Math 350 Fall 2011 Homework 9 Additional Problems

1. Suppose A is a 3×3 matrix with entries in \mathbb{R} , and that

$$\left(\begin{array}{c}1\\2\\3\end{array}\right), \quad \left(\begin{array}{c}1\\-1\\0\end{array}\right) \quad \text{and} \quad \left(\begin{array}{c}-2\\1\\1\end{array}\right)$$

are eigenvectors of A. Is A diagonalizable? Explain.

- 2. Suppose P_2 is the vector space of all real polynomials of degree ≤ 2 over \mathbb{R} , and $T: P_2 \to P_2$ is a linear map such that 1 + x, $x + x^2$ and $1 + 4x + 4x^2$ are eigenvectors of T. Is T diagonalizable? Explain.
- 3. Suppose

$$v_1 = \begin{pmatrix} 1\\2 \end{pmatrix}, \quad v_2 = \begin{pmatrix} 1\\-1 \end{pmatrix}$$

and A is a 2×2 matrix with entries in $\mathbb R$ such that

$$Av_1 = 3v_1$$

and

$$4v_2 = -6v_2.$$

Find the matrix A.

4. Suppose P_2 is the vector space of all real polynomials of degree ≤ 2 over \mathbb{R} , and $T: P_2 \to P_2$ is a linear map such that

$$T(1) = 1$$
, $T(x - 1) = 7(x - 1)$ and $T((x - 1)^2) = 7(x - 1)^2$.

Show that

$$T(p(x)) = p(x) + 3(x-1)^2 p''(x)$$
 for all $p(x) \in P_2$.