
Math 252 — Fall 2002
Introduction to Matrix Exponentials

Generalities. A system of autonomous linear differential equations can be written as

dY

dt
= AY

whereA is ann by n matrix andY = Y(t) is a vector listing then dependent variables. (In most of what
we’ll do, we taken = 2, since we study mainly systems of 2 equations, but the theory is the same for alln.)

If we were dealing with just one linear equation

y′ = ay

then the general solution of the equation would beeat. It turns out thatalso for vector equations the solution
looks like this, provided that we interpret what we mean by “eAt” when A is a matrix instead of just a scalar.
How to defineeAt? The most obvious procedure is to take the power series which defines the exponential,
which as you surely remember from Calculus is

ex = 1+ x + 1

2
x2+ 1

6
x3+ · · · + 1

k!
xk + · · ·

and just formally plug-inx = At. (The answer should be a matrix, so we have to think of the term “1” as
the identity matrix.) In summary, wedefine:

eAt = I + At + 1

2
(At)2+ 1

6
(At)3+ · · · + 1

k!
(At)k + · · ·

where we understand the series as defining a series for each coefficient. One may prove that:

eA(t+s) = eAteAsfor alls, t . (1)

and therefore, since (obviously)eA0 = I , usings= −t gives

e−At =
(
eAt
)−1

(2)

(which is the matrix version ofe−x = 1/ex). We now prove that this matrix exponential has the following
property:

deAt

dt
= AeAt = eAt A (3)

for everyt .
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Proof. Let us differentiate the series term by term:

deAt

dt
= d

dt

(
I + At + 1

2
(At)2+ 1

6
(At)3+ · · · + 1

k!
(At)k + · · ·

)

= 0+ A+ A2t + 1

2
A3t2+ · · · + 1

(k− 1)!
Aktk−1+ · · ·

= A

(
I + At + 1

2
(At)2+ 1

6
(At)3+ · · · + 1

k!
(At)k + · · ·

)

= AeAt

and a similar proof, factoringA on the right instead of to the left, gives the equality between the derivative
andeAt A. (Small print: the differentiation term-by-term can be justified using facts about term by term
differentiation of power series inside their domain of convergence.) The property(3) is the fundamental
property of exponentials of matrices. It provides us immediately with this corollary:

The initial value problem
dY

dt
= AY, Y(0) = Y0 has the unique solutionY(t) = eAtY0.

We can, indeed, verify that the formulaY(t) = eAtY0 defines a solution of the IVP:

dY(t)

dt
= deAtY0

dt
= deAt

dt
Y0 =

(
AeAt

)
Y0 = A

(
eAtY0

)
= AY(t) .

(That it is the unique, i.e., the only, solution is proved as follows: if there were another solutionZ(t) of the
same IVP, then we could letW(t) = Y(t)− Z(t) and notice thatW′ = Y′ − Z′ = A(Y − Z) = AW, and
W(0) = Y(0)− Z(0) = 0. LettingV(t) = e−AtW(t), and applying the product rule, we have that

V ′ = −Ae−AtW + e−AtW′ = −e−At AW+ e−At AW = 0

so thatV must be constant. SinceV(0) = W(0) = 0, we have thatV must be identically zero. Therefore
W(t) = eAtV(t) is also identically zero, which becauseW = Y − Z, means that the functionsY andZ are
one and the same, which is what we claimed.)

Although we started by declaringY to be a vector, the equationY′ = AY makes sense as long asY
can be multiplied on the left byA, i.e., wheneverY is a matrix withn rows (and any number of columns).
In particular,eAt itself satisfies this equation. The result giving uniqueness of solutions of initial value
problems applies to matrices since each column satisfies the equation and has the corresponding column of
the initial data as its initial value. The value ofeAt at t = 0 is then by n identity matrix. This initial value
problem characterizeseAt. Verification of these properties is an excellent check of a calculation ofeAt. This
plays an important role in othernotesdescribing matrix exponentials containing trigonometric functions.

So we have, in theory, solved the general linear differential equation. A potential problem is, however,
that it is not always easy to calculateeAt.

