Math 350 Fall 2011 Final Exam review

In this set of problems, $M_{m \times n}(F)$ is the set of $m \times n$ matrices with entries in a field F, and $P_n(F)$ is the set of all polynomials of degree $\leq n$ of one variable with coefficients in F. These are vector spaces over F. The transpose of a matrix A is denoted A^t , and the conjugate transpose of A is denoted A^* .

- 1. Let V be the vector space of all functions on \mathbb{R} . If α_1, α_2 are distinct real numbers, show that $\{e^{\alpha_1 x}, e^{\alpha_2 x}\}$ is a linearly independent subset of V.
- 2. What can you say about a square matrix A whose determinant is zero? List as many consequences as you can.
- 3. When is a system of equations Ax = b solvable? List as many sufficient conditions as you can.
- 4. Let $C[0,\pi]$ be the real vector space that consists of all continuous functions on $[0,\pi]$. Let

$$\langle f,g \rangle = \int_0^\pi f(x)g(x)dx$$

be a real inner product on C[0,1], and let $\|\cdot\|$ be the associated norm. Let f(x) = x and $g(x) = \cos(3x)$. Compute:

- (a) $\langle f, g \rangle$, ||f|| and ||g||;
- (b) the distance between f and g;
- (c) the angle between f and g.
- 5. Show that if V is an inner product space and $\{w_1, \ldots, w_k\}$ is an orthogonal set in V. Suppose further that none of w_1, \ldots, w_k is zero. Show that
 - (a) $\{w_1, \ldots, w_k\}$ is linearly independent;
 - (b) $||w_1 + \dots + w_k||^2 = ||w_1||^2 + \dots + ||w_k||^2;$
 - (c) If $v \in V$, then

$$\|v\|^2 \ge \frac{|\langle v, w_1 \rangle|^2}{\langle w_1, w_1 \rangle} + \dots + \frac{|\langle v, w_k \rangle|^2}{\langle w_k, w_k \rangle}.$$

6. Let $T: P_2(\mathbb{R}) \to P_2(\mathbb{R})$ be the linear map

$$T(p(x)) = p''(x) + p'(x) + p(x).$$

- (a) Find the kernel and the range of T.
- (b) Find all eigenvalues of T, and their corresponding eigenvectors.
- (c) What is the algebraic and geometric multiplicity of each eigenvalue of T? Is T diagonalizable over \mathbb{R} ?
- 7. Suppose V is a vector space over a field F, and $T: V \to V$ is a linear map. Suppose also that $v \in V$, and $T^{k+1}v = 0$ for some positive integer k. If $T^k v \neq 0$, show that
 - (a) $\{v, Tv, T^2v, \dots, T^kv\}$ is linearly independent;
 - (b) the span of $\{v, Tv, T^2v, \dots, T^kv\}$ is a *T*-invariant subspace of *V*.

- 8. Let V be the vector space $M_{2\times 2}(\mathbb{R})$ over \mathbb{R} .
 - (a) Show that

$$\langle A, B \rangle = \operatorname{trace}(B^t A)$$

defines a real inner product on V. We use this inner product on V for the sequel of the question.

- (b) Write down an orthonormal basis of V.
- (c) Suppose W is the subspace of V consisting of all symmetric matrices.
 - (i) Find an orthonormal basis of W.
 - (ii) Find the orthogonal projection of the matrix $\begin{pmatrix} 1 & 2 \\ 3 & 4 \end{pmatrix}$ onto W.
 - (iii) Let W^{\perp} be the orthogonal complement of W in V. Show that W^{\perp} is the set of all skew-symmetric matrices in V.
 - (iv) Show that the orthogonal projection of A onto W is given by $\frac{1}{2}(A+A^t)$ for all $A \in V$. (Hint: Every $A \in V$ can be written as

$$A = \frac{1}{2}(A + A^{t}) + \frac{1}{2}(A - A^{t}),$$

and we have $\frac{1}{2}(A+A^t) \in W$, $\frac{1}{2}(A-A^t) \in W^{\perp}$ for all $A \in V$. One can then invoke the result in part (b) of the next question.)

