Math 350 Fall 2011

Final Exam review

In this set of problems, $M_{m \times n}(F)$ is the set of $m \times n$ matrices with entries in a field F, and $P_{n}(F)$ is the set of all polynomials of degree $\leq n$ of one variable with coefficients in F. These are vector spaces over F. The transpose of a matrix A is denoted A^{t}, and the conjugate transpose of A is denoted A^{*}.

1. Let V be the vector space of all functions on \mathbb{R}. If α_{1}, α_{2} are distinct real numbers, show that $\left\{e^{\alpha_{1} x}, e^{\alpha_{2} x}\right\}$ is a linearly independent subset of V.
2. What can you say about a square matrix A whose determinant is zero? List as many consequences as you can.
3. When is a system of equations $A x=b$ solvable? List as many sufficient conditions as you can.
4. Let $C[0, \pi]$ be the real vector space that consists of all continuous functions on $[0, \pi]$. Let

$$
\langle f, g\rangle=\int_{0}^{\pi} f(x) g(x) d x
$$

be a real inner product on $C[0,1]$, and let $\|\cdot\|$ be the associated norm. Let $f(x)=x$ and $g(x)=\cos (3 x)$. Compute:
(a) $\langle f, g\rangle,\|f\|$ and $\|g\|$;
(b) the distance between f and g;
(c) the angle between f and g.
5. Show that if V is an inner product space and $\left\{w_{1}, \ldots, w_{k}\right\}$ is an orthogonal set in V. Suppose further that none of w_{1}, \ldots, w_{k} is zero. Show that
(a) $\left\{w_{1}, \ldots, w_{k}\right\}$ is linearly independent;
(b) $\left\|w_{1}+\cdots+w_{k}\right\|^{2}=\left\|w_{1}\right\|^{2}+\cdots+\left\|w_{k}\right\|^{2}$;
(c) If $v \in V$, then

$$
\|v\|^{2} \geq \frac{\left|\left\langle v, w_{1}\right\rangle\right|^{2}}{\left\langle w_{1}, w_{1}\right\rangle}+\cdots+\frac{\left|\left\langle v, w_{k}\right\rangle\right|^{2}}{\left\langle w_{k}, w_{k}\right\rangle} .
$$

6. Let $T: P_{2}(\mathbb{R}) \rightarrow P_{2}(\mathbb{R})$ be the linear map

$$
T(p(x))=p^{\prime \prime}(x)+p^{\prime}(x)+p(x)
$$

(a) Find the kernel and the range of T.
(b) Find all eigenvalues of T, and their corresponding eigenvectors.
(c) What is the algebraic and geometric multiplicity of each eigenvalue of T ? Is T diagonalizable over \mathbb{R} ?
7. Suppose V is a vector space over a field F, and $T: V \rightarrow V$ is a linear map. Suppose also that $v \in V$, and $T^{k+1} v=0$ for some positive integer k. If $T^{k} v \neq 0$, show that
(a) $\left\{v, T v, T^{2} v, \ldots, T^{k} v\right\}$ is linearly independent;
(b) the span of $\left\{v, T v, T^{2} v, \ldots, T^{k} v\right\}$ is a T-invariant subspace of V.
8. Let V be the vector space $M_{2 \times 2}(\mathbb{R})$ over \mathbb{R}.
(a) Show that

$$
\langle A, B\rangle=\operatorname{trace}\left(B^{t} A\right)
$$

defines a real inner product on V. We use this inner product on V for the sequel of the question.
(b) Write down an orthonormal basis of V.
(c) Suppose W is the subspace of V consisting of all symmetric matrices.
(i) Find an orthonormal basis of W.
(ii) Find the orthogonal projection of the matrix $\left(\begin{array}{ll}1 & 2 \\ 3 & 4\end{array}\right)$ onto W.
(iii) Let W^{\perp} be the orthgonal complement of W in V. Show that W^{\perp} is the set of all skew-symmetric matrices in V.
(iv) Show that the orthogonal projection of A onto W is given by $\frac{1}{2}\left(A+A^{t}\right)$ for all $A \in V$. (Hint: Every $A \in V$ can be written as

