
Math 350 Fall 2011

Food for thought 1

Here are some interesting problems about the density of diagonalizable matrices

that you can think about in your free time.

1. (a) Suppose A is a 2× 2 matrix with entries in C, say

A =

(
A1,1 A1,2

A2,1 A2,2

)
.

Let f(t) = t2 + a1t+ a0 be the characteristic polynomial of A.

(i) Find a1 and a0 in terms of the entries of A.

(ii) Explain why f(t) has 2 distinct roots if and only if a21 − 4a0 6= 0.

Hence, using also part (i), find a necessary and sufficient condition on

the entries of A for which A has 2 distinct eigenvalues over C. This is

then a sufficient condition under which A would be diagonalizable over

C.

(b) Suppose B is a 2× 2 matrix with entries in C. Show that there exists a se-

quence Bm of 2×2 matrices with entries in C such that Bm is diagonalizable

over C for all m, and that

lim
m→∞

Bm = B,

in the sense that

lim
m→∞

(Bm)i,j = Bi,j for all 1 ≤ i, j ≤ 2,

where (Bm)i,j and Bi,j are the (i, j)-th entry of the matrices Bm and B

respectively.

2. The above question can be generalized to higher dimensions. To do so, we first

develop some algebraic preliminaries in this question.

First, for j = 1, . . . , n, we define sj(t1, . . . , tn) to be the coefficient of tn−j

in the polynomial p(t) := (t + t1) . . . (t + tn). This sj is usually called the j-th

elementary symmetric polynomial of the n variables t1, . . . , tn.

A bijective map σ : {1, . . . , n} → {1, . . . , n} is usually called a permutation of

n letters. The set of all such is denoted Sn, the symmetric group of n letters. A

polynomial P (t1, . . . , tn) of n variables is said to be symmetric if

P (tσ(1), . . . , tσ(n)) = P (t1, . . . , tn) for all σ ∈ Sn.

(a) Show that

s1(t1, . . . , tn) = t1 + · · ·+ tn

and

sn(t1, . . . , tn) = t1 . . . tn.
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(b) Show that the sj defined above is a symmetric polynomial of t1, . . . , tn,

for each j = 1, . . . , n. Hence, any polynomial in s1, . . . , sn is a symmetric

polynomial of t1, . . . , tn.

(c) Show that if P (t1, . . . , tn) is a symmetric polynomial of n variables, then

there exists a polynomial Q of n variables such that

P (t1, . . . , tn) = Q(s1(t1, . . . , tn), . . . , sn(t1, . . . , tn)).

(Hint: Use a double induction here, first on the number of variables n, then

on the total degree of the given polynomial P . In fact, suppose a sym-

metric polynomial P (t1, . . . , tn) of t1, . . . , tn is given. Then the polynomial

P (t1, . . . , tn−1, 0), obtained by plugging in tn = 0, is a symmetric polyno-

mial of the n−1 variables t1, . . . , tn−1. Hence by induction hypothesis, there

exists a polynomial q of n− 1 variables such that

P (t1, . . . , tn−1, 0) = q(s1(t1, . . . , tn−1), . . . , sn−1(t1, . . . , tn−1)).

Now consider

R(t1, . . . , tn) := P (t1, . . . , tn)− q(s1(t1, . . . , tn), . . . , sn−1(t1, . . . , tn)).

Then R is a symmetric polynomial of n variables t1, . . . , tn. Also, by con-

struction, R(t1, . . . , tn−1, 0) = 0, so tn divides R, and it follows by the

symmetry of R that t1 . . . tn divides R, i.e. sn(t1, . . . , tn) divides R. Then

R(t1, . . . , tn)

sn(t1, . . . , tn)

is a symmetric polynomial of n variables that has smaller total degree than

P (t1, . . . , tn), so by induction hypothesis,

R(t1, . . . , tn)

sn(t1, . . . , tn)
= r(s1(t1, . . . , tn), . . . , sn(t1, . . . , tn))

for some polynomial r of n variables. Thus

P (t1, . . . , tn)

=q(s1(t1, . . . , tn), . . . , sn−1(t1, . . . , tn))

+ sn(t1, . . . , tn)r(s1(t1, . . . , tn), . . . , sn(t1, . . . , tn)),

completing the proof of the induction step.)

3. This question is a generalization of Question 1 to n dimensions.

(a) Suppose A is an n × n matrix with entries in C. Suppose λ1, . . . , λn is a

listing (with multiplicities) of the eigenvalues of A. Let also

f(t) = (−1)n(tn + an−1t
n−1 + · · ·+ a0)

be the characteristic polynomial of A.

