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Notes on

LINEAR ALGEBRA
with a few remarks on

LINEAR SYSTEMS OF DIFFERENTIAL EQUATIONS

1. Systems of linear equations

Suppose we are given a system of m linear equations in n unknowns x1, . . . , xn:

a11x1 + a12x2 + · · · + a1nxn = b1

a21x1 + a22x2 + · · · + a2nxn = b2
...

...
...

...
...

am1x1 + am2x2 + · · · + amnxn = bm

(1)

To write this in a more compact form we introduce a matrix and two vectors,

A =









a11 a12 · · · a1n

a21 a22 · · · a2n

...
...

...
...

am1 am2 · · · amn









, b =









b1

b2
...

bm









and x =













x1

x2

x3
...

xn













,

so that (1) becomes Ax = b. In the next section we turn to the problem of determining
whether or not the system has any solutions and, if it does, of finding all of them. Before
that, however, we make some general comments on the nature of solutions. Notice how
similar these are to the results we saw earlier for linear second-order differential equa-
tions; we will point out in Section 7 below their similarity to results for linear systems of
differential equations.

The homogeneous problem. Suppose first that the system (1) is homogeneous, that
is, that the right hand side is zero, or equivalently that b1 = b2 = · · · = bm = 0 or b = 0:

Ax = 0. (2)

Suppose further that we have found, by some method, two solutions x1 and x2 of the
equations. Then for any constants c and d, x = cx1 + dx2 is also a solution, since

Ax = A(cx1 + dx2) = cAx1 + dAx2 = c · 0 + d · 0 = 0.

The argument extends to any number of solutions, and we have the

Principle 1: Superposition. If x1, x2, . . . , xk are all solutions of (2), and c1, c2,
. . . , ck are constants, then

x = c1x1 + c2x2 + · · ·+ ckxk (3)

is also a solution of(2).
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The name of this principle comes from the fact that (3) is called a linear combination
or linear superposition of the solutions x1, . . . ,xk. We will see later (see Principle 3 (iii)
on page 8) that there is a special value of k such that (a) we can find a set of solutions
x1, . . . ,xk with the property that every solution of (1) can be built as a linear combination
of these solutions, and (b) k different solutions are really needed for this to be true.

Notice also that the homogeneous system always has at least one solution,
the zero solution x = 0, since A0 = 0.

The inhomogeneous problem. Consider now the case in which the system (1) is inho-
mogeneous, that is, b is arbitrary. Suppose again that we are given two solutions, which
we will now call x and X. Then xh = x − X is a solution of the homogeneous system,
since

Axh = A(x− X) = Ax− AX = b − b = 0.

This means that if we know one solution of our equations, X , then every other solution is
obtained by x = X + xh:

Principle 2: Inhomogeneous linear equations. Every solution x of the system
of inhomogeneous equations (1) is of the form x = X+xh, where X is some partic-
ular solution of the system, and xh is a solution of the corresponding homogeneous
system.

In particular, if x1, . . . ,xk are the special solutions of the homogeneous equation referred
to above and in Principle 3 (iii), then

x = X + c1x1 + c2x2 + · · ·+ ckxk. (4)

2. Row reduction and row-echelon form

The key technique that we will use for solving linear equations, and also for investi-
gating general properties of the solutions, is the reduction of a matrix to row-echelon form
or to reduced row-echelon form by the use of elementary row operations, a procedure often
called row reduction or Gaussian elimination. Symbolically, if A is a matrix, we have

elementary
row

A −−−−−−−−−−−−−−−→ R
operations

where R is in row-echelon or reduced row-echelon form. What does this all mean?

Row-echelon form: The matrix R is in row-echelon form (REF) if it satisfies three
conditions:

(i) All nonzero rows (that is, rows with at least one nonzero entry) are above any zero
rows (rows with all zeros).

(ii) The first nonzero entry in any nonzero row is a 1. This entry is called a pivot.

(iii) Each pivot lies to the right of the pivot in the row above it.
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Here is a typical matrix in row-echelon form:

R =















0 1 3 −2 3 5 0 12
0 0 0 1 −2 0 −15 5
0 0 0 0 0 1 −7 0
0 0 0 0 0 0 1 4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0















(5)

The pivots are the entries, all with value 1, shown in boldface. Boyce and DiPrima reduce
matrices to this form when they do Gaussian elimination—see, e.g., Examples 1 and 2 in
Section 7.3—but they don’t use the terminology.

Warning: The text by Spence, Insel and Friedberg, used in Math 250, has a different
definition of row-echelon form: the pivots are the first nonzero entries in the nonzero rows,
but they are not required to have value 1. Unfortunately, both definitions are in common
use.