$$
A=\frac{1}{2}\left(A+A^{t}\right)+\frac{1}{2}\left(A-A^{t}\right)
$$

and we have $\frac{1}{2}\left(A+A^{t}\right) \in W, \frac{1}{2}\left(A-A^{t}\right) \in W^{\perp}$ for all $A \in V$. One can then invoke the result in part (b) of the next question.)
(v) Use part (iv) to check your answer in part (ii).
9. Suppose V is an inner product space, and W is a finite dimensional subspace of V. Let W^{\perp} be the orthogonal complement of W in V.
(a) Show that if $w \in W \cap W^{\perp}$, then $w=0$.
(b) Show that if $v \in V$ can be written as $v=w_{1}+w_{2}$, where $w_{1} \in W$ and $w_{2} \in W^{\perp}$, then w_{1} is the orthogonal projection of v onto W.
(c) Show that if in addition V is finite dimensional, then $\left(W^{\perp}\right)^{\perp}=W$.
(d) Hence, or otherwise, show that if V is finite dimensional, then under the assumptions of part (b), w_{2} is the orthogonal projection of v onto W^{\perp}.
10. Let $\mathfrak{s o}(3)$ be the set of all skew-symmetric 3×3 complex matrices, i.e.

$$
\mathfrak{s o}(3)=\left\{A \in M_{3 \times 3}(\mathbb{C}): A^{t}=-A\right\}
$$

(a) Show that $\mathfrak{s o}(3)$ is a vector space over \mathbb{C}.
(b) Show that

$$
\left\{\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 1 \\
0 & 0 & 0 \\
-1 & 0 & 0
\end{array}\right),\left(\begin{array}{ccc}
0 & 0 & 0 \\
0 & 0 & 1 \\
0 & -1 & 0
\end{array}\right)\right\}
$$

is a basis of $\mathfrak{s o}(3)$. Hence determine the dimension of $\mathfrak{s o}(3)$.
(c) Given two square matrices A and B, we define $[A, B]$ to be the matrix $A B-B A$. Show that $[A, B] \in \mathfrak{s o}(3)$ for all $A, B \in \mathfrak{s o}(3)$.
11. We continue from the previous question. Let

$$
H=\left(\begin{array}{ccc}
0 & 1 & 0 \\
-1 & 0 & 0 \\
0 & 0 & 0
\end{array}\right)
$$

(a) Show that $H \in \mathfrak{s o (3)}$.
(b) Let $T: \mathfrak{s o}(3) \rightarrow \mathfrak{s o}(3)$ be defined by $T(A)=[H, A]$ for all $A \in \mathfrak{s o}(3)$.
(i) Is T a linear map? Explain.
(ii) If α is the ordered basis given in part (b) of the previous question, compute the matrix representation $[T]_{\alpha}$ of T with respect to α.
(iii) Show that T is diagonalizable over \mathbb{C}. (Hint: You can do this without finding all the eigenvectors of T.)
12. Show that if A is a 2×2 matrix, then $A^{2}=s_{1} A-s_{2} I$ where $s_{1}=\operatorname{trace}(A)$ and $s_{2}=\operatorname{det}(A)$. Here I is the 2×2 identity matrix. (Hint: Use Cayley-Hamilton.)
13. Let B be an $n \times n$ matrix with entries in \mathbb{R}. Let $A=B^{t} B$, and $\langle\cdot, \cdot\rangle$ be the standard inner product on \mathbb{R}^{n}. Show that
(a) A is real symmetric, in the sense that $A^{t}=A$;
(b) $\langle A x, x\rangle \geq 0$ for all $x \in \mathbb{R}^{n}$;
(c) If λ is an eigenvalue of A, then $\lambda \geq 0$.
14. Given two vectors $v_{1}, v_{2} \in \mathbb{R}^{3}$, we define a map $T: \mathbb{R}^{3} \rightarrow \mathbb{R}$ as follows: for any $v \in \mathbb{R}^{3}$, let $A(v)$ be the 3×3 matrix whose first row is v, second row is v_{1} and third row is v_{2}. We then define $T(v)=\operatorname{det}(A(v))$.
(a) Show that T is a linear map.
(b) Equip \mathbb{R}^{3} with the standard inner product $\langle\cdot, \cdot\rangle$. Then the Riesz representation theorem says that there exists a unique vector $w \in \mathbb{R}^{3}$ such that $T(v)=\langle v, w\rangle$ for all $v \in \mathbb{R}^{3}$. Show that this w is given by the cross product of v_{1} with v_{2}.
(One can generalize this exercise and define the 'cross product' of $n-1$ vectors in \mathbb{R}^{n} for all n.)
15. Suppose A is a complex $n \times n$ matrix.
(a) Show that if λ is an eigenvalue of A, then $\bar{\lambda}$ is an eigenvalue of A^{*}.
(b) More generally, show that $\operatorname{dim}(\operatorname{nullspace}(A-\lambda I))=\operatorname{dim}\left(\operatorname{nullspace}\left(A^{*}-\bar{\lambda} I\right)\right)$ for all $\lambda \in \mathbb{C}$.
(c) (Optional) Show that if in addition A is normal, i.e. if $A A^{*}=A^{*} A$, then not only the dimensions of the above nullspaces are equal, but

