Math 244 Fall 2012

Homework 1

You should solve these problems without using a calculator.

1. Find the derivatives of the following functions of t (wherever they are defined).

$$
\cos (2 t), \quad t e^{-t^{2}}, \quad \sec ^{2}(3 t), \quad \frac{t}{1+9 t^{2}}, \quad \frac{1}{\sqrt{1-4 t^{2}}}
$$

2. Find the anti-derivatives of the functions in Question 1.
3. Find all functions $y(t)$ satisfying

$$
\frac{d y}{d t}=\cos ^{3}(2 t)+t \sin t
$$

4. Find all functions $y(t)$, defined for $t>0$, such that

$$
\frac{d y}{d t}=t \log t, \quad \text { and } \quad y(1)=3
$$

5. (a) Sketch a graph of $y(t)=\sin (2 t)$ for $0 \leq t \leq 2 \pi$.
(b) Where is $y(t)$ increasing within the above range of t ?
(c) Repeat the above if now $y(t)=t \sin (2 t)$ instead.
6. This is a question about complex numbers. We write i so that $i^{2}=-1$, and use $|\cdot|$ to denote the modulus of a complex number. We define

$$
e^{x+i y}=e^{x}(\cos y+i \sin y)
$$

if x, y are real numbers.
(a) Show that $(a+b i)(a-b i)=a^{2}+b^{2}$.
(b) Compute $|-3+4 i|$ and $\left|e^{-100 i}\right|$.
(c) Find the real and imaginary parts of $e^{x-i y}$, if x, y are real numbers.
(d) Define a function $y(t)=e^{(2-3 i) t}$ for real values of t. Compute $y^{\prime}(t)$ and evaluate that when $t=0$.
(e) Suppose a, b are real numbers, and define two functions

$$
y_{1}(t)=e^{(a+b i) t}+e^{(a-b i) t}, \quad \text { and } \quad y_{2}(t)=-i\left(e^{(a+b i) t}-e^{(a-b i) t}\right)
$$

for real values of t. Show that they are both real-valued functions of t, and that

$$
y_{1}(t)=2 e^{a t} \cos (b t), \quad \text { and } \quad y_{2}(t)=2 e^{a t} \sin (b t)
$$

7. Solve the following quadratic equations:

$$
r^{2}-4 r+3=0, \quad r^{2}-4 r+4=0, \quad r^{2}-4 r+5=0
$$

8. Find the Jacobian matrix of the following map at the point (x, y) :

$$
F(x, y)=(-3 \sin x+y, 4 x+3 \cos y-3) .
$$

9. Find the Jacobian matrix of the following map at the point $(1,1)$:

$$
F(x, y)=\left(2 x-x^{2}-x y, 3 y-y^{2}-2 x y\right) .
$$

10. In the following figure, the horizontal axis is the t-axis, and the vertical axis is the y-axis. The solid curve is the graph of $y=f(t)$ for some function $f(t)$, defined for $t \geq 0$.

Based on what is suggested in the graph:
(a) Decide the range of t where $f(t)$ is positive.
(b) Decide the range of t where $f^{\prime}(t)$ is positive.
(c) Predict whether

$$
\lim _{t \rightarrow+\infty} f(t) \quad \text { and } \lim _{t \rightarrow+\infty} f^{\prime}(t)
$$

exist, and what their values are if they exist.
11. Compute the following limits:

$$
\lim _{t \rightarrow \infty} \frac{1+5 t-4 t^{2}}{1+3 t^{2}}, \quad \lim _{t \rightarrow \infty} \frac{\sin t}{t}, \quad \lim _{t \rightarrow \infty} \frac{\log \left(1+t^{2}\right)}{t(t+1)}
$$

12. For each of the following statements, decide whether it is true or false. Give a counter-example if the statement is false.
(a) If $f(t) \geq 0$ for all $a<t<b$, then $f(t)$ is increasing on the interval (a, b).
(b) If $f^{\prime}(t) \geq 0$ for all $a<t<b$, then $f(t)$ is increasing on the interval (a, b).
(c) If $f^{\prime \prime}(t) \geq 0$ for all $a<t<b$, then $f(t)$ is increasing on the interval (a, b).