Reduced row-echelon form: It is sometimes convenient to carry the reduction further,
and bring the matrix into reduced row-echelon form (RREF). This form satisfies conditions
(i)–(iii) above, and also

(iv) All matrix entries above a pivot are zero.

When the matrix R of (5) is put into reduced row-echelon form, it becomes

R′ =















0 1 3 0 −1 0 0 2
0 0 0 1 −2 0 0 65
0 0 0 0 0 1 0 28
0 0 0 0 0 0 1 4
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0















One advantage, more theoretical than practical, is that the RREF of a matrix A is unique—
whatever sequence of row operations is used to go from A to R, with R in RREF, the
resulting R will be the same. Boyce and DiPrima do not used the reduced row-echelon
form.

Elementary row operations: There are three elementary row operations on matrices:

R1. Interchange of two rows.

R2. Multiplication of a row by a nonzero scalar.

R3. Addition of a multiple of one row to another row.

By using these operations repeatedly we can bring any matrix into row echelon form. The
procedure is illustrated on the next page, and there are also worked out examples in Boyce
and DiPrima.

Rank: If you do the row operations in different ways you can arrive at different REF
matrices R from the same starting matrix A. However, all the REF matrices you find will
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Example 1: Row reduction

Here we carry out the reduction of a 3×4 matrix first to row-echelon, and then to
reduced row-echelon, form. We indicate the row operations used by a simple notation:
ri denotes the ith row of the matrix, and the row operations are denoted by ri ↔ rj

(interchange rows i and j), ri → c ri (multiply row i by the scalar c), and ri → ri +c rj

(add c times row j to row i). Notice that in the first step we must switch the first row
with another: because the first column is not identically zero, the first pivot must be
in the upper left corner, and we need a nonzero entry there to get started.





0 −3 −1 1
1 2 3 0
2 2 5 −3





r1 ↔ r2−−−−−−−−−−−−−−→





1 2 3 0
0 −3 −1 1
2 2 5 −3





r3 → r3 − 2 r1−−−−−−−−−−−−−−→





1 2 3 0
0 −3 −1 1
0 −2 −1 −3





r2 → −(1/3) r2
−−−−−−−−−−−−−−→





1 2 3 0
0 1 1/3 −1/3
0 −2 −1 −3





r3 → r3 + 2 r2
−−−−−−−−−−−−−−→





1 2 3 0
0 1 1/3 −1/3
0 0 −1/3 −11/3





r3 → −3 r3−−−−−−−−−−−−−−→





1 2 3 0
0 1 1/3 −1/3
0 0 1 11





This completes the reduction of A to row-echelon form. If we like, we can

continue the process and reach reduced row-echelon form:

r1 → r1 − 3 r3

r2 → r2 − (1/3) r3
−−−−−−−−−−−−−−→





1 2 0 −33
0 1 0 −4
0 0 1 11





r1 → r1 − 2 r2−−−−−−−−−−−−−−→





1 0 0 −25
0 1 0 −4
0 0 1 11





The extra steps for the reduction to reduced row-echelon form could also have been
done at the same time as the earlier steps; for example, at the fourth step above, when
we did r3 → r1 + 2 r2, we could also have done r1 → r1 − 2 r2 to leave the pivot as the
only nonzero entry in column 2.
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have the same number of nonzero rows. The number of nonzero rows in R is called the
rank of A, and written rank(A) (it is also the rank of R, since R is already in REF).

In the rest of these notes it is assumed that the reader knows what the row-echelon
form and reduced row-echelon forms are and, given a matrix A, knows how to reduce it
to row-echelon form and/or reduced row-echelon form. Please review the definitions
above and the procedure outlined in Example 1 to be sure that these concepts
are clear.

3. Solving systems of linear equations

Suppose now that we are given the system of linear equations (1) and want to deter-
mine whether or not it has any solutions and, if so, to find them all. The idea is to solve
(1) by doing elementary operations on the equations, corresponding to the elementary row
operations on matrices: interchange two equations, multiply an equation by a nonzero
constant, or add a multiple of one equation to another. What is important is that these
operations do not change the set of solutions of the equations, so that we can reduce the
equations to simpler form, solve the simple equation, and know that we have found the all
solutions of the original equations, but no extraneous ones. Moreover, instead of working
with the equations, we can work with the augmented matrix:

(A |b) =









a11 a12 · · · a1n | b1

a21 a22 · · · a2n | b2

...
...

...
... |

...
am1 am2 · · · amn | bm









.

(It’s not necessary to write the vertical bars here, but they remind us that the last column
plays a special role.) Simplifying the original set of equations is equivalent to reducing the
augmented matrix to REF or RREF. Once this is done, we can easily find the solutions
explicitly, if there are any. Equally important, just by looking at the REF or RREF we
can determine whether solutions exist and, if so, many of their properties. We will write
this symbolically as

elementary
row

(A |b) −−−−−−−−−−−−→ (R | e)
operations

The entire new augmented matrix (R | e) is supposed to be in REF; this means that we
have also reduced A to the REF matrix R.

