
Math 350 Fall 2011

Final Exam review

In this set of problems, Mm×n(F ) is the set of m × n matrices with entries in a

field F , and Pn(F ) is the set of all polynomials of degree ≤ n of one variable with

coefficients in F . These are vector spaces over F . The transpose of a matrix A is

denoted At, and the conjugate transpose of A is denoted A∗.

1. Let V be the vector space of all functions on R. If α1, α2 are distinct real

numbers, show that {eα1x, eα2x} is a linearly independent subset of V .

2. What can you say about a square matrix A whose determinant is zero? List as

many consequences as you can.

3. When is a system of equations Ax = b solvable? List as many sufficient condi-

tions as you can.

4. Let C[0, π] be the real vector space that consists of all continuous functions on

[0, π]. Let

〈f, g〉 =

∫ π

0

f(x)g(x)dx

be a real inner product on C[0, 1], and let ‖ · ‖ be the associated norm. Let

f(x) = x and g(x) = cos(3x). Compute:

(a) 〈f, g〉, ‖f‖ and ‖g‖;
(b) the distance between f and g;

(c) the angle between f and g.

5. Show that if V is an inner product space and {w1, . . . , wk} is an orthogonal set

in V . Suppose further that none of w1, . . . , wk is zero. Show that

(a) {w1, . . . , wk} is linearly independent;

(b) ‖w1 + · · ·+ wk‖2 = ‖w1‖2 + · · ·+ ‖wk‖2;

(c) If v ∈ V , then

‖v‖2 ≥ |〈v, w1〉|2

〈w1, w1〉
+ · · ·+ |〈v, wk〉|

2

〈wk, wk〉
.

6. Let T : P2(R)→ P2(R) be the linear map

T (p(x)) = p′′(x) + p′(x) + p(x).

(a) Find the kernel and the range of T .

(b) Find all eigenvalues of T , and their corresponding eigenvectors.

(c) What is the algebraic and geometric multiplicity of each eigenvalue of T? Is

T diagonalizable over R?

7. Suppose V is a vector space over a field F , and T : V → V is a linear map.

Suppose also that v ∈ V , and T k+1v = 0 for some positive integer k. If T kv 6= 0,

show that

(a) {v, Tv, T 2v, . . . , T kv} is linearly independent;

(b) the span of {v, Tv, T 2v, . . . , T kv} is a T -invariant subspace of V .
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8. Let V be the vector space M2×2(R) over R.

(a) Show that

〈A,B〉 = trace(BtA)

defines a real inner product on V . We use this inner product on V for the

sequel of the question.

(b) Write down an orthonormal basis of V .

(c) Suppose W is the subspace of V consisting of all symmetric matrices.

(i) Find an orthonormal basis of W .

(ii) Find the orthogonal projection of the matrix

(
1 2

3 4

)
onto W .

(iii) Let W⊥ be the orthgonal complement of W in V . Show that W⊥ is

the set of all skew-symmetric matrices in V .

(iv) Show that the orthogonal projection of A onto W is given by 1
2 (A+At)

for all A ∈ V . (Hint: Every A ∈ V can be written as

A =
1

2
(A+At) +

1

2
(A−At),

and we have 1
2 (A+At) ∈W , 1

2 (A−At) ∈W⊥ for all A ∈ V . One can

then invoke the result in part (b) of the next question.)

(v) Use part (iv) to check your answer in part (ii).

9. Suppose V is an inner product space, and W is a finite dimensional subspace of

V . Let W⊥ be the orthogonal complement of W in V .

(a) Show that if w ∈W ∩W⊥, then w = 0.

(b) Show that if v ∈ V can be written as v = w1 + w2, where w1 ∈ W and

w2 ∈W⊥, then w1 is the orthogonal projection of v onto W .

(c) Show that if in addition V is finite dimensional, then (W⊥)⊥ = W.

(d) Hence, or otherwise, show that if V is finite dimensional, then under the

assumptions of part (b), w2 is the orthogonal projection of v onto W⊥.

10. Let so(3) be the set of all skew-symmetric 3× 3 complex matrices, i.e.

so(3) = {A ∈M3×3(C) : At = −A}.

(a) Show that so(3) is a vector space over C.

(b) Show that
 0 1 0

−1 0 0

0 0 0

 ,

 0 0 1

0 0 0

−1 0 0

 ,

 0 0 0

0 0 1

0 −1 0




is a basis of so(3). Hence determine the dimension of so(3).

(c) Given two square matrices A and B, we define [A,B] to be the matrix

AB −BA. Show that [A,B] ∈ so(3) for all A,B ∈ so(3).
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11. We continue from the previous question. Let

H =

 0 1 0

−1 0 0

0 0 0

 .

(a) Show that H ∈ so(3).