- (v) Use part (iv) to check your answer in part (ii).
- 9. Suppose V is an inner product space, and W is a finite dimensional subspace of
 - V. Let W^{\perp} be the orthogonal complement of W in V.
 - (a) Show that if $w \in W \cap W^{\perp}$, then w = 0.
 - (b) Show that if $v \in V$ can be written as $v = w_1 + w_2$, where $w_1 \in W$ and $w_2 \in W^{\perp}$, then w_1 is the orthogonal projection of v onto W.
 - (c) Show that if in addition V is finite dimensional, then $(W^{\perp})^{\perp} = W$.
 - (d) Hence, or otherwise, show that if V is finite dimensional, then under the assumptions of part (b), w_2 is the orthogonal projection of v onto W^{\perp} .
- 10. Let $\mathfrak{so}(3)$ be the set of all skew-symmetric 3×3 complex matrices, i.e.

$$\mathfrak{so}(3) = \{ A \in M_{3 \times 3}(\mathbb{C}) \colon A^t = -A \}.$$

- (a) Show that $\mathfrak{so}(3)$ is a vector space over \mathbb{C} .
- (b) Show that

$$\left\{ \left(\begin{array}{rrrr} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right), \left(\begin{array}{rrrr} 0 & 0 & 1 \\ 0 & 0 & 0 \\ -1 & 0 & 0 \end{array} \right), \left(\begin{array}{rrrr} 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & -1 & 0 \end{array} \right) \right\}$$

is a basis of $\mathfrak{so}(3)$. Hence determine the dimension of $\mathfrak{so}(3)$.

(c) Given two square matrices A and B, we define [A, B] to be the matrix AB - BA. Show that $[A, B] \in \mathfrak{so}(3)$ for all $A, B \in \mathfrak{so}(3)$.

 $\mathbf{2}$

11. We continue from the previous question. Let

$$H = \left(\begin{array}{rrr} 0 & 1 & 0 \\ -1 & 0 & 0 \\ 0 & 0 & 0 \end{array} \right).$$

- (a) Show that $H \in \mathfrak{so}(3)$.
- (b) Let $T: \mathfrak{so}(3) \to \mathfrak{so}(3)$ be defined by T(A) = [H, A] for all $A \in \mathfrak{so}(3)$.
 - (i) Is T a linear map? Explain.
 - (ii) If α is the ordered basis given in part (b) of the previous question, compute the matrix representation $[T]_{\alpha}$ of T with respect to α .
 - (iii) Show that T is diagonalizable over \mathbb{C} . (Hint: You can do this without finding all the eigenvectors of T.)
- 12. Show that if A is a 2×2 matrix, then $A^2 = s_1 A s_2 I$ where $s_1 = \text{trace}(A)$ and $s_2 = \det(A)$. Here I is the 2×2 identity matrix. (Hint: Use Cayley-Hamilton.)
- 13. Let B be an $n \times n$ matrix with entries in \mathbb{R} . Let $A = B^t B$, and $\langle \cdot, \cdot \rangle$ be the standard inner product on \mathbb{R}^n . Show that
 - (a) A is real symmetric, in the sense that $A^t = A$;
 - (b) $\langle Ax, x \rangle \ge 0$ for all $x \in \mathbb{R}^n$;
 - (c) If λ is an eigenvalue of A, then $\lambda \geq 0$.
- 14. Given two vectors $v_1, v_2 \in \mathbb{R}^3$, we define a map $T \colon \mathbb{R}^3 \to \mathbb{R}$ as follows: for any $v \in \mathbb{R}^3$, let A(v) be the 3×3 matrix whose first row is v, second row is v_1 and third row is v_2 . We then define $T(v) = \det(A(v))$.
 - (a) Show that T is a linear map.
 - (b) Equip \mathbb{R}^3 with the standard inner product $\langle \cdot, \cdot \rangle$. Then the Riesz representation theorem says that there exists a unique vector $w \in \mathbb{R}^3$ such that $T(v) = \langle v, w \rangle$ for all $v \in \mathbb{R}^3$. Show that this w is given by the cross product of v_1 with v_2 .

(One can generalize this exercise and define the 'cross product' of n-1 vectors in \mathbb{R}^n for all n.)

- 15. Suppose A is a complex $n \times n$ matrix.
 - (a) Show that if λ is an eigenvalue of A, then $\overline{\lambda}$ is an eigenvalue of A^* .
 - (b) More generally, show that dim(nullspace $(A \lambda I)$) = dim(nullspace $(A^* \overline{\lambda}I)$) for all $\lambda \in \mathbb{C}$.
 - (c) (Optional) Show that if in addition A is normal, i.e. if $AA^* = A^*A$, then not only the dimensions of the above nullspaces are equal, but

nullspace
$$(A - \lambda I)$$
 = nullspace $(A^* - \overline{\lambda}I)$

for all $\lambda \in \mathbb{C}$.

(d) Show that the conclusion of (c) is not true if A is not normal. (Hint: consider upper triangular matrices A that are not normal.)

16. The goal of this question is to illustrate some techniques in computing determinants. For each $x \in \mathbb{R}$, let

$$A_x = \left(\begin{array}{rrr} x & 1 & 1 \\ 1 & x & 1 \\ 1 & 1 & x \end{array} \right).$$

We want to compute $f(x) = \det(A_x)$.