Example 2: Suppose we want to solve the equations

−3x2 − x3 = 1

x1 + 2x2 + 3x3 = 0 (6)

2x1 + 2x2 + 5x3 = −3

The augmented matrix is the one we studied in the example in Example 1, so we already
know a row-echelon form for it:

(A |b) =





0 −3 −1 1
1 2 3 0
2 2 5 −3



 −→





1 2 3 0
0 1 1/3 −1/3
0 0 1 11



 = (R | e).
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The REF corresponds to the equations

x1 + 2x2 + 3x3 = 0

x2 + (1/3)x3 = −1/3 (7)

x3 = 11

These may be solved by the process of “back substitution”: solve first for x3, substitute
that value into the previous equation and solve for x2, then substitute both values into the
first equation to find x1:

x3 = 11, x2 = −1/2 − (1/3)x3 = −4; x1 = −2x2 − 3x3 = −25, so x =





−25
−4
11



 .

Notice that in this example the equations have a solution, and it is unique.
If we had used the reduced row-echelon form (which we also found in Example 1) we

would have found the solution more quickly:

(A |b) =





0 −3 −1 1
1 2 3 0
2 2 5 −3



 −→





1 0 0 −25
0 1 0 −4
0 0 1 11



 = (R′ | e′ ).

The work we did in the first method, doing back substitution, is equivalent to the extra
steps used to find the RREF in Example 1. Technically the first procedure—solving the
system by finding the REF, then using back substitution—is called Gaussian elimination,
and the second procedure is called Gauss-Jordan elimination, but we will not make this
distinction, referring to either simply as Gaussian elimination.

In the next examples we will omit the step of row reduction and start with a matrix
in reduced row-echelon form. We choose RREF because that makes the calculations some-
what simpler, but none of our conclusions would be different if we had used REF and back
substitution.

Example 3: Suppose that the RREF form of the augmented matrix is

(R | e) =





1 2 0 1 | 5
0 0 1 3 | 2
0 0 0 0 | 1



 .

The last equation here is 0 = 1 , which clearly has no solutions: it expresses a contradiction.
This is the signal that our original equations have no solutions. Notice that one way to say
what has happened here is that the rank of R, which is 2, is less than the rank of (R | e),
which is three. In general, we will have no solution precisely if rank(R) < rank(R | e).

Example 4: Suppose that the RREF form of the augmented matrix is

(R | e) =





0 1 2 0 1 | 5
0 0 0 1 3 | 2
0 0 0 0 0 | 0



 .
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Now the idea is to solve for the variables x2 and x4, the variables for the columns containing
pivots, in terms of the other variables, which are treated as parameters. To remind us that
we are treating these variables as parameters, we will give them new names: α = x1,
β = x3, and γ = x5. then our solution is

x1 = α, x2 = 5 − 2β − γ, x3 = β, x4 = 2 − 3γ, x5 = γ.

In vector form,

x =











α
5 − 2β − γ

β
2 − 3γ

γ











=











0
5
0
2
0











+ α











1
0
0
0
0











+ β











0
−2
1
0
0











+ γ











0
−1
0
−3
1











. (8)

Here we have three parameters, one for each column of R which does not contain a pivot.
There are n = 5 unknowns and r = rank(R) = 2 pivots, and subtracting these numbers
indeed gives n − r = 3 free parameters.

The pattern here is quite general. A solution will exist if rank(R) = rank(R | e), and
it will have the general form

x = X + c1x1 + c2xx + · · ·+ ckxk.

The free parameters c1, . . . ck are just the original unknowns corresponding to the columns
without pivots. Since there are r = rank(R) = rank(A) pivots there will be n − r free
parameters in the solution (that is, k = n− r). Since we can choose the parameters freely,
we can take c1 = c2 = · · · = ck = 0 and we thus find that X itself a solution. This is
the particular solution we discussed in Section 1. If we consider now the homogeneous
problem—the same equations, but with b = 0—then we will also have e = 0, and by
looking at (8) we can see that we will have x = c1x1 + c2xx + · · · + ckxk with the same
vectors x1, . . . ,xk; this means that we have recovered (4).

We summarize in Principle 3 on page 8.

4. The case of n equations in n unknowns

Probably the most common systems of linear equations have the same number of
equations as unknowns—say n equations in n unknowns. The coefficient matrix A is then
square, with n rows and n columns. In this case there is a connection between the questions
of whether a solution exists, and whether a solution which does exist is unique. As we
shall see, one of two things may happen. Suppose that the augmented matrix has been
reduced to RREF (R | e).