(b) Let T : so(3)→ so(3) be defined by T (A) = [H,A] for all A ∈ so(3).

(i) Is T a linear map? Explain.

(ii) If α is the ordered basis given in part (b) of the previous question,

compute the matrix representation [T ]α of T with respect to α.

(iii) Show that T is diagonalizable over C. (Hint: You can do this without

finding all the eigenvectors of T .)

12. Show that if A is a 2× 2 matrix, then A2 = s1A− s2I where s1 = trace(A) and

s2 = det(A). Here I is the 2× 2 identity matrix. (Hint: Use Cayley-Hamilton.)

13. Let B be an n × n matrix with entries in R. Let A = BtB, and 〈·, ·〉 be the

standard inner product on Rn. Show that

(a) A is real symmetric, in the sense that At = A;

(b) 〈Ax, x〉 ≥ 0 for all x ∈ Rn;

(c) If λ is an eigenvalue of A, then λ ≥ 0.

14. Given two vectors v1, v2 ∈ R3, we define a map T : R3 → R as follows: for any

v ∈ R3, let A(v) be the 3 × 3 matrix whose first row is v, second row is v1 and

third row is v2. We then define T (v) = det(A(v)).

(a) Show that T is a linear map.

(b) Equip R3 with the standard inner product 〈·, ·〉. Then the Riesz represen-

tation theorem says that there exists a unique vector w ∈ R3 such that

T (v) = 〈v, w〉 for all v ∈ R3. Show that this w is given by the cross product

of v1 with v2.

(One can generalize this exercise and define the ‘cross product’ of n− 1 vectors

in Rn for all n.)

15. Suppose A is a complex n× n matrix.

(a) Show that if λ is an eigenvalue of A, then λ is an eigenvalue of A∗.

(b) More generally, show that dim(nullspace(A−λI)) = dim(nullspace(A∗−λI))

for all λ ∈ C.

(c) (Optional) Show that if in addition A is normal, i.e. if AA∗ = A∗A, then

not only the dimensions of the above nullspaces are equal, but

nullspace(A− λI) = nullspace(A∗ − λI)

for all λ ∈ C.

(d) Show that the conclusion of (c) is not true if A is not normal. (Hint: consider

upper triangular matrices A that are not normal.)
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16. The goal of this question is to illustrate some techniques in computing determi-

nants. For each x ∈ R, let

Ax =

 x 1 1

1 x 1

1 1 x

 .

We want to compute f(x) = det(Ax).

(a) Show that f(x) is a cubic polynomial in x, and the coefficient of x3 is 1.

(b) Show that f(x) = 0 when x = 1. Hence show that x− 1 is a factor of f(x).

(c) Show that

f ′(x) = det

 1 0 0

1 x 1

1 1 x

+det

 x 1 1

0 1 0

1 1 x

+det

 x 1 1

1 x 1

0 0 1

 = 3 det

(
x 1

1 x

)
.

Hence show that f ′(x) = 0 when x = 1, and that (x − 1)2 is a factor of

f(x).

(d) Show that f(x) = 0 when x = −2, and hence x+ 2 is a factor of f(x).

(e) Together, conclude that f(x) = (x− 1)2(x+ 2).

17. Incidentally, the above problem allows us to further analyze the matrix Ax.

(a) Show that the eigenvalues of Ax are x− 1 and x+ 2.

(b) Show that Ax is diagonalizable for all x. (Hint: Ax is symmetric for all x.)

(c) Show that (Ax− (x− 1)I)(Ax− (x+ 2)I)v = 0 for all x ∈ R and all v ∈ R3,

where I is the 3× 3 identity matrix.

(d) Show that A2
x − (2x + 1)Ax + (x − 1)(x + 2)I = 0 for all x. Conclude that

if x 6= 1 or −2, then Ax is invertible, with

A−1x = − 1

(x− 1)(x+ 2)
(Ax − (2x+ 1)I) = − 1

(x− 1)(x+ 2)
A−x−1.

18. The technique in Question 16 can be used to compute the following Vandermonde

determinant:

f(α1, . . . , αn) := det



1 1 . . . 1

α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

. . .
...

αn−11 αn−12 . . . αn−1n

 .

(a) Show that f(α1, . . . , αn) is a polynomial of α1, . . . , αn, and that f(α1, . . . , αn) =

0 whenever αi = αj for some 1 ≤ i < j ≤ n. Hence
∏

1≤i<j≤n(αj − αi)
divides f(α1, . . . , αn).

(b) Conclude that

f(α1, . . . , αn) =
∏

1≤i<j≤n

(αj − αi).
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19. (a) Let V be a vector space over R and let T : V → V be a linear operator.

