Math 350 Fall 2011
 Food for thought 1

Here are some interesting problems about the density of diagonalizable matrices that you can think about in your free time.

1. (a) Suppose A is a 2×2 matrix with entries in \mathbb{C}, say

$$
A=\left(\begin{array}{ll}
A_{1,1} & A_{1,2} \\
A_{2,1} & A_{2,2}
\end{array}\right)
$$

Let $f(t)=t^{2}+a_{1} t+a_{0}$ be the characteristic polynomial of A.
(i) Find a_{1} and a_{0} in terms of the entries of A.
(ii) Explain why $f(t)$ has 2 distinct roots if and only if $a_{1}^{2}-4 a_{0} \neq 0$. Hence, using also part (i), find a necessary and sufficient condition on the entries of A for which A has 2 distinct eigenvalues over \mathbb{C}. This is then a sufficient condition under which A would be diagonalizable over \mathbb{C}.
(b) Suppose B is a 2×2 matrix with entries in \mathbb{C}. Show that there exists a sequence B_{m} of 2×2 matrices with entries in \mathbb{C} such that B_{m} is diagonalizable over \mathbb{C} for all m, and that

$$
\lim _{m \rightarrow \infty} B_{m}=B
$$

in the sense that

$$
\lim _{m \rightarrow \infty}\left(B_{m}\right)_{i, j}=B_{i, j} \quad \text { for all } 1 \leq i, j \leq 2
$$

where $\left(B_{m}\right)_{i, j}$ and $B_{i, j}$ are the (i, j)-th entry of the matrices B_{m} and B respectively.
2. The above question can be generalized to higher dimensions. To do so, we first develop some algebraic preliminaries in this question.

First, for $j=1, \ldots, n$, we define $s_{j}\left(t_{1}, \ldots, t_{n}\right)$ to be the coefficient of t^{n-j} in the polynomial $p(t):=\left(t+t_{1}\right) \ldots\left(t+t_{n}\right)$. This s_{j} is usually called the j-th elementary symmetric polynomial of the n variables t_{1}, \ldots, t_{n}.

A bijective map $\sigma:\{1, \ldots, n\} \rightarrow\{1, \ldots, n\}$ is usually called a permutation of n letters. The set of all such is denoted S_{n}, the symmetric group of n letters. A polynomial $P\left(t_{1}, \ldots, t_{n}\right)$ of n variables is said to be symmetric if

$$
P\left(t_{\sigma(1)}, \ldots, t_{\sigma(n)}\right)=P\left(t_{1}, \ldots, t_{n}\right) \quad \text { for all } \sigma \in S_{n}
$$

(a) Show that

$$
s_{1}\left(t_{1}, \ldots, t_{n}\right)=t_{1}+\cdots+t_{n}
$$

and

$$
s_{n}\left(t_{1}, \ldots, t_{n}\right)=t_{1} \ldots t_{n}
$$

(b) Show that the s_{j} defined above is a symmetric polynomial of t_{1}, \ldots, t_{n}, for each $j=1, \ldots, n$. Hence, any polynomial in s_{1}, \ldots, s_{n} is a symmetric polynomial of t_{1}, \ldots, t_{n}.
(c) Show that if $P\left(t_{1}, \ldots, t_{n}\right)$ is a symmetric polynomial of n variables, then there exists a polynomial Q of n variables such that

$$
P\left(t_{1}, \ldots, t_{n}\right)=Q\left(s_{1}\left(t_{1}, \ldots, t_{n}\right), \ldots, s_{n}\left(t_{1}, \ldots, t_{n}\right)\right)
$$

(Hint: Use a double induction here, first on the number of variables n, then on the total degree of the given polynomial P. In fact, suppose a symmetric polynomial $P\left(t_{1}, \ldots, t_{n}\right)$ of t_{1}, \ldots, t_{n} is given. Then the polynomial $P\left(t_{1}, \ldots, t_{n-1}, 0\right)$, obtained by plugging in $t_{n}=0$, is a symmetric polynomial of the $n-1$ variables t_{1}, \ldots, t_{n-1}. Hence by induction hypothesis, there exists a polynomial q of $n-1$ variables such that

$$
P\left(t_{1}, \ldots, t_{n-1}, 0\right)=q\left(s_{1}\left(t_{1}, \ldots, t_{n-1}\right), \ldots, s_{n-1}\left(t_{1}, \ldots, t_{n-1}\right)\right)
$$