Case 1: rank(A) = n. Since R is an n × n matrix in RREF with no zero rows, it must
be the identity matrix, so that (R | e) = (I | e). The corresponding equations x1 = e1,
x2 = e2, . . . , xn = en will have a solution x = e no matter what e is, and hence no matter
what the original b was; moreover, the solution is clearly always unique.
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Principle 3: Solving linear equations. Suppose that the augmented matrix
(A |b) is reduced to the REF or RREF (R | e). Then:

(i) If rank(R) < rank(R | e), so that the last nonzero equation is 0 = 1, then the
equations have no solutions. This cannot happen if the system is homogeneous.

(ii) If rank(R) = rank(R | e) then the equations have at least one solution. Write
r = rank(R) = rank(A); then the solution is unique if n = r, i.e., if every column in
R has a pivot. Otherwise, the equations have a family of solutions with k = n − r
free parameters. The general solution may be written in the form

x = X + c1x1 + c2xx + · · ·+ ckxk, (9)

where X is a particular solution, c1, . . . , ck are the parameters, and x1, . . . ,xk are
solutions of the homogeneous equations Ax = 0. The specific solutions are found
by solving the reduced equations for the variables corresponding to the columns
with pivots in terms of the other variables, which become the parameters.

(iii) The homogeneous system always has at least one solution: x = 0. This is the
trivial solution. The system has nontrivial solutions if and only if there are columns
in R which do not contain pivots, that is, if and only if r < n. The general solution
of the homogeneous equation is of the form

x = c1x1 + c2xx + · · · + ckxk, (10)

with k = r − n.

Case 2: rank(A) < n. In this case, the last row of R is a zero row. This means that for
some choices of b, the right hand side of the original equations, the vector e can have one
more nonzero component than there are nonzero rows in R, i.e., that the equations will
have no solution for some b. On the other hand, if a solution does exist, then because
there is a column without a pivot, our solution method will lead to a solution with at least
one free parameter—that is, any solution that does exist will not be unique. We have:

Principle 4: n equations in n unknowns. If A is a square matrix then the
system of equations Ax = b either has a unique solution for every b (Case 1), or
fails to have a solution for some b, and never has a unique solution (Case 2).

Note, for example, that if we know that for some b the system Ax = b has a unique
solution, then we must be in Case 1 and we immediately know that it has a solution, and
in fact a unique solution, for every b. Note also that the homogeneous system Ax = 0 can
have a nontrivial solution only in Case 2, that is, if and only if rank(A) = 0.

There is another way to distinguish between Case 1 and Case 2 which we will use but
not prove: we are in Case 1, that is, rank(A) = n, only if the determinant of A,
det(A), is not zero.

8
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Much more can be said in Case 1. Suppose that we are in this case, i.e., that rank(A) =
n. Let us define the vectors u1, . . . , un to be the columns of the n × n identity matrix:

u1 =













1
0
0
...
0













, u2 =













0
1
0
...
0













, u3 =













0
0
1
...
0













, . . . , un =













0
0
0
...
1













,

We know that the system Ax = ui has a unique solution, which we will call vi, that
is, Avi = ui. Now consider a matrix B with columns v1, . . . ,vn: B = (v1 v2 · · · vn).
Because of the definition of matrix multiplication, if we compute AB we just multiply each
column of B by the matrix A: thus

AB = (Av1 Av2 Av3 · · · Avm) = (u1 u2 u3 · · · un) = I.

Now we say that an n × n matrix A is invertible if it has an inverse: a matrix A−1

such that AA−1 = A−1A = I (A−1 must necessarily also be n × n). We want to show
that if A falls under Case 1 then it is invertible and the matrix B found above is A−1.
To do so we observe that B also falls under Case 1, since if x is a vector with Bx = 0
then x = Ix = ABx = A0 = 0, so that the equations Bx = 0 have a unique solution.
But then by the argument above there is a matrix C with BC = I, and then we have
A = AI = ABC = IC = C, so BA = BC = I and with AB = I this shows that B = A−1.
It is also clear that if A is invertible then it must fall under Case 1, since the equations
Ax = b have a solution x = A−1b for any b.

These ideas also tell us how to compute A−1. First, how do we find vi? We do
Gaussian elimination on the augmented matrix (A |ui ), and vi, the solution, will just be
the last column of the result, that is, the row reduction will be (A |ui ) → (I |vi ). Doing
all these different problems to find all the vi is a terrible duplication of effort, however, so
we do them all at once:

(A|u1 u2 · · ·un) → (I|v1 v2 · · ·vn) or equivalently (A | I ) → (I |A−1 ).

This method of computing A−1 is illustrated in Boyce and DiPrima, Section 7.2, Example 2.
We can conclude that if A is a square matrix then any one of the following conditions

is enough to guarantee that we are in Case 1, and hence that in fact all the conditions
hold:

C1: The system Ax = b has a solution for every b.