$$
\operatorname{nullspace}(A-\lambda I)=\operatorname{nullspace}\left(A^{*}-\bar{\lambda} I\right)
$$

for all $\lambda \in \mathbb{C}$.
(d) Show that the conclusion of (c) is not true if A is not normal. (Hint: consider upper triangular matrices A that are not normal.)
16. The goal of this question is to illustrate some techniques in computing determinants. For each $x \in \mathbb{R}$, let

$$
A_{x}=\left(\begin{array}{lll}
x & 1 & 1 \\
1 & x & 1 \\
1 & 1 & x
\end{array}\right)
$$

We want to compute $f(x)=\operatorname{det}\left(A_{x}\right)$.
(a) Show that $f(x)$ is a cubic polynomial in x, and the coefficient of x^{3} is 1 .
(b) Show that $f(x)=0$ when $x=1$. Hence show that $x-1$ is a factor of $f(x)$.
(c) Show that

$$
f^{\prime}(x)=\operatorname{det}\left(\begin{array}{ccc}
1 & 0 & 0 \\
1 & x & 1 \\
1 & 1 & x
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
x & 1 & 1 \\
0 & 1 & 0 \\
1 & 1 & x
\end{array}\right)+\operatorname{det}\left(\begin{array}{ccc}
x & 1 & 1 \\
1 & x & 1 \\
0 & 0 & 1
\end{array}\right)=3 \operatorname{det}\left(\begin{array}{ll}
x & 1 \\
1 & x
\end{array}\right)
$$

Hence show that $f^{\prime}(x)=0$ when $x=1$, and that $(x-1)^{2}$ is a factor of $f(x)$.
(d) Show that $f(x)=0$ when $x=-2$, and hence $x+2$ is a factor of $f(x)$.
(e) Together, conclude that $f(x)=(x-1)^{2}(x+2)$.
17. Incidentally, the above problem allows us to further analyze the matrix A_{x}.
(a) Show that the eigenvalues of A_{x} are $x-1$ and $x+2$.
(b) Show that A_{x} is diagonalizable for all x. (Hint: A_{x} is symmetric for all x.)
(c) Show that $\left(A_{x}-(x-1) I\right)\left(A_{x}-(x+2) I\right) v=0$ for all $x \in \mathbb{R}$ and all $v \in \mathbb{R}^{3}$, where I is the 3×3 identity matrix.
(d) Show that $A_{x}^{2}-(2 x+1) A_{x}+(x-1)(x+2) I=0$ for all x. Conclude that if $x \neq 1$ or -2 , then A_{x} is invertible, with

$$
A_{x}^{-1}=-\frac{1}{(x-1)(x+2)}\left(A_{x}-(2 x+1) I\right)=-\frac{1}{(x-1)(x+2)} A_{-x-1}
$$