- (a) Show that f(x) is a cubic polynomial in x, and the coefficient of x^3 is 1.
- (b) Show that f(x) = 0 when x = 1. Hence show that x 1 is a factor of f(x).
- (c) Show that

$$f'(x) = \det \begin{pmatrix} 1 & 0 & 0 \\ 1 & x & 1 \\ 1 & 1 & x \end{pmatrix} + \det \begin{pmatrix} x & 1 & 1 \\ 0 & 1 & 0 \\ 1 & 1 & x \end{pmatrix} + \det \begin{pmatrix} x & 1 & 1 \\ 1 & x & 1 \\ 0 & 0 & 1 \end{pmatrix} = 3 \det \begin{pmatrix} x & 1 \\ 1 & x \end{pmatrix}.$$

Hence show that f'(x) = 0 when x = 1, and that $(x - 1)^2$ is a factor of f(x).

- (d) Show that f(x) = 0 when x = -2, and hence x + 2 is a factor of f(x).
- (e) Together, conclude that $f(x) = (x-1)^2(x+2)$.
- 17. Incidentally, the above problem allows us to further analyze the matrix A_x .
 - (a) Show that the eigenvalues of A_x are x 1 and x + 2.
 - (b) Show that A_x is diagonalizable for all x. (Hint: A_x is symmetric for all x.)
 - (c) Show that $(A_x (x-1)I)(A_x (x+2)I)v = 0$ for all $x \in \mathbb{R}$ and all $v \in \mathbb{R}^3$, where I is the 3×3 identity matrix.
 - (d) Show that $A_x^2 (2x+1)A_x + (x-1)(x+2)I = 0$ for all x. Conclude that if $x \neq 1$ or -2, then A_x is invertible, with

$$A_x^{-1} = -\frac{1}{(x-1)(x+2)}(A_x - (2x+1)I) = -\frac{1}{(x-1)(x+2)}A_{-x-1}.$$

18. The technique in Question 16 can be used to compute the following Vandermonde determinant:

$$f(\alpha_1, \dots, \alpha_n) := \det \begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \dots & \alpha_n^{n-1} \end{pmatrix}$$

- (a) Show that $f(\alpha_1, \ldots, \alpha_n)$ is a polynomial of $\alpha_1, \ldots, \alpha_n$, and that $f(\alpha_1, \ldots, \alpha_n) = 0$ whenever $\alpha_i = \alpha_j$ for some $1 \le i < j \le n$. Hence $\prod_{1 \le i < j \le n} (\alpha_j \alpha_i)$ divides $f(\alpha_1, \ldots, \alpha_n)$.
- (b) Conclude that

$$f(\alpha_1, \dots, \alpha_n) = \prod_{1 \le i < j \le n} (\alpha_j - \alpha_i).$$

4

- 19. (a) Let V be a vector space over R and let T: V → V be a linear operator. Let v₁,..., v_k be eigenvectors of T corresponding to eigenvalues λ₁,..., λ_k, and suppose λ₁,..., λ_k are pairwise distinct. Prove that {v₁,..., v_k} are linearly independent.
 - (b) Let V be the vector space of all infinitely differentiable functions on \mathbb{R} . If $\alpha_1, \ldots, \alpha_n$ is a list of distinct real numbers, show that $\{e^{\alpha_1 x}, e^{\alpha_2 x}, \ldots, e^{\alpha_n x}\}$ is a linearly independent subset of V. This is a generalization of Question 1. (Hint: One may use part (a) (how?), or the result of the previous question; in fact, if $c_1 e^{\alpha_1 x} + \cdots + c_n e^{\alpha_n x} = 0$ for some scalars c_1, \ldots, c_n , then by evaluating the k-th derivative of both sides at x = 0, we get

$$c_1 \alpha_1^k + \dots + c_n \alpha_n^k = 0$$
 for all $k = 0, 1, 2 \dots$

In particular,

$$\begin{pmatrix} 1 & 1 & \dots & 1 \\ \alpha_1 & \alpha_2 & \dots & \alpha_n \\ \alpha_1^2 & \alpha_2^2 & \dots & \alpha_n^2 \\ \vdots & \vdots & \ddots & \vdots \\ \alpha_1^{n-1} & \alpha_2^{n-1} & \dots & \alpha_n^{n-1} \end{pmatrix} \begin{pmatrix} c_1 \\ c_2 \\ c_3 \\ \vdots \\ c_n \end{pmatrix} = \begin{pmatrix} 0 \\ 0 \\ 0 \\ \vdots \\ 0 \end{pmatrix}.$$

Since $\alpha_1, \ldots, \alpha_n$ are assumed pairwise distinct, the coefficient matrix of this system of linear equations is non-zero by the result of the previous question. Thus this system of linear equations has no non-trivial solutions, i.e. $c_1 = c_2 = \cdots = c_n = 0$.)