C2: Whenever the system Ax = b has a solution, the solution is unique.

C3. The homogeneous system Ax = 0 has only the trivial solution x = 0.

C4: rank(A) = n

C5: A has an inverse matrix A−1 satisfying AA−1 = A−1A = I.

C6: The reduced row-echelon form of A is the identity matrix I.

C7: The determinant of A is not zero.

9
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5. Linear independence of vectors

The concept of linear independence of vectors is discussed in Boyce and DiPrima,
Section 7.3 (pages 377-379), but we will add a few remarks. Suppose we are given k
vectors x1, x2, . . . , xk, these might be either row or column vectors, but they are all one
or the other, and they all have the same number of components. We then ask the question:
can any one of these vectors be expressed as a linear combination of the remaining ones?
If so, the vectors are linearly dependent, if not, they are linearly independent.

Example 5: (a) The vectors x1 =

(

1
0

)

, x2 =

(

0
1

)

, and x3 =

(

3
−2

)

are linearly

dependent, since x3 can be expressed as a linear combination of x1 and x2: x3 = 3x1−2x2,

(b) The vectors x1 =





1
0
0



, x2 =





0
1
0



, and x3 =





0
0
1



, are linearly independent.

For example, we cannot write x1 = ax2 + bx3 no matter how we choose a and b, since

ax2 + bx3 =





0
a
b



 has first component 0, and x1 has first component 1.

(c) The vectors x1 = ( 1 5 −3 2 ), x2 = ( 0 0 0 0 ), and x3 = ( 7 −1 2 0 )
are linearly dependent, since x2 = 0x1 + 0x3. Clearly, any set of vectors in which one
vector is 0 must be linearly dependent, by the same reasoning.

There is another way to describe linear dependence: the vectors x1, x2, . . . , xk are
linearly dependent if there exist scalars c1, . . . , ck, not all zero, such that

c1x1 + c2x2 + · · ·+ ckxk = 0. (11)

The restriction that not all the ci be zero is important, since we could always make (11)
true by taking c1 = c2 = · · · = ck = 0. This new definition of linear dependence is the
same as our original definition. For if the vectors are linearly dependent according to our
first definition then one of them, say x1, can be expressed as a linear combination of the
others: x1 = d2x2 + d3x3 + · · · + dkxk; but then

x1 − d2x2 − d3x3 − · · · − dkxk = 0,

which shows that (11) holds with the coefficients ci not all zero (since c1 = 1). Conversely,
if (11) holds with some coefficient not zero—say, c1 6= 0—then we can solve the equation
for x1, expressing it as a linear combination of the others:

x1 = −

(

c2

c1

)

x2 − · · · −

(

ck

c1

)

xk,

so that the vectors are linearly dependent by our first definition.
How can we determine if the vectors x1, . . . ,xk are linearly dependent or linearly

independent? Here is one way, essentially that discussed in Boyce and DiPrima. Suppose
that these are column vectors with n components, and build a matrix A with these vectors

10
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as columns: A = (x1 x2 . . . xk). The matrix A is n×k. To say that (11) holds is just to say

that Ac = 0, where c =





c1
...
ck



. This means that x1, . . . ,xk are linearly dependent—i.e.,

that (11) holds with the ci not all zero—if the system of equations Ac = 0 has a nontrivial
solution for c. One can determine whether or not it does by reducing A to REF or RREF.

Finally, suppose we have n vectors, each with n components, and want to know if
they are linearly independent (this is the case considered by Boyce and DiPrima). Then
the matrix A is an n × n square matrix, and we can study it via the ideas of the previous
section. The system Ac = 0 has no nontrivial solution if and only if we are in Case 1 (this
is condition C3 for being in case 1), i.e., if the matrix A satisfies any of the conditions
C1–C7. Note that this means that we could add another condition to the list C1–C7,
equivalent to all the rest:

C8. The columns of A are linearly independent vectors.

We summarize:

Principle 5: Linear independence. The vectors x1, . . . ,xk are linearly depen-
dent if the system of equations Ac = 0, where A = (x1 x2 . . . xk), has a nontrivial
solution. The vectors are linearly independent if the system Ac = 0 has only the
trivial solution c = 0. If k = n and the vectors are column vectors with n compo-
nents, then they are linearly independent if and only if the matrix A satisfies any
of the conditions C1–C7 of Section 4.

Remark 1: In Principle 3 on page 8 we found that k = n − rank(A) = n − r vectors are
needed to express every solution of the equations Ax = b, and observed that row reduction
produced the needed vectors x1, . . . ,xk. We want to observe here that these k vectors are
linearly independent. To see this, consider Example 4 and form a linear combination
of the vectors x1,x2,x3 produced there:

c1x1 + c2x2 + c3x3 = c1











1
0
0
0
0











+ c2











0
−2
1
0
0











+ c3











0
−1
0
−3
1











=











c1

−2c2 − c3

c2

−3c3

c3











.