Now consider
$R\left(t_{1}, \ldots, t_{n}\right):=P\left(t_{1}, \ldots, t_{n}\right)-q\left(s_{1}\left(t_{1}, \ldots, t_{n}\right), \ldots, s_{n-1}\left(t_{1}, \ldots, t_{n}\right)\right)$.
Then R is a symmetric polynomial of n variables t_{1}, \ldots, t_{n}. Also, by construction, $R\left(t_{1}, \ldots, t_{n-1}, 0\right)=0$, so t_{n} divides R, and it follows by the symmetry of R that $t_{1} \ldots t_{n}$ divides R, i.e. $s_{n}\left(t_{1}, \ldots, t_{n}\right)$ divides R. Then

$$
\frac{R\left(t_{1}, \ldots, t_{n}\right)}{s_{n}\left(t_{1}, \ldots, t_{n}\right)}
$$

is a symmetric polynomial of n variables that has smaller total degree than $P\left(t_{1}, \ldots, t_{n}\right)$, so by induction hypothesis,

$$
\frac{R\left(t_{1}, \ldots, t_{n}\right)}{s_{n}\left(t_{1}, \ldots, t_{n}\right)}=r\left(s_{1}\left(t_{1}, \ldots, t_{n}\right), \ldots, s_{n}\left(t_{1}, \ldots, t_{n}\right)\right)
$$

for some polynomial r of n variables. Thus

$$
\begin{aligned}
& P\left(t_{1}, \ldots, t_{n}\right) \\
= & q\left(s_{1}\left(t_{1}, \ldots, t_{n}\right), \ldots, s_{n-1}\left(t_{1}, \ldots, t_{n}\right)\right) \\
& \quad+s_{n}\left(t_{1}, \ldots, t_{n}\right) r\left(s_{1}\left(t_{1}, \ldots, t_{n}\right), \ldots, s_{n}\left(t_{1}, \ldots, t_{n}\right)\right)
\end{aligned}
$$

completing the proof of the induction step.)
3. This question is a generalization of Question 1 to n dimensions.
(a) Suppose A is an $n \times n$ matrix with entries in \mathbb{C}. Suppose $\lambda_{1}, \ldots, \lambda_{n}$ is a listing (with multiplicities) of the eigenvalues of A. Let also

$$
f(t)=(-1)^{n}\left(t^{n}+a_{n-1} t^{n-1}+\cdots+a_{0}\right)
$$

be the characteristic polynomial of A.
(i) Show that a_{0}, \ldots, a_{n-1} are polynomials in the entries of A.
(ii) Show that $a_{j}=(-1)^{n-j} s_{n-j}\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ for all $j=0, \ldots, n-1$.
(iii) Suppose

$$
P\left(t_{1}, \ldots, t_{n}\right):=\prod_{1 \leq i<j \leq n}\left(t_{i}-t_{j}\right)^{2} .
$$

Show that $P\left(t_{1}, \ldots, t_{n}\right)$ is a symmetric polynomial of the n variables t_{1}, \ldots, t_{n}. Hence, using Question 2 and part (ii), show that $P\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a polynomial of a_{0}, \ldots, a_{n-1}. It then follows from part (i) that $P\left(\lambda_{1}, \ldots, \lambda_{n}\right)$ is a polynomial of the entries of A.
(iv) Suppose P is defined as in part (iii). Show that if $P\left(\lambda_{1}, \ldots, \lambda_{n}\right) \neq$ 0 , then A is diagonalizable. Hence, using part (iii), find a sufficient condition on the entries of A such that A is diagonalizable.
(b) One can now prove the following: Suppose B is an $n \times n$ matrix with entries in \mathbb{C}. Show that there exists a sequence B_{m} of $n \times n$ matrices with entries in \mathbb{C} such that B_{m} is diagonalizable over \mathbb{C} for all m, and that

$$
\lim _{m \rightarrow \infty} B_{m}=B
$$

in the sense that

$$
\lim _{m \rightarrow \infty}\left(B_{m}\right)_{i, j}=B_{i, j} \quad \text { for all } 1 \leq i, j \leq n
$$

