Math 350 Fall 2011 Homework 4 Supplementary Exercises

1. Let P_{4} be the vector space over \mathbb{R} that consists of all real polynomials on \mathbb{R} of degree at most 4 , and let $T: P_{4} \rightarrow P_{4}$ be a linear map such that $T\left(x^{4}\right)=12 x^{2}$, $T\left(x^{3}\right)=6 x, T\left(x^{2}\right)=2$ and $T(x)=T(1)=0$.
(a) Compute $T\left(a x^{4}+b x^{3}+c x^{2}+d x+e\right)$ for all $a, b, c, d, e \in \mathbb{R}$.
(b) Show that $T(p)=\frac{d^{2} p}{d x^{2}}$ for all polynomials $p \in P_{4}$.
(c) Compute the kernel of T and the image of T. (Hint/answer: the kernel of T is the space of all real linear polynomials on \mathbb{R}. The image of T is the space of all real quadratic linear polynomials on \mathbb{R}.)
2. Let V be the vector space over \mathbb{R} that consists of all 2×2 matrices with real coefficients, and let $W=\mathbb{R}$ be the 1-dimensional vector space over \mathbb{R}. Let $T: V \rightarrow \mathbb{R}$ be the map such that $T(A)=\operatorname{tr}(A)$, where tr denotes the trace of the matrix A.
(a) Is T a linear map?
(b) Compute the kernel of T and the image of T. (Hint/answer: the kernel of T is

$$
\left\{\left(\begin{array}{cc}
a & b \\
c & -a
\end{array}\right): a, b, c \in \mathbb{R}\right\} .
$$

The image of T is \mathbb{R}.)
3. Prove that if $T: V \rightarrow W$ is a linear map, then $T(0)=0$.
4. Show that if $T: V \rightarrow W$ is linear, then the kernel of T is a subspace of V.
5. Show that if $T: V \rightarrow W$ is linear, then the image of T is a subspace of W.

6 . Let V be the vector space of all real 2×2 matrices over \mathbb{R}.
(a) Find a linear map $T: V \rightarrow V$ such that the kernel of T is the set of all symmetric 2×2 matrices. Hence conclude that the set of all symmetric 2×2 matrices is a vector space over \mathbb{R}.
(b) Repeat part (a) where symmetric matrices are replaced by skew-symmetric matrices.
7. (a) Show that a linear map $T: V \rightarrow W$ is injective if and only if the kernel of T is $\{0\}$.
(b) Use part (a) to show that the map $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$, given by

$$
T\binom{x}{y}=\left(\begin{array}{cc}
1 & 2 \\
4 & -3
\end{array}\right)\binom{x}{y}
$$

is injective. (Hint: One should check that this T is linear to apply (a).)
8. Write down an isomorphism from the vector space of all 2×2 matrices to \mathbb{R}^{4}.
9. Write down an isomorphism from the vector space of all 2×2 symmetric matrices to \mathbb{R}^{3}.