Some Examples. We start with this example:

A =
(

1 0
0 2

)
. (4)
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We calculate the series by just multiplyingA by t :

At =
(

t 0
0 2t

)

and now calculating the powers ofAt. Notice that, becauseAt is a diagonal matrix, its powers are very easy
to compute: we just take the powers of the diagonal entries(why? if you don’t understand,stop and think
it over right now). So, we get

eAt =
(

1 0
0 1

)
+
(

t 0
0 2t

)
+ 1

2

(
t2 0
0 (2t)2

)
+ 1

6

(
t3 0
0 (2t)3

)
+ · · · + 1

k!

(
tk 0
0 (2t)k

)
+ · · ·

and, just adding coordinate-wise, we obtain:

eAt =
(

1+ t + 1
2t2+ 1

6t3+ · · · + 1
k! t

k + · · · 0
0 1+ 2t + 1

2(2t)2+ 1
6(2t)3+ · · · + 1

k! (2t)k + · · ·
)

which gives us, finally, the conclusion that

eAt =
(

et 0
0 e2t

)
.

So, in this very special case we obtained the exponential by just taking the exponentials of the diagonal
elements and leaving the off-diagonal elements zero (observe that we did not end up with exponentials of
the non-diagonal entries, sincee0 = 1, not 0).

In general, computing an exponential is a little more difficult than this, and it is not enough to just take
exponentials of coefficients. Sometimes things that seem surprising (the first time that you see them) may
happen. Let us take this example now:

A =
(

0 1
−1 0

)
. (5)

To start the calculation of the series, we multiplyA by t :

At =
(

0 t
−t 0

)

and again calculate the powers ofAt. This is a little harder than in the first example, but not too hard:

(At)2 =
(−t2 0

0 −t2

)

(At)3 =
(

0 −t3

t3 0

)

(At)4 =
(

t4 0
0 t4

)

(At)5 =
(

0 t5

−t5 0

)

(At)6 =
(−t6 0

0 −t6

)
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and so on. We won’t compute more, because by now you surely have recognized the pattern (right?). We
add these up (not forgetting the factorials, of course):

eAt =
(

1 0
0 1

)
+
(

0 t
−t 0

)
+ 1

2

(−t2 0
0 −t2

)
+ 1

3!

(
0 −t3

t3 0

)
+ 1

4!

(
t4 0
0 t4

)
+ · · ·

and, just adding each coordinate, we obtain:

eAt =
(

1− t2

2 + t4

4! − · · · t − t3

3! + t5

5! − · · ·
−t + t3

3! − t5

5! + · · · 1− t2

2 + t4

4! − · · ·

)

which gives us, finally, the conclusion that

e

(
0 1
−1 0

)
t
= eAt =

(
cost sint
− sint cost

)
.

It is remarkable that trigonometric functions have appeared. Perhaps we made a mistake? How could we
make sure? Well, let uscheckthat property(3) holds (we’ll check only the first equality, you can check the
second one). We need to test that

d

dt

(
cost sint
− sint cost

)
= A

(
cost sint
− sint cost

)
. (6)

Since
d

dt
(sint) = cost, and

d

dt
(cost) = − sint,

we know that
d

dt

(
cost sint
− sint cost

)
=
( − sint cost
− cost − sint

)

and, on the other hand, multiplying matrices:

(
0 1
−1 0

)(
cost sint
− sint cost

)
=
( − sint cost
− cost − sint

)

so we have verified the equality(6) .
As a last example, let us take this matrix:

A =
(

1 1
0 1

)
. (7)

Again we start by writing

At =
(

t t
0 t

)
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and calculating the powers ofAt. It is easy to see that the powers are:

(At)k =
(

tk ktk

0 tk

)

since this is obviously true fork = 1 and, recursively, we have

(At)k+1 = (At)k A =
(

tk ktk

0 tk

)(
t t
0 t

)
=
(

tkt tkt + ktkt
0 tkt

)
=
(

tk+1 (k+ 1)tk+1

0 tk+1

)
.

Therefore,

eAt =
∞∑

k=0

(
tk/k! ktk/k!

0 tk/k!

)

=




∞∑

k=0

tk

k!

∞∑

k=0

ktk

k!

0
∞∑

k=0

tk

k!




=
(

et tet

0 et

)
.

To summarize, we have worked out three examples:

• The first example(4) is a diagonal matrix, and we found that its exponential is obtained by taking
exponentials of the diagonal entries.
• The second example(5) gave us an exponential matrix that was expressed in terms of trigonometric

functions. Notice that this matrix has imaginary eigenvalues equal toi and−i , wherei = √−1.
• The last example(7) gave us an exponential matrix which had a nonzero function in the(1,2)-position.