18. The technique in Question 16 can be used to compute the following Vandermonde determinant:

$$
f\left(\alpha_{1}, \ldots, \alpha_{n}\right):=\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{n-1} & \alpha_{2}^{n-1} & \ldots & \alpha_{n}^{n-1}
\end{array}\right)
$$

(a) Show that $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)$ is a polynomial of $\alpha_{1}, \ldots, \alpha_{n}$, and that $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=$ 0 whenever $\alpha_{i}=\alpha_{j}$ for some $1 \leq i<j \leq n$. Hence $\prod_{1 \leq i<j \leq n}\left(\alpha_{j}-\alpha_{i}\right)$ divides $f\left(\alpha_{1}, \ldots, \alpha_{n}\right)$.
(b) Conclude that

$$
f\left(\alpha_{1}, \ldots, \alpha_{n}\right)=\prod_{1 \leq i<j \leq n}\left(\alpha_{j}-\alpha_{i}\right)
$$

19. (a) Let V be a vector space over \mathbb{R} and let $T: V \rightarrow V$ be a linear operator. Let v_{1}, \ldots, v_{k} be eigenvectors of T corresponding to eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, and suppose $\lambda_{1}, \ldots, \lambda_{k}$ are pairwise distinct. Prove that $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent.
(b) Let V be the vector space of all infinitely differentiable functions on \mathbb{R}. If $\alpha_{1}, \ldots, \alpha_{n}$ is a list of distinct real numbers, show that $\left\{e^{\alpha_{1} x}, e^{\alpha_{2} x}, \ldots, e^{\alpha_{n} x}\right\}$ is a linearly independent subset of V. This is a generalization of Question 1. (Hint: One may use part (a) (how?), or the result of the previous question; in fact, if $c_{1} e^{\alpha_{1} x}+\cdots+c_{n} e^{\alpha_{n} x}=0$ for some scalars c_{1}, \ldots, c_{n}, then by evaluating the k-th derivative of both sides at $x=0$, we get

$$
c_{1} \alpha_{1}^{k}+\cdots+c_{n} \alpha_{n}^{k}=0 \quad \text { for all } k=0,1,2 \ldots
$$

In particular,

$$
\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\alpha_{1} & \alpha_{2} & \ldots & \alpha_{n} \\
\alpha_{1}^{2} & \alpha_{2}^{2} & \ldots & \alpha_{n}^{2} \\
\vdots & \vdots & \ddots & \vdots \\
\alpha_{1}^{n-1} & \alpha_{2}^{n-1} & \ldots & \alpha_{n}^{n-1}
\end{array}\right)\left(\begin{array}{c}
c_{1} \\
c_{2} \\
c_{3} \\
\vdots \\
c_{n}
\end{array}\right)=\left(\begin{array}{c}
0 \\
0 \\
0 \\
\vdots \\
0
\end{array}\right)
$$

Since $\alpha_{1}, \ldots, \alpha_{n}$ are assumed pairwise distinct, the coefficient matrix of this system of linear equations is non-zero by the result of the previous question. Thus this system of linear equations has no non-trivial solutions, i.e. $c_{1}=c_{2}=\cdots=c_{n}=0$.)
20. Suppose \mathcal{P}_{k} is the set of all polynomials on \mathbb{R}^{2} that are homogeneous of degree k, i.e. $\mathcal{P}_{k}=\left\{\sum_{j=0}^{k} a_{j} x^{j} y^{k-j}: a_{0}, \ldots, a_{k} \in \mathbb{R}\right\}$ for all $k \in \mathbb{N}$. It is easy to see that \mathcal{P}_{k} is a vector space over \mathbb{R}.