By looking at the first, third, and fifth components of the final form of this vector we see
that if c1x1 +c2x2 +c3x3 = 0 then necessarily c1 = c2 = c3 = 0, and this is precisely linear
independence of x1,x2, and x3. The pattern is the same for any system Ax = b.

6. Linear independence of functions

In the previous section we discussed what it means to say that a collection of vectors
v1, . . . , vk is linearly independent. We will also use a slightly different concept, that
of linear independence of functions. Consider a collection of functions defined on some
interval I; these could either be scalar-valued functions f1(t),. . . , fk(t), say

f1(t) = 1, f2(t) = sin2 t, f3(t) = cos2 t, (12)

11
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or could be vector-valued functions x(1)(t), . . . , x(k)(t), all with the same number of
components, say

x(1)(t) =

(

1
t

)

, x(2)(t) =

(

et

tet

)

. (13)

(We will usually use the notation of vector-valued functions in general discussions, to avoid
separate consideration of several cases. One can of course think of scalar functions as vector
functions having only one component.) We say that the collection is linearly independent
on I if no one of these functions may be expressed as a linear combination, with constant
coefficients, of the others. Alternatively, the collection is linearly independent if whenever
a linear combination of the functions, with constant coefficients, is zero for all t in I, then
necessarily all the coefficients are zero:

c1x
(1)(t) + · · · + ckx

(k)(t) = 0 for all t in I ⇒ c1 = · · · = ck = 0.

Equivalence of these two definitions of linear independence is proved just as was the corre-
sponding equivalence for vectors, above. A set of functions which is not linearly indepen-
dent is linearly dependent.

Example 6: (a) The three (scalar) functions f1(t) = 1, f2(t) = sin2 t, and f3(t) = cos2 t
of (12) are linearly dependent on any interval I, since we always have 1−sin2 t−cos2 t = 0,
that is, c1f1(t) + c2f2(t) + c3f3(t) = 0 for c1 = 1, c2 = c3 = −1.

(b) On the other hand, the three functions g1(t) = 1, g2(t) = sin t, and g3(t) = cos t are
linearly dependent on any interval I. Here is one way to see this, assuming that the interval
contains at least the points 0, π/2, and π. Suppose that c1g1(t) + c2g2(t) + c3g3(t) = 0 for
all t; then plugging in successively these three values of t gives

c1 + c3 = 0, (t = 0); c1 + c2 = 0, (t = π/2); c1 − c3 = 0, (t = π),

and the only solution of these equations is c1 = c2 = c3 = 0.

(c) The two vector functions x1(t) and x2(t) of (13) are linearly independent on any interval
I. For if c1x

(1)(t) + c2x
(2)(t) = 0 for all t then one may plug in any two distinct values of

t in the interval, say t = r and t = s, to find

c1x
(1)(r) + c2x

(2)(r) = c1

(

1
r

)

+ c2

(

er

rer

)

=

(

c1 + c2e
r

r(c1 + c2e
r)

)

= 0

c1x
(1)(s) + c2x

(2)(s) = c1

(

1
s

)

+ c2

(

es

ses

)

=

(

c1 + c2e
s

s(c1 + c2e
s)

)

= 0

In particular, c1 + c2e
r = 0 and c1 + c2e

s = 0, and since r 6= s these equations imply
c1 = c2 = 0.

(d) Consider again the vector functions x(1)(t) and x(2)(t) of (13). From (c) we know that
these are independent as functions on and interval. However, for fixed t, say t = t0, the

two vectors x(1)(t0) =

(

1
t0

)

and x(2)(t0) = et0

(

1
t0

)

are linearly dependent, since they

12
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are proportional (with proportionality constant et0). This is Exercise 7.3.15 of Boyce and
DiPrima.

Remark 2: We have a systematic method of determining whether or not a set of vectors
is linearly independent, since (see Principle 5) this reduces to solving a system of linear
equations. There is no corresponding simple method for checking linear dependence or
independence of functions. However, the method used in Example 6(b,c), of plugging in
a few points, is very useful to show linear independence. To show linear dependence one
can, for examples considered in these notes, usually see by inspection how to express one
of the functions in as a linear combination of some of the others.

7. Eigenvalues and eigenvectors

The discussion of eigenvalues and eigenvectors in Boyce and DiPrima Section 7.3
(pages 379–383) is fine for our purposes.

8. Linear systems of ordinary differential equations

In this section we discuss the solutions of first order linear systems of ordinary differ-
ential equations. This is not a thorough presentation of the entire subject; rather, we want
to summarize the essential general properties of the problem, and in particular those as-
pects related to the linearity of the equations. In doing so we will emphasize the parallels
with the solution of algebraic linear equations, discussed earlier in these notes.

