
MATH2320/MATH3116/MATH6110 Homework 2

Due Date: 5 June 2020.

[Marking scheme: 112 points + 13 points for presentation. Total: 125 points.]
Please submit your work via Wattle in one single pdf file.

1. (14 points) Show that any triangle in the plane with area A has two sides whose lengths have
a product that is at least 4A/

√
3.

(Hint: How do you express the product of two sides of a triangle in terms of its area and the
included angle? There are now a number of ways to finish this problem. For instance, you
may take an average over the choice of two sides of the triangle, use that the sum of interior
angles of a triangle is π, and then invoke convexity; simpler approaches are also possible.)

2. (14 points) Let P be a collection of M points and L be a collection of N lines, all lying in
the plane. An incidence between P and L is a pair (p, l) ∈ P × L, where l passes through p.
Show that the number of incidences between P and L is at most MN1/2 +N .
(Hint: Let f(p, l) = 1 if l passes through p, and f(p, l) = 0 otherwise. If I denotes the number
of incidences between P and L, then

I =
∑
l∈L

∑
p∈P

f(p, l).

Apply Cauchy-Schwarz to the first sum in l, and then use that any two distinct points on the
plane determine a unique line through them.)
Remark. This bound is non-sharp, and may be improved using tools from algebraic topology.

3. (14 points) Suppose f : [0,∞)→ R is convex, continuously differentiable, and f(0) = 0. Show
that for any −1 < α <∞ and A > 0,∫ A

0
xα exp

(
−f(x)

x

)
dx ≤ exp(α+ 1)

∫ A

0
xα exp

(
−f ′(x)

)
dx.

(Hint: Consider change of variable x = py in the left hand side for p slightly bigger than 1,
and compare f(py) to f(y) + (p− 1)yf ′(y). Apply Hölder, and then let p↘ 1.)

4. (14 points) Show that if (xn)∞n=1 is a summable sequence of positive real numbers, then

∞∑
n=1

(x1x2 · · ·xn)1/n < e
∞∑
n=1

xn.

(Hint: Choose suitable constants c1, c2, . . . and apply the AM-GM inequality to show that

(x1x2 · · ·xn)1/n ≤ c1x1 + · · ·+ cnxn
n

1

(c1c2 . . . cn)1/n
.

The c1, c2, . . . should be chosen so that one can easily sum over n; it helps to know, for
instance, that

∑∞
n=1

1
n(n+1) is readily summable to 1.)

5. (14 points) Show that for any non-negative sequences (xn)∞n=1 and (yn)∞n=1, one has

∞∑
m=1

∞∑
n=1

xmyn
m+ n

≤ π

( ∞∑
m=1

x2m

)1/2( ∞∑
n=1

y2n

)1/2

.

This inequality is actually strict if the right hand side of the inequality is finite and strictly
positive, but you are not required to prove this; also, you may assume that the right hand
side is finite to begin with, for otherwise the inequality is obvious. (Hint: Write

xmyn
m+ n

=
xm√
m+ n

(
mα

nα

)
· yn√

m+ n

(
nα

mα

)
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for some suitable value of α, and apply Cauchy-Schwarz. It may help to evaluate the integral∫ ∞
0

1

t+ 1

dt√
t

at some point.)

6. (14 points) Suppose u is a continuously differentiable function on [0, A] for some A > 0 and
u(0) = 0. Show that for 1 < p <∞,(∫ A

0

∣∣∣∣u(x)

x

∣∣∣∣p dx)1/p

≤ p

p− 1

(∫ A

0
|u′(x)|pdx

)1/p

.

(Hint: Integrate by parts and apply Hölder.)

7. (14 points) Let k be a positive integer and a1, a2, . . . , a2k be complex numbers. Show that∫ 1

0
max

1≤m≤2k

∣∣∣ m∑
n=1

ane
2πinx

∣∣∣2dx ≤ k(k + 1)

2k∑
n=1

|an|2.

(Hint: For 0 ≤ j ≤ k, we partition {1, 2, 3, . . . , 2k} into sets of 2j consecutive integers and
call the resulting partition Ej ; e.g.

E1 = {{1, 2}, {3, 4}, . . . , {2k − 1, 2k}}.

Let E :=
⋃k
j=0Ej . Let m be a positive integer with 1 ≤ m ≤ 2k. How many disjoint sets

from E do we need, so that their union is equal to {1, 2, 3, . . . ,m}? How many sets in E
contain m? The former question allows one to compare

max
1≤m≤2k

∣∣∣ m∑
n=1

ane
2πinx

∣∣∣2 with
∑
I∈E

∣∣∣∑
n∈I

ane
2πinx

∣∣∣2.
The latter question allows one to estimate the integral of the latter.)

8. (14 points) Let n be a positive integer and let γ : [0, 1] → Rn be the curve given by γ(t) =
(t, t2, . . . , tn) for t ∈ [0, 1].

(a) Show that for every positive integer N and every real number s ≥ 1, the integral

Js,N :=
1

Nn2

∫
[0,Nn]n

∣∣∣∣∣
N∑
k=1

e2πiγ(k/N)·x

∣∣∣∣∣
2s

dx

obeys a lower bound

Js,N ≥ max{N s,
1

2s(8n)n
N2s−n(n+1)

2 }

(Hint: For the lower bound N s, investigate how Js,N varies with s by using Hölder’s
inequality. J1,N is particularly easy to compute. For the other lower bound, estimate the
integrand from below on the set X1 ×X2 × · · · ×Xn, where for 1 ≤ i ≤ n, Xi is the set
of all xi ∈ [0, Nn] satisfying xi −mN i ∈ [0, 1

8n ] for some integer m.)

(b) Show that if s,N are positive integers, then the number of solutions to the Diophantine
system 

k1 + k2 + · · ·+ ks = ks+1 + ks+2 + · · ·+ k2s

k21 + k22 + · · ·+ k2s = k2s+1 + k2s+2 + · · ·+ k22s
...

kn1 + kn2 + · · ·+ kns = kns+1 + kns+2 + · · ·+ kn2s

with (k1, k2, . . . , k2s) ∈ {1, 2, . . . , N}2s is exactly equal to the integral Js,N defined in
part (a). Hence part (a) provides a lower bound for the number of solutions to this
Diophantine system; it turns out that this lower bound is essentially sharp as N →∞.