where $\left(B_{m}\right)_{i, j}$ and $B_{i, j}$ are the (i, j)-th entry of the matrices B_{m} and B respectively.
4. The result of Question 3(b) can be restated as follows: the set of all $n \times n$ complex matrices that are diagonalizable over \mathbb{C} is dense in the set of all $n \times n$ complex matrices. On the other hand, show that the set of all unitarily diagonalizable matrices is NOT dense in the set of all $n \times n$ complex matrices. (Hint: A complex $n \times n$ matrix is unitarily diagonalizable if and only if it is normal, and the set of normal matrices is a proper closed subset of the set of all $n \times n$ complex matrices.) Also, the result of Question $1(\mathrm{~b})$ is false if \mathbb{C} is replaced by \mathbb{R}, since there are many 2×2 real matrices that does not even have real eigenvalues.
5. In this question we see some applications of the result in Question 3(b).
(a) We have seen that if B is a diagonalizable $n \times n$ matrix over \mathbb{C}, then

$$
\operatorname{det}(I+t B)=1+s_{1} t+\cdots+s_{n} t^{n}
$$

for some coefficients s_{1}, \ldots, s_{n}, where $s_{1}=\operatorname{trace}(B)$ and $s_{n}=\operatorname{det}(B)$. Using Question 3(b), show that the same conclusion holds without the assumption that B is diagonalizable. It follows that if B is any $n \times n$ matrix with entries in \mathbb{C}, then B is invertible if and only if $\operatorname{det}(I+t B)$ is a polynomial of degree n in t.
(b) Suppose A is an $n \times n$ complex matrix. We define the exponential, sine and cosine of A by the following formula:

$$
e^{A}:=\lim _{m \rightarrow \infty}\left(I+\frac{1}{1!} A+\frac{1}{2!} A^{2}+\cdots+\frac{1}{m!} A^{m}\right)
$$

$$
\begin{gathered}
\sin (A):=\lim _{m \rightarrow \infty}\left(\frac{1}{1!} A-\frac{1}{3!} A^{3}+\frac{1}{5!} A^{5}+\cdots+\frac{(-1)^{m}}{(2 m+1)!} A^{2 m+1}\right) \\
\cos (A):=\lim _{m \rightarrow \infty}\left(I-\frac{1}{2!} A^{2}+\frac{1}{4!} A^{4}+\cdots+\frac{(-1)^{m}}{(2 m)!} A^{2 m}\right) .
\end{gathered}
$$

Here the limits of the matrices are defined as in Question 3(b). These mimic the definition of the exponential, sine and cosine of a complex number by power series.
(i) Show that if A is diagonalizable over \mathbb{C}, say $A=P D P^{-1}$ where D is a diagonal matrix, then

$$
\begin{gathered}
e^{A}=P e^{D} P^{-1} \\
\sin (A)=P \sin (D) P^{-1} \quad \text { and } \quad \cos (A)=P \cos (D) P^{-1} .
\end{gathered}
$$

(ii) Show that if D is a diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n}$, then e^{D} is a diagonal matrix with entries $e^{\lambda_{1}}, \ldots, e^{\lambda_{n}}$. State and prove a similar statement for $\sin (D)$ and $\cos (D)$.
(iii) Show that

$$
\sin ^{2}(D)+\cos ^{2}(D)=I
$$

for all diagonal matrices D. (Here we write $\sin ^{2}(D)$ for $(\sin (D))^{2}$, etc.) (Hint: Here you may use freely the fact that $\sin ^{2}(\lambda)+\cos ^{2}(\lambda)=1$ for all complex numbers λ.)
(iv) Using part (i), show that

$$
\sin ^{2}(A)+\cos ^{2}(A)=I
$$

if A is diaognalizable over \mathbb{C}.
(v) Hence, using Question 3(c), prove that the same conclusion holds without the assumption that A is diagonalizable over \mathbb{C}.
(vi) Similarly, show that $\operatorname{det}\left(e^{A}\right)=e^{\operatorname{Trace}(A)}$ for all $n \times n$ complex matrix A. (In particular, we have the conclusions of parts (v) and (vi) for all $n \times n$ real matrices A, which is not very easy to see without first passing to complex matrices!)

