Math 350 Fall 2011 **Homework 4 Supplementary Exercises**

- 1. Let P_4 be the vector space over \mathbb{R} that consists of all real polynomials on \mathbb{R} of degree at most 4, and let $T: P_4 \to P_4$ be a linear map such that $T(x^4) = 12x^2$, $T(x^3) = 6x$, $T(x^2) = 2$ and T(x) = T(1) = 0.
 - (a) Compute $T(ax^4 + bx^3 + cx^2 + dx + e)$ for all $a, b, c, d, e \in \mathbb{R}$.

 - (b) Show that $T(p) = \frac{d^2 p}{dx^2}$ for all polynomials $p \in P_4$. (c) Compute the kernel of T and the image of T. (Hint/answer: the kernel of Tis the space of all real linear polynomials on \mathbb{R} . The image of T is the space of all real quadratic linear polynomials on \mathbb{R} .)
- 2. Let V be the vector space over \mathbb{R} that consists of all 2×2 matrices with real coefficients, and let $W = \mathbb{R}$ be the 1-dimensional vector space over \mathbb{R} . Let $T: V \to \mathbb{R}$ be the map such that T(A) = tr(A), where tr denotes the trace of the matrix A.
 - (a) Is T a linear map?
 - (b) Compute the kernel of T and the image of T. (Hint/answer: the kernel of T is

$$\left\{ \left(\begin{array}{cc} a & b \\ c & -a \end{array}\right) : a, b, c \in \mathbb{R} \right\}.$$

The image of T is \mathbb{R} .)

- 3. Prove that if $T: V \to W$ is a linear map, then T(0) = 0.
- 4. Show that if $T: V \to W$ is linear, then the kernel of T is a subspace of V.
- 5. Show that if $T: V \to W$ is linear, then the image of T is a subspace of W.
- 6. Let V be the vector space of all real 2×2 matrices over \mathbb{R} .
 - (a) Find a linear map $T: V \to V$ such that the kernel of T is the set of all symmetric 2×2 matrices. Hence conclude that the set of all symmetric 2×2 matrices is a vector space over \mathbb{R} .
 - (b) Repeat part (a) where symmetric matrices are replaced by skew-symmetric matrices.
- 7. (a) Show that a linear map $T: V \to W$ is injective if and only if the kernel of T is $\{0\}$.
 - (b) Use part (a) to show that the map $T: \mathbb{R}^2 \to \mathbb{R}^2$, given by

$$T\left(\begin{array}{c} x\\ y\end{array}\right) = \left(\begin{array}{c} 1&2\\ 4&-3\end{array}\right) \left(\begin{array}{c} x\\ y\end{array}\right),$$

is injective. (Hint: One should check that this T is linear to apply (a).)

- 8. Write down an isomorphism from the vector space of all 2×2 matrices to \mathbb{R}^4 .
- 9. Write down an isomorphism from the vector space of all 2×2 symmetric matrices to \mathbb{R}^3 .