Notice that this nonzero function wasnot just the exponential of the(1, 2)-position in the original matrix.
That exponential would give us anet term. Instead, we got a more complicatedtet term.

In a sense, these are all the possibilities. Exponentials of all two by two matrices can be obtained
using functions of the formeat, teat, and trigonometric functions (possibly multiplied byeat). Indeed,
exponentials of any size matrices, not just 2 by 2, can be expressed using just polynomial combinations oft ,
scalar exponentials, and trigonometric functions. We will not quite prove this fact here; you should be able
to find the details in any linear algebra book.

Calculating exponentials using power series is OK for very simple examples, and important to do a
few times, so that you understand what this all means. But in practice, one uses very different methods
for computing matrix exponentials. (Remember how you first saw the definition of derivative using limits
of incremental quotients, and computed some derivatives in this way, but soon learned how to use “the
Calculus” to calculate derivatives of complicated expressions using the multiplication rule, chain rule, and
so on.)

Computing Matrix Exponentials. We wish to calculateeAt. The key concept for simplifying the
computation of matrix exponentials is that ofmatrix similarity. Suppose that we have found two matrices,
3 andS, whereS is invertible, such that this formula holds:

A = S3S−1 (8)
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(if (8) holds, one says thatA and3 are similar matrices). Then, we claim, it is true that also:

eAt = S e3t S−1 (9)

for all t . Therefore, if the matrix3 is one for whiche3t is easy to find (for example, if it is a diagonal
matrix), we can then multiply byS andS−1 to geteAt. To see why(9) is a consequence of(8) , we just

notice thatAt = S(3t)S−1 and we have the following “telescopic” property for powers:

(At)k =
(

S(3t)S−1
)(

S(3t)S−1
)
· · ·
(

S(3t)S−1
)
= S(3t)kS−1

since the terms may be regrouped so that all the in-between pairsS−1Scancel out. Therefore,

eAt = I + At + 1

2
(At)2+ 1

6
(At)3+ · · · + 1

k!
(At)k + · · ·

= I + S(3t)S−1+ 1

2
S(3t)2S−1+ 1

6
S(3t)3S−1+ · · · + 1

k!
S(3t)kS−1+ · · ·

= S

[
I +3t + 1

2
(3t)2+ 1

6
(3t)3+ · · · + 1

k!
(3t)k + · · ·

]
S−1

= Se3t S−1

as we claimed.
The basic theorem is this one:

Theorem. For every n by n matrix A with entries in the complex numbers, one can find an
invertible matrix S, and an upper triangular matrix 3 such that (8) holds.

Remember that an upper triangular matrix is one that has the following form:




λ1 ∗ ∗ · · · ∗ ∗
0 λ2 ∗ · · · ∗ ∗
0 0 λ2 · · · ∗ ∗
...

...
...

...
...

...

0 0 0 · · · λn−1 ∗
0 0 0 · · · 0 λn




where the stars are any numbers. The numbersλ1, . . . , λn turn out to be the eigenvalues ofA.
There are two reasons that this theorem is interesting. First, it provides a way to compute exponentials,

because it is not difficult to find exponentials of upper triangular matrices (the example(7) is actually quite
typical) and second because it has important theoretical consequences.

Although we don’t need more than the theorem stated above, there are two stronger theorems that you
may meet elsewhere. One is the “Jordan canonical form” theorem, which provides a matrix3 that is not
only upper triangular but which has an even more special structure. Jordan canonical forms are theoretically
important because they are essentially unique (that is what “canonical” means in this context). Hence, the
Jordan form allows you to determine whether or not two matrices are similar. However, it is not very useful
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from a computational point of view, because they are what is known in numerical analysis as “numerically
unstable”, meaning that small perturbations ofA can give one totally different Jordan forms. A second
strengthening is the “Schur unitary triangularization theorem” which says that one can pick the matrixS to
beunitary. (A unitary matrix is a matrix with entries in the complex numbers whose inverse is the complex
conjugate of its transpose. For matricesS with real entries, then we recognize it as anorthogonalmatrix.
For matrices with complex entries, unitary matrices turn out to be more useful than other generalization
of orthogonal matrices that one may propose.) Schur’s theorem is extremely useful in practice, and is
implemented in many numerical algorithms.

