Math 252 Spring 2012

Homework 1

You should solve these problems without using a calculator.

1. Find the derivatives of the following functions of t (wherever they are defined).

$$
\cos (2 t), \quad t e^{-t^{2}}, \quad \sec ^{2}(3 t), \quad \frac{t}{1+9 t^{2}}, \quad \frac{1}{\sqrt{1-4 t^{2}}}
$$

2. Find the anti-derivatives of the functions in Question 1.
3. Find all functions $y(t)$ satisfying

$$
\frac{d y}{d t}=\cos ^{3}(2 t)+t \sin t
$$

4. Find all functions $y(t)$, defined for $t>0$, such that

$$
\frac{d y}{d t}=t \log t, \quad \text { and } \quad y(1)=3
$$

5. (a) Sketch a graph of $y(t)=\sin (2 t)$ for $0 \leq t \leq 2 \pi$.
(b) Where is $y(t)$ increasing within the above range of t ?
(c) Repeat the above if now $y(t)=t \sin (2 t)$ instead.
6. Let A be the following matrix and b be the following column vector:

$$
A=\left(\begin{array}{ll}
1 & 3 \\
3 & 1
\end{array}\right), \quad b=\binom{2}{-1}
$$

(a) Find all column vectors x such that $A x+b=0$.
(b) Find all eigenvalues of A. For each eigenvalue, find all the eigenvectors of A corresponding to that eigenvalue.
(c) How many eigenvalues of A are positive, and how many are negative?
(d) Repeat the above if now

$$
A=\left(\begin{array}{cc}
7 & 9 \\
-4 & -5
\end{array}\right)
$$

instead.
7. Find the Jacobian matrix of the map

$$
F(x, y)=(-3 \sin x+y, 4 x+3 \cos y-3)
$$

at the point (x, y). Find the eigenvalues of this matrix when $(x, y)=(0,0)$.
8. Find the eigenvalues of the Jacobian matrix of the map

$$
F(x, y)=\left(2 x-x^{2}-x y, 3 y-y^{2}-2 x y\right)
$$

at the point $(1,1)$. How many of them are positive? negative? zero?
9. In the following figure, the horizontal axis is the t-axis, and the vertical axis is the y-axis. The solid curve is the graph of $y=f(t)$ for some function $f(t)$, defined for $t \geq 0$.

Based on what is suggested in the graph:
(a) Decide the range of t where $f(t)$ is positive.
(b) Decide the range of t where $f^{\prime}(t)$ is positive.
(c) Predict whether

$$
\lim _{t \rightarrow+\infty} f(t) \quad \text { and } \lim _{t \rightarrow+\infty} f^{\prime}(t)
$$

exist, and what their values are if they exist.
10. Compute the following limits:

$$
\lim _{t \rightarrow \infty} \frac{1+5 t-4 t^{2}}{1+3 t^{2}}, \quad \lim _{t \rightarrow \infty} \frac{\sin t}{t}, \quad \lim _{t \rightarrow \infty} \frac{\log \left(1+t^{2}\right)}{t(t+1)}
$$

11. For each of the following statements, decide whether it is true or false. Give a counter-example if the statement is false.
(a) If $f(t) \geq 0$ for all $a<t<b$, then $f(t)$ is increasing on the interval (a, b).
(b) If $f^{\prime}(t) \geq 0$ for all $a<t<b$, then $f(t)$ is increasing on the interval (a, b).
(c) If $f^{\prime \prime}(t) \geq 0$ for all $a<t<b$, then $f(t)$ is increasing on the interval (a, b).
12. (a) Show that the vectors $(1,3)$ and $(2,-4)$ are linearly independent over \mathbb{R}.
(b) Give an example of two vectors in \mathbb{R}^{2} that are not linearly independent over \mathbb{R}.
(c) (Optional) Show that the functions $\sin (t)$ and $\cos (t)$ are linearly independent over \mathbb{R}.