The system we will study is

x′ = Px + f , (14)

where x and f are vector functions of t, with f known and x unknown—x is the dependent
variable—and P is a known matrix function of t:

x = x(t) =







x1(t)
...

xn(t)






, f = f(t) =







f1(t)
...

fn(t)






P = P(t) =







p11(t) . . . p1n(t)
...

...
pn1(t) . . . pnn(t)






.

Note that P is a square matrix. Throughout we assume that all the functions pij(t) and
fi(t) are continuous functions of t for t in some interval I, and we are look for a solution
or solutions x(t) defined on this interval.

The homogeneous problem. Let us first consider the homogeneous case in which f = 0,
so that our system becomes

x′ = Px. (15)

Just as for a homogeneous system of (algebraic) linear equations (see Principle 1 on page
1), we have

13
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Principle 6: Superposition for linear ODEs. If x(1)(t), x(2)(t), . . . , x(k)(t)
are solutions of (15), and c1, c2, . . . , ck are constants, then

x(t) = c1x
(1)(t) + c2x

(2)(t) + · · · + ckx
(k)(t) (16)

is also a solution of (15).

The principle of superposition tells us how to build new solutions from solutions we
already have; x(t) in (16) is called a superposition or linear combination of the solutions
x(1), . . . ,x(k). The principle is of fundamental importance; let us verify it. Since we want
to check a claim that x is a solution of (15), we just plug x into (15) and see if the equation
is satisfied. We need to use the linearity of differentiation and of matrix multiplication:

x′ = (c1x
(1) + c2x

(2) + · · ·+ ckx
(k))′ = c1x

(1)′ + c2x
(2)′ + · · · + ckx

(k)′, (17)

Px = P(c1x
(1) + c2x

(2) + · · · + ckx
(k)) = c1Px(1) + c2Px(2) + · · · + ckPx(k). (18)

Then since x(i)′ − Px(i) = 0 for each i,

x′ − Px = (c1x
(1)′ + c2x

(2)′ + · · ·+ ckx
(k)′) − (c1Px(1) + c2Px(2) + · · ·+ ckPx(k))

= c1(x
(1)′ − Px(1)) + c2(x

(2)′ − Px(2)) + · · · + ck(x(k)′ −Px(k)) = 0, (19)

that is, x satisfies (15).

The inhomogeneous problem. We now consider general case of (14), in which f may
or may not be zero. Again the result is parallel to the result for algebraic systems, given
in Principle 2 on page 2.

Principle 7: Inhomogeneous linear ODEs. Suppose that X(t) is some (par-
ticular) solution of the inhomogeneous equation (14). Then every solution of this
equation is of the form

x(t) = X(t) + xh(t), (20)

where xh(t) is a solution of the homogeneous system (15).

To verify this principle, one checks two things: first, that (20) is a solution of (14),
and second, that if x̂ is any solution of (14), then x̂−X satisfies the homogeneous equation
(15). Both of these are checked by substituting the purported solutions into the relevant
equations.

Linear independence and the general solution. The superposition principle tells
us how to build many solutions of the homogeneous equation (and thus, through (20), of
the inhomogeneous equation), once we have some “building blocks”: the solutions x(i)(t)
used in (16). Now we ask: is it possible to get all solutions this way, and if so, how
many building blocks do we need? For the algebraic systems this question is answered by
Principle 3 on page 8 and the Remark 1 on page 11: we need k = n−r linearly independent

14
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solutions as building blocks, where n is the total number of unknowns and r is the rank of
the coefficient matrix. The next principle gives us the corresponding information for the
homogeneous and inhomogeneous ODE systems (15) and (14).

Principle 8: The general solution of ODEs. Suppose that x(1), x(2), . . . , x(n)

are n solutions of (15), linearly independent on the interval I. Then every solution
x of (15) is of the form

x(t) = c1x
(1)(t) + c2x

(2)(t) + · · ·+ cnx(n)(t) (21)

for some constants c1, c2, . . . , cn. Moreover, if X(t) is some (particular) solution of
the inhomogeneous equation (14), then every solution of (14) is of the form

x(t) = X(t) + c1x
(1)(t) + · · ·+ cnx(n)(t), (22)

where xh(t) is a solution of the homogeneous system (15).

It is important to realize that there are three conditions here on the vector functions
x(1), . . . , x(n) which are necessary to guarantee that the general solution has the form
(21). First, the x(i) must themselves be solutions of (15). Second, there must be exactly n
solutions: the same number of solutions as the number of components in the vectors, i.e.,
as the number of different first order equations represented in vector form in (15). Third,
these n solutions must be linearly independent.