20. Suppose \mathcal{P}_k is the set of all polynomials on \mathbb{R}^2 that are homogeneous of degree k, i.e. $\mathcal{P}_k = \left\{ \sum_{j=0}^k a_j x^j y^{k-j} \colon a_0, \ldots, a_k \in \mathbb{R} \right\}$ for all $k \in \mathbb{N}$. It is easy to see that \mathcal{P}_k is a vector space over \mathbb{R} .

For each $P \in \mathcal{P}_k$, we define a differential operator

$$P(D) := \sum_{j=0}^{k} a_j \left(\frac{\partial}{\partial x}\right)^j \left(\frac{\partial}{\partial y}\right)^{k-j} \quad \text{if } P(x,y) = \sum_{j=0}^{k} a_j x^j y^{k-j}.$$

For $P, Q \in \mathcal{P}_k$, define

$$\langle P, Q \rangle = P(D)(Q(x, y)).$$

- (a) Show that this defines a real inner product on \mathcal{P}_k .
- (b) Let W be the subspace of V given by

$$W = \{ R \in \mathcal{P}_k \colon R(x, y) = (x^2 + y^2)Q(x, y) \text{ for some } Q(x, y) \in \mathcal{P}_{k-2} \}.$$

Show that the orthogonal complement of W in \mathcal{P}_k is the space of homogeneous harmonic polynomials of degree k, i.e.

$$W^{\perp} = \left\{ P \in \mathcal{P}_k \colon \frac{\partial^2 P}{\partial x^2} + \frac{\partial^2 P}{\partial y^2} = 0 \right\}.$$

21. This is a continuation of Question 20 of the review for midterm 2. Let $\mathfrak{gl}(n) = M_{n \times n}(\mathbb{R})$, and $\mathfrak{sl}(2)$ be the subspace of $\mathfrak{gl}(2)$ that consists of matrices whose trace is zero. These are vector spaces over \mathbb{R} . Let X, Y, H be elements of $\mathfrak{sl}(2)$, given by

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

Let N be a positive integer, and $T: \mathfrak{sl}(2) \to \mathfrak{gl}(N+1)$ be a linear map satisfying

 $T([A,B]) = [T(A),T(B)] \quad \text{for all } A,B \in \mathfrak{sl}(2).$

(Recall that [A, B] = AB - BA if A and B are two square matrices.) Let also

$$V_{\lambda} = \{ v \in \mathbb{R}^{N+1} \colon T(H)v = \lambda v \} \text{ for all } \lambda \in \mathbb{R}.$$

Show that

- (a) V_{λ} is the eigenspace of T(H) with eigenvalue λ if λ is an eigenvalue of T(H), and $\{0\}$ otherwise.
- (b) If $\lambda \in \mathbb{R}$ and $v \in V_{\lambda}$, then $T(H)v \in V_{\lambda}$, $T(X)v \in V_{\lambda+2}$, and $T(Y)v \in V_{\lambda-2}$.
- (c) Suppose from now on that the linear map T satisfies the following two properties:
 - T(H) is diagonalizable as a linear map from \mathbb{R}^{N+1} to \mathbb{R}^{N+1} ;
 - If W is a subspace of \mathbb{R}^{N+1} that is both T(X)-invariant, T(Y)-invariant and T(H)-invariant, then $W = \{0\}$ or $W = \mathbb{R}^{N+1}$.

Suppose λ_0 is the largest eigenvalue of T(H), and v_0 is an eigenvector of T(H) with eigenvalue λ_0 .

(i) Let W be the subspace of \mathbb{R}^{N+1} spanned by

 $\{v_0, T(Y)v_0, [T(Y)]^2v_0, \dots\}.$

Show that W is T(X)-invariant, T(Y)-invariant and T(H)-invariant. Thus conclude that $W = \mathbb{R}^{N+1}$.

(ii) Let k be the smallest integer such that $T(Y)^{k+1}(Y) = 0$. Show that

 $\{v_0, T(Y)v_0, [T(Y)]^2v_0, \dots, [T(Y)]^kv_0\}$

is linear independent. Hence show that it is a basis of W, and conclude that k = N.

(iii) Show that

$$0 = T(X)[T(Y)]^{N+1}v_0 = (N+1)(\lambda_0 - N)[T(Y)]^N v_0.$$

Hence conclude that $\lambda_0 = N$, and that the eigenvalues of T(H) are $N, N-2, N-4, \ldots, -N$.

(iv) Show that V_m is one-dimensional for all $m = N, N-2, N-4, \ldots, -N$, and is $\{0\}$ otherwise.