For each $P \in \mathcal{P}_{k}$, we define a differential operator

$$
P(D):=\sum_{j=0}^{k} a_{j}\left(\frac{\partial}{\partial x}\right)^{j}\left(\frac{\partial}{\partial y}\right)^{k-j} \quad \text { if } P(x, y)=\sum_{j=0}^{k} a_{j} x^{j} y^{k-j}
$$

For $P, Q \in \mathcal{P}_{k}$, define

$$
\langle P, Q\rangle=P(D)(Q(x, y))
$$

(a) Show that this defines a real inner product on \mathcal{P}_{k}.
(b) Let W be the subspace of V given by
$W=\left\{R \in \mathcal{P}_{k}: R(x, y)=\left(x^{2}+y^{2}\right) Q(x, y)\right.$ for some $\left.Q(x, y) \in \mathcal{P}_{k-2}\right\}$.
Show that the orthogonal complement of W in \mathcal{P}_{k} is the space of homogeneous harmonic polynomials of degree k, i.e.

$$
W^{\perp}=\left\{P \in \mathcal{P}_{k}: \frac{\partial^{2} P}{\partial x^{2}}+\frac{\partial^{2} P}{\partial y^{2}}=0\right\}
$$

21. This is a continuation of Question 20 of the review for midterm 2. Let $\mathfrak{g l}(n)=$ $M_{n \times n}(\mathbb{R})$, and $\mathfrak{s l}(2)$ be the subspace of $\mathfrak{g l}(2)$ that consists of matrices whose trace is zero. These are vector spaces over \mathbb{R}. Let X, Y, H be elements of $\mathfrak{s l}(2)$, given by

$$
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Let N be a positive integer, and $T: \mathfrak{s l}(2) \rightarrow \mathfrak{g l}(N+1)$ be a linear map satisfying

$$
T([A, B])=[T(A), T(B)] \quad \text { for all } A, B \in \mathfrak{s l l}(2)
$$

(Recall that $[A, B]=A B-B A$ if A and B are two square matrices.) Let also

$$
V_{\lambda}=\left\{v \in \mathbb{R}^{N+1}: T(H) v=\lambda v\right\} \quad \text { for all } \lambda \in \mathbb{R}
$$

Show that
(a) V_{λ} is the eigenspace of $T(H)$ with eigenvalue λ if λ is an eigenvalue of $T(H)$, and $\{0\}$ otherwise.
(b) If $\lambda \in \mathbb{R}$ and $v \in V_{\lambda}$, then $T(H) v \in V_{\lambda}, T(X) v \in V_{\lambda+2}$, and $T(Y) v \in V_{\lambda-2}$.
(c) Suppose from now on that the linear map T satisfies the following two properties:

- $T(H)$ is diagonalizable as a linear map from \mathbb{R}^{N+1} to \mathbb{R}^{N+1};
- If W is a subspace of \mathbb{R}^{N+1} that is both $T(X)$-invariant, $T(Y)$-invariant and $T(H)$-invariant, then $W=\{0\}$ or $W=\mathbb{R}^{N+1}$.
Suppose λ_{0} is the largest eigenvalue of $T(H)$, and v_{0} is an eigenvector of $T(H)$ with eigenvalue λ_{0}.
(i) Let W be the subspace of \mathbb{R}^{N+1} spanned by

$$
\left\{v_{0}, T(Y) v_{0},[T(Y)]^{2} v_{0}, \ldots\right\}
$$

Show that W is $T(X)$-invariant, $T(Y)$-invariant and $T(H)$-invariant. Thus conclude that $W=\mathbb{R}^{N+1}$.
(ii) Let k be the smallest integer such that $T(Y)^{k+1}(Y)=0$. Show that

$$
\left\{v_{0}, T(Y) v_{0},[T(Y)]^{2} v_{0}, \ldots,[T(Y)]^{k} v_{0}\right\}
$$

is linear independent. Hence show that it is a basis of W, and conclude that $k=N$.
(iii) Show that

$$
0=T(X)[T(Y)]^{N+1} v_{0}=(N+1)\left(\lambda_{0}-N\right)[T(Y)]^{N} v_{0}
$$

Hence conclude that $\lambda_{0}=N$, and that the eigenvalues of $T(H)$ are $N, N-2, N-4, \ldots,-N$.
(iv) Show that V_{m} is one-dimensional for all $m=N, N-2, N-4, \ldots,-N$, and is $\{0\}$ otherwise.