To apply Principle 8 it is of course necessary to determine whether some set x(1), . . . ,
x(n) of solutions of (15) is linearly independent. As indicated in Remark 2 on page 13
there is in general no simple method to determine whether a set of function is or is not
linearly independent. However, when the functions in questions are all solutions of (15)
there is such a method; one uses the Wronskian of these solutions, that is, the determinant
whose columns are the solutions:

W (x(1), . . . ,x(n))(t) = W (t) =

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

x
(1)
1 (t) x

(2)
1 (t) · · · x

(n)
1 (t)

x
(1)
2 (t) x

(2)
2 (t) · · · x

(n)
2 (t)

...
...

. . .
...

x
(1)
n (t) x

(2)
n (t) · · · x

(n)
n (t)

∣

∣

∣

∣

∣

∣

∣

∣

∣

∣

.

A nonzero Wronskian corresponds to linear independence of the solutions; for more deail,
see Principle 9 on page 16. In paricular, if we find n solutions of the homogeneous problem
(15) whose Wronskian does not vanish (and it suffices to check the Wronskian at one point)
then these can be used to build the general solution, as in (21).

15
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Principle 9: The Wronskian. Suppose that we have precisely n functions x(1)(t),
. . . , x(n)(t), all of which are solutions of the homogeneous equation (15). Then either

(i) W (t) = 0 for all t in I, in which case the vector functions x(1)(t), . . . , x(n)(t)
are linearly dependent on I and, for any fixed point t0 in I, the (constant) vectors
x(1)(t0), . . . , x(n)(t0) are linearly dependent, or

(ii) W (t) 6= 0 for all t in I, in which case the vector functions x(1)(t), . . . , x(n)(t)
are linearly independent on I and, for any fixed point t0 in I, the (constant) vectors
x(1)(t0), . . . , x(n)(t0) are linearly independent.

9. Exercises

1. Boyce and DiPrima, Section 7.3, problems 1, 2, and 3 (already assigned). Do these
problems specifically by the methods used in these notes, that is, by introducing the
augmented matrix and then reducing it to row-echelon form or reduced row-echelon form.

2. In (a)–(d) below we suppose that we have been given a system of equations Ax = b and
that we have already reduced the augmented matrix (A |b) to the row-echelon form (R | e)
given. In each case, determine whether or not the original equations have a solution. If
they do have a solution, determine whether or not it is unique and, if it is not unique, how
many free parameters there are; then write the solution explicitly in the form (9).

(a) (R | e) =





1 5 −3 2 8 | 2
0 0 1 −1 0 | 3
0 0 0 0 0 | 1





(b) (R | e) =







1 0 0 0 | 2
0 1 0 0 | −1
0 0 1 0 | 3
0 0 0 1 | 4







(c) (R | e) =







1 −1 2 3 | 2
0 1 1 −1 | −1
0 0 1 −4 | 3
0 0 0 1 | 4







(d) (R | e) =







0 1 2 0 −2 0 | 2
0 0 0 1 3 0 | −1
0 0 0 0 0 1 | 3
0 0 0 0 0 0 | 0







3. In each part below, give a m × n matrix R in reduced row-echelon form satisfying the
given condition, or explain briefly why it is impossible to do so.

(a) m = 3, n = 4, and the equation Rx = e has a solution for all e.

(b) m = 3, n = 4, and the equation Rx = 0 has a unique solution.

(c) m = 4, n = 3, and the equation Rx = e has a solution for all e.

(d) m = 4, n = 3, and the equation Rx = 0 has a unique solution.

16
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(e) m = 4, n = 4, and the equation Rx = 0 has no solution.

(f) m = 4, n = 4, and the equation Rx = 0 has a nontrivial solution.

(g) m = 4, n = 4, and for every e the equations Rx = e have a solution containing a free
parameter.

4. Suppose that x1 and x2 are solutions of Ax = 0 and that X is a solution of Ax = b.
Without looking at the these notes or the book, show that for any constants c1 and c2,
c1x1 + c2x2 is a solution of Ax = 0 and that X + c1x1 + c2x2 is a solution of Ax = b.

5. In each part below, show that the given functions are linearly independent or linearly
dependent, as indicated. You may take the interval in question to be (−∞,∞). See
Remark 2 on page 13.

(a) f1(t) = 2, f2(t) = 3t, f3(t) = 1 − 7t (linearly dependent).

(b) g1(t) = t, g2(t) = t2 (linearly independent).

(c) x(1)(t) =

(

1
t

)

, x(2)(t) =

(

t
t

)

(linearly independent). Show also that the vectors

are linearly dependent (as vectors) for t = 0 and t = 1 but not for t = 2.

Hints: 2. (a) no solution, (b),(c) unique solution, (d) solution with 3 parameters. 4.(b),(c),(e),(g) impossible.
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