Let v1, . . . , vk be eigenvectors of T corresponding to eigenvalues λ1, . . . , λk,

and suppose λ1, . . . , λk are pairwise distinct. Prove that {v1, . . . , vk} are

linearly independent.

(b) Let V be the vector space of all infinitely differentiable functions on R. If

α1, . . . , αn is a list of distinct real numbers, show that {eα1x, eα2x, . . . , eαnx}
is a linearly independent subset of V . This is a generalization of Question 1.

(Hint: One may use part (a) (how?), or the result of the previous question;

in fact, if c1e
α1x + · · · + cne

αnx = 0 for some scalars c1, . . . , cn, then by

evaluating the k-th derivative of both sides at x = 0, we get

c1α
k
1 + · · ·+ cnα

k
n = 0 for all k = 0, 1, 2 . . . .

In particular,

1 1 . . . 1

α1 α2 . . . αn

α2
1 α2

2 . . . α2
n

...
...

. . .
...

αn−11 αn−12 . . . αn−1n





c1

c2

c3
...

cn

 =



0

0

0
...

0

 .

Since α1, . . . , αn are assumed pairwise distinct, the coefficient matrix of

this system of linear equations is non-zero by the result of the previous

question. Thus this system of linear equations has no non-trivial solutions,

i.e. c1 = c2 = · · · = cn = 0.)

20. Suppose Pk is the set of all polynomials on R2 that are homogeneous of degree

k, i.e. Pk =
{∑k

j=0 ajx
jyk−j : a0, . . . , ak ∈ R

}
for all k ∈ N. It is easy to see

that Pk is a vector space over R.

For each P ∈ Pk, we define a differential operator

P (D) :=

k∑
j=0

aj

(
∂

∂x

)j (
∂

∂y

)k−j
if P (x, y) =

k∑
j=0

ajx
jyk−j .

For P,Q ∈ Pk, define

〈P,Q〉 = P (D)(Q(x, y)).

(a) Show that this defines a real inner product on Pk.

(b) Let W be the subspace of V given by

W = {R ∈ Pk : R(x, y) = (x2 + y2)Q(x, y) for some Q(x, y) ∈ Pk−2}.

Show that the orthogonal complement of W in Pk is the space of homoge-

neous harmonic polynomials of degree k, i.e.

W⊥ =

{
P ∈ Pk :

∂2P

∂x2
+
∂2P

∂y2
= 0

}
.
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21. This is a continuation of Question 20 of the review for midterm 2. Let gl(n) =

Mn×n(R), and sl(2) be the subspace of gl(2) that consists of matrices whose

trace is zero. These are vector spaces over R. Let X,Y,H be elements of sl(2),

given by

X =

(
0 1

0 0

)
, Y =

(
0 0

1 0

)
, H =

(
1 0

0 −1

)
.

Let N be a positive integer, and T : sl(2)→ gl(N + 1) be a linear map satisfying

T ([A,B]) = [T (A), T (B)] for all A,B ∈ sl(2).

(Recall that [A,B] = AB −BA if A and B are two square matrices.) Let also

Vλ = {v ∈ RN+1 : T (H)v = λv} for all λ ∈ R.

Show that

(a) Vλ is the eigenspace of T (H) with eigenvalue λ if λ is an eigenvalue of T (H),

and {0} otherwise.

(b) If λ ∈ R and v ∈ Vλ, then T (H)v ∈ Vλ, T (X)v ∈ Vλ+2, and T (Y )v ∈ Vλ−2.

(c) Suppose from now on that the linear map T satisfies the following two prop-

erties:

• T (H) is diagonalizable as a linear map from RN+1 to RN+1;

• IfW is a subspace of RN+1 that is both T (X)-invariant, T (Y )-invariant

and T (H)-invariant, then W = {0} or W = RN+1.

Suppose λ0 is the largest eigenvalue of T (H), and v0 is an eigenvector of

T (H) with eigenvalue λ0.

(i) Let W be the subspace of RN+1 spanned by

{v0, T (Y )v0, [T (Y )]2v0, . . . }.

Show that W is T (X)-invariant, T (Y )-invariant and T (H)-invariant.

Thus conclude that W = RN+1.

(ii) Let k be the smallest integer such that T (Y )k+1(Y ) = 0. Show that

{v0, T (Y )v0, [T (Y )]2v0, . . . , [T (Y )]kv0}

is linear independent. Hence show that it is a basis of W , and conclude

that k = N .

(iii) Show that

0 = T (X)[T (Y )]N+1v0 = (N + 1)(λ0 −N)[T (Y )]Nv0.

Hence conclude that λ0 = N , and that the eigenvalues of T (H) are

N,N − 2, N − 4, . . . ,−N .

(iv) Show that Vm is one-dimensional for all m = N,N −2, N −4, . . . ,−N ,

and is {0} otherwise.