We do not prove the theorem here in general, but only show it forn = 2; the general case can be proved
in much the same way, by means of a recursive process.

We start the proof by remembering that every matrix has at least one eigenvalue, let us call itλ, and an
associate eigenvector,v. That is to say,v is a vectordifferent from zero , and

Av = λv . (10)

If you stumble on a numberλ and a vectorv that you believe to an eigenvalue and its eigenvector, you
shouldimmediatelysee if (10) is satisfied, since that is an easy calculation. Numerical methods for finding
eigenvalues and eigenvectors take this approach.

For theoretical purposes, it is useful to note that the the eigenvaluesλ can be characterized as the roots
of the characteristic equation

det(λI − A) = 0.

For two-dimensional systems, this is the same as the equation

λ2− tr(A)λ+ det(A) = 0

with

tr

(
a b
c d

)
= a+ d

det

(
a b
c d

)
= ad− bc.

.

Now, quadratic equations are easy to solve, so this approach is also computationally useful for 2 by 2
matrices.

There are, for 2 by 2 matrices withreal entries, either two real eigenvalues, one real eigenvalue with
multiplicity two, or two complex eigenvalues. In the last case, the two complex eigenvalues must be
conjugates of each other.

If you haveλ, an eigenvector associated to an eigenvalueλ is then found by solving the linear system

(A− λI )v = 0

(sinceλ is a root of the characteristic equation, there are an infinite number of solutions; we pick any nonzero
one).

With an eigenvalueλ and eigenvectorv found, we next pickany vectorw with the property that the
two vectorsv andw are linearly independent. For example, if

v =
(

a
b

)
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anda is not zero, we can take

w =
(

0
1

)

(what would you pick forw is a were zero?). Now, since the set{v,w} forms a basis (this is the key
idea for alln: once you knowv, you need to findn − 1 other vectors to fill out a basis containingv) of
two-dimensional space, we can find coefficientsc andd so that

Aw = cv + dw . (11)

We can summarize both(10) and (11) in one matrix equation:

A (v w) = (v w)
(
λ c
0 d

)
.

Here(v w) denotes the 2 by2 matrix whose columns are the vectorsv andw. To complete the construction,
we letS= (v w) and

3 =
(
λ c
0 d

)
.

Then,
AS= S3

which is the same as what we wanted to prove, namelyA = S3S−1. Actually, we can even say more. It is a
fundamental fact in linear algebra that, if two matrices are similar, then their eigenvalues must be the same.
Now, the eigenvalues of3 areλ andd, because the eigenvalues of any triangular matrix are its diagonal
elements. Therefore, sinceA and3 are similar,d must be also an eigenvalue ofA.

The proof of Schur’s theorem follows the same pattern, except for having fewer choices forv andw.

The Three Cases forn = 2. The following special cases are worth discussing in detail:

1. A has two different real eigenvalues.
2. A has two complex conjugate eigenvalues.
3. A has a repeated real eigenvalue.

In cases 1 and 2, one can always find adiagonalmatrix3. To see why this is true, let us go back to the
proof, but now, instead of taking just any linearly independent vectorw, let us pick a special one, namely an
eigenvector corresponding to the other eigenvalue ofA:

Aw = µw .

This vector is always linearly independent ofv, so the proof can be completed as before. Notice that3 is
now diagonal, becaused = µ andc = 0.

To prove thatv andw are linearly independent if they are eigenvectors for different eigenvalues, assume
the contrary and show that it leads to a contradiction. Thus, suppose thatαv + βw = 0. Apply A to get

αλv + βµw = A(αv + βw) = A(0) = 0.
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On the other hand, multiplyingαv + βw = 0 by λ we would haveαλv + βλw = 0. Subtracting gives
β(λ − µ)w = 0, and asλ − µ 6= 0 we would arrive at the conclusion thatβw = 0. Butw, being an
eigenvector, is required to be nonzero, so we would have to haveβ = 0. Plugging this back into our linear
dependence would giveαv = 0, which would requireα = 0 as well. This shows us that there are no nonzero
coefficientsα andβ for which αv + βw = 0, which means that the eigenvectorsv andw are linearly
independent.