(i) Show that a0, . . . , an−1 are polynomials in the entries of A.

(ii) Show that aj = (−1)n−jsn−j(λ1, . . . , λn) for all j = 0, . . . , n− 1.
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(iii) Suppose

P (t1, . . . , tn) :=
∏

1≤i<j≤n

(ti − tj)2.

Show that P (t1, . . . , tn) is a symmetric polynomial of the n variables

t1, . . . , tn. Hence, using Question 2 and part (ii), show that P (λ1, . . . , λn)

is a polynomial of a0, . . . , an−1. It then follows from part (i) that

P (λ1, . . . , λn) is a polynomial of the entries of A.

(iv) Suppose P is defined as in part (iii). Show that if P (λ1, . . . , λn) 6=
0, then A is diagonalizable. Hence, using part (iii), find a sufficient

condition on the entries of A such that A is diagonalizable.

(b) One can now prove the following: Suppose B is an n×n matrix with entries

in C. Show that there exists a sequence Bm of n × n matrices with entries

in C such that Bm is diagonalizable over C for all m, and that

lim
m→∞

Bm = B,

in the sense that

lim
m→∞

(Bm)i,j = Bi,j for all 1 ≤ i, j ≤ n,

where (Bm)i,j and Bi,j are the (i, j)-th entry of the matrices Bm and B

respectively.

4. The result of Question 3(b) can be restated as follows: the set of all n×n complex

matrices that are diagonalizable over C is dense in the set of all n× n complex

matrices. On the other hand, show that the set of all unitarily diagonalizable

matrices is NOT dense in the set of all n×n complex matrices. (Hint: A complex

n × n matrix is unitarily diagonalizable if and only if it is normal, and the set

of normal matrices is a proper closed subset of the set of all n × n complex

matrices.) Also, the result of Question 1(b) is false if C is replaced by R, since

there are many 2× 2 real matrices that does not even have real eigenvalues.

5. In this question we see some applications of the result in Question 3(b).

(a) We have seen that if B is a diagonalizable n× n matrix over C, then

det(I + tB) = 1 + s1t+ · · ·+ snt
n

for some coefficients s1, . . . , sn, where s1 = trace(B) and sn = det(B). Using

Question 3(b), show that the same conclusion holds without the assumption

that B is diagonalizable. It follows that if B is any n×n matrix with entries

in C, then B is invertible if and only if det(I+ tB) is a polynomial of degree

n in t.

(b) Suppose A is an n×n complex matrix. We define the exponential, sine and

cosine of A by the following formula:

eA := lim
m→∞

(
I +

1

1!
A+

1

2!
A2 + · · ·+ 1

m!
Am
)
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sin(A) := lim
m→∞

(
1

1!
A− 1

3!
A3 +

1

5!
A5 + · · ·+ (−1)m

(2m+ 1)!
A2m+1

)
cos(A) := lim

m→∞

(
I − 1

2!
A2 +

1

4!
A4 + · · ·+ (−1)m

(2m)!
A2m

)
.

Here the limits of the matrices are defined as in Question 3(b). These mimic

the definition of the exponential, sine and cosine of a complex number by

power series.

(i) Show that if A is diagonalizable over C, say A = PDP−1 where D is

a diagonal matrix, then

eA = PeDP−1,

sin(A) = P sin(D)P−1 and cos(A) = P cos(D)P−1.

(ii) Show that if D is a diagonal matrix with entries λ1, . . . , λn, then eD is

a diagonal matrix with entries eλ1 , . . . , eλn . State and prove a similar

statement for sin(D) and cos(D).

(iii) Show that

sin2(D) + cos2(D) = I

for all diagonal matrices D. (Here we write sin2(D) for (sin(D))2, etc.)

(Hint: Here you may use freely the fact that sin2(λ) + cos2(λ) = 1 for

all complex numbers λ.)

(iv) Using part (i), show that

sin2(A) + cos2(A) = I

if A is diaognalizable over C.

(v) Hence, using Question 3(c), prove that the same conclusion holds with-

out the assumption that A is diagonalizable over C.

(vi) Similarly, show that det(eA) = eTrace(A) for all n × n complex matrix

A. (In particular, we have the conclusions of parts (v) and (vi) for

all n × n real matrices A, which is not very easy to see without first

passing to complex matrices!)


