Math 350 Fall 2011 Food for thought 1

Here are some interesting problems about the density of diagonalizable matrices that you can think about in your free time.

1. (a) Suppose A is a 2×2 matrix with entries in \mathbb{C} , say

$$A = \left(\begin{array}{cc} A_{1,1} & A_{1,2} \\ A_{2,1} & A_{2,2} \end{array}\right).$$

Let $f(t) = t^2 + a_1 t + a_0$ be the characteristic polynomial of A.

- (i) Find a_1 and a_0 in terms of the entries of A.
- (ii) Explain why f(t) has 2 distinct roots if and only if $a_1^2 4a_0 \neq 0$. Hence, using also part (i), find a necessary and sufficient condition on the entries of A for which A has 2 distinct eigenvalues over \mathbb{C} . This is then a sufficient condition under which A would be diagonalizable over \mathbb{C} .
- (b) Suppose B is a 2×2 matrix with entries in \mathbb{C} . Show that there exists a sequence B_m of 2×2 matrices with entries in \mathbb{C} such that B_m is diagonalizable over \mathbb{C} for all m, and that

$$\lim_{m \to \infty} B_m = B,$$

in the sense that

$$\lim_{m \to \infty} (B_m)_{i,j} = B_{i,j} \quad \text{for all } 1 \le i, j \le 2,$$

where $(B_m)_{i,j}$ and $B_{i,j}$ are the (i, j)-th entry of the matrices B_m and B respectively.

2. The above question