{3}\right]
\end{gathered}
$$

We will orient S by the outward unit normal, i.e. we will take

$$
N(\mathbf{x}(u, v))=(\cos u \cos v, \cos u \sin v, \sin u)
$$

(a) Draw a picture of the above configuration.
(b) Suppose one travels along $\partial \Omega$ by following consecutively $\gamma_{1}, \gamma_{2}, \gamma_{3}$ and then γ_{4}. Find the angle turned at each point where $\partial \Omega$ is not smooth.
(c) Compute the covariant derivative $\frac{D}{d t}\left(\frac{d \gamma_{1}}{d t}\right)$. Hence show that γ_{1} is a geodesic on S. Similarly, show that γ_{2} and γ_{4} are both geodesics on S.
(d) Compute the geodesic curvature k_{g} along γ_{3}.
(e) Find the Gaussian curvature of the sphere at every point $\mathbf{x}(u, v) \in \Omega$.
(f) Using the local Gauss-Bonnet formula, find the area of Ω.
(g) The area of Ω can also be calculated by evaluating the integral

$$
\int_{0}^{\frac{\pi}{3}} \int_{0}^{\frac{\pi}{2}}\left|\mathbf{x}_{u} \wedge \mathbf{x}_{v}\right| d v d u
$$

Does your answer in part (f) agree with the value of this integral?
2. Let S be the surface of revolution obtained by rotating a unit circle $(x-2)^{2}+y^{2}=1$ centered at $(2,0)$ around the z axis; it is then a torus, and

$$
\mathbf{x}(u, v)=((2+\cos u) \cos v,(2+\cos u) \sin v, \sin u), \quad(u, v) \in(-\pi, \pi) \times(-\pi, \pi)
$$

parametrizes this torus except that it'll miss two circles on the torus.
(a) Using the global Gauss-Bonnet theorem, evaluate the total integral of the Gaussian curvature on S, i.e. evaluate

$$
\iint_{S} K d A
$$

(You do not need to provide a justification for the Euler characteristic of the torus.)
(b) Show that the Gaussian curvature of S at $\mathbf{x}(u, v)$ is given by

$$
K(\mathbf{x}(u, v))=\frac{\cos u}{2+\cos u}
$$

Also show that $d A=(2+\cos u) d u d v$. Hence, compute the integral in part (a) directly, without using the global Gauss-Bonnet theorem. Do your answers agree? Which method is easier?