Notice that in cases 1 and 3, the matrices3 andSare both real. In case 1, we will interpret the solutions
with initial conditions on the lines that containv andw as “straight line solutions” and this is the subject of
Section 3.2 in the book.

In case 2, the matrices3 and S are, in general, not real. Note that, in case 2, ifAv = λv, taking
complex conjugates gives

Av̄ = λ̄v̄
and we note that

λ̄ 6= λ
becauseλ is not real. So, we can always pickw to be the conjugate ofv. It will turn out that solutions can
be re-expressed in terms of trigonometric functions — remember example(5) — as we’ll see in the next
section and in Section 3.4 of the book.

Now let’s consider Case 3 (the repeated real eigenvalue). We have that

3 =
(
λ c
0 λ

)

so we can also write3 = λI + cN, whereN is the following matrix:

N =
(

0 1
0 0

)
.

Observe that:
(λI + cN)2 = (λI )2+ c2N2+ 2λcN = λ2I + 2λcN

(becauseN2 = 0) and, for the general powerk, recursively:

(λI + cN)k =
(
λk−1I + (k− 1)λk−2cN

)
(λI + cN)

= λk I + (k− 1)λk−1cN+ λk−1cN+ (k− 1)λk−2a2N2

= λk I + kλk−1cN

so

(λI + cN)ktk =
(
λk I + kλk−1cN

)
tk =

(
λktk kλk−1ctk

0 λktk

)

and therefore

e3t =
(

eλt cteλt

0 eλt

)
(12)

because 0+ct+ (2λc)t2/2+ (3λ2c)t3/6!+· · · = cteλt . (This generalizes the special case in example(7) .)
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A Shortcut. If we just want to find the form of the general solution ofY′ = AY, we do not need to actually
calculate the exponential ofA and the inverse of the matrixS.

Let us first take the cases of different eigenvalues (real or complex, that is, cases 1 or 2, it doesn’t matter
which one). As we saw,3 can be taken to be the diagonal matrix consisting of these eigenvalues (which we
call hereλ andµ instead ofλ1 andλ2), andS= (v w) just lists the two eigenvectors as its columns. We then
know that the solution of every initial value problemY′ = AY, Y(0) = Y0 will be of the following form:

Y(t) = eAtY0 = S e3t S−1Y0 = (v w)
(

eλt 0
0 eµt

)(
a
b

)
= a eλtv + b eµtw

where we just wroteS−1Y0 as a column vector of general coefficientsa andb. In conclusion:

The general solution of Y′ = AY, when Ahas two eigenvaluesλ andµwith respective eigenvectors
v and w, is of the form

a eλtv + b eµtw (13)

for some constants a and b.

So, one approach to solving IVP’s is to first find eigenvalues and eigenvectors, write the solution in the
above general form, and then plug-in the initial condition in order to figure out what are the right constants.
Section 3.2 in the book gives us lots of practice with this procedure.

In the case of non-real eigenvalues, recall that we showed that the two eigenvalues must be conjugates
of each other, and the two eigenvectors may be picked to be conjugates of each other. Let us show now that
we can write(13) in a form which does not involve any complex numbers. In order to do so, we start by

decomposing the first vector function which appears in(13) into its real and imaginary parts:

eλtv = Y1(t)+ iY2(t) (14)

(let us not worry for now about what the two functionsY1 andY2 look like). Sinceµ is the conjugate ofλ
andw is the conjugate ofv, the second term is:

eµtw = Y1(t)− iY2(t) . (15)

So we can write the general solution shown in(13) also like this:

a(Y1+ iY2)+ b(Y1− iY2) = (a+ b)Y1+ i (a− b)Y2 . (16)

Now, it is easy to see thata andb must be conjugates of each other. (Do this as an optional homework
problem. Use the fact that these two coefficients are the components ofS−1Y0, and the fact thatY0 is real
and that the two columns ofS are conjugates of each other.) This means thatboth coefficientsa + b and
i (a − b) are real numbers.Calling these coefficients “k1” and “k2”, we can summarize the complex case
like this:

The general solution of Y′ = AY, when A has a non-real eigenvalue λwith respective eigenvector
v, is of the form

k1 Y1(t) + k2 Y2(t) (17)

for some real constants k1 and k2. The functions Y1 and Y2 are found by the following procedure:
calculate the product eλtv and separate it into real and imaginary parts as in Equation (14) .
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What doY1 andY2 really look like? This is easy to answer using Euler’s formula, which gives

eλt = eαt+iβt = eαt (cosβt + i sinβt) = eαt cosβt + ieαt sinβt

whereα andβ are the real and imaginary parts ofλ respectively. This is what we do in Section 3.4 of the
book.

Finally, in case 3 (repeated eigenvalues) we can write, instead:

Y(t) = eAtY0 = S e3t S−1Y0 = (v w)
(

eλt cteλt

0 eλt

)(
a
b

)

= a eλtv + b eλt (ctv + w) .

Whenc = 0 we have fromA = S3S−1 that A must have been the diagonal matrix

(
λ 0
0 λ

)

to start with (becauseSand3 commute). Whenc 6= 0, we can writek2 = bc and redefinew as 1
cw. Note

that then(11) becomesAw = v+ λw, that is,(A− λI )w = v. Any vectorw with this property is linearly
independent fromv (why?).

So we conclude, for the case of repeated eigenvalues:

The general solution of Y′ = AY, when A has a repeated (real) eigenvalue λ is either of the form
eλtY0 (if A is a diagonal matrix) or, otherwise, is of the form

k1 eλtv + k2 eλt (tv + w) (18)

for some real constants k1 and k2, where v is an eigenvector corresponding to λ andw is any vector
which satisfies (A− λI )w = v.

Observe that(A−λI )2w = (A−λI )v = 0. general, one calls any nonzero vector such that(A−λI )kw = 0
ageneralized eigenvector(of orderk) of the matrixA (since, whenk = 1, we have eigenvectors).

Forcing Terms. The use of matrix exponentials also helps explain much of what is done in chapter 4
(forced systems), and renders Laplace transforms unnecessary. Let us consider non-homogeneous linear
differential equations of this type:

dY

dt
(t) = AY(t) + u(t) . (19)

We wrote the arguments “t” just this one time, to emphasize that everything is a function oft , but from now
on we will drop thet ’s when they are clear from the context.

Let us write,just as we did when discussing scalar linear equations, Y′ − AY = u. We consider
the “integrating factor”M(t) = e−At. Multiplying both sides of the equation byM , we have, since
(e−AtY)′ = e−AtY′ − e−At AY (right?):

de−AtY

dt
= e−Atu .
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Taking antiderivatives:

e−AtY =
∫ t

0
e−Asu(s)ds + Y0

for some constant vectorY0. Finally, multiplying bye−At and remembering thate−AteAt = I , we conclude:

Y(t) = eAtY0 + eAt
∫ t

0
e−Asu(s) ds. (20)

This is sometimes called the “variation of parameters” form of the general solution of the forced equa-
tion (19) . Of course,Y0 = Y(0) (just plug-int = 0 on both sides). There are othernoteson this topic.

Notice that, if the vector functionu(t) is a polynomial int , then the integral in(20) will be a combination
of exponentials and powers oft (integrate by parts). Similarly, ifu(t) is a combination of trigonometric
functions, the integral will also combine trigonometric functions and polynomials. This observation justifies
the “guesses” made for forced systems in chapter 4 (they are, of course, not guesses, but consequences of
integration by parts, but the book would lead you to believe otherwise).

Exercises.

1. In each of the following, factor the matrixA into a productS3S−1, with3 diagonal:

a. A =
(

1 1
0 0

)

b. A =
(

5 6
−1 −2

)

c. A =
(

2 −8
1 −4

)

d. A =
( 2 2 1

0 1 2
0 0 −1

)

2. For each of the matrices in Exercise 1, use theS3S−1 factorization to calculateA6 (donot just multiply
A by itself).

3. For each of the matrices in Exercise 1, use theS3S−1 factorization to calculateeAt.

4. CalculateeAt for this matrix: (0 1 2
0 0 1
0 0 0

)

using the power series definition.

5. Consider these matrices:

A =
(

1 1
0 0

)
B =

(
0 −1
0 0

)
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and calculateeAt, eBt, ande(A+B)t .
Answer, true or false: iseAteBt = e(A+B)t?

6. (Challenge problem) Show that, for any two matricesA andB, it is true that

eAteBt = e(A+B)t for all t

if and only if AB− B A = 0. (The expression “AB− B A” is called the “Lie bracket” of the two
matricesA andB, and it plays a central role in the advanced theory of differential equations.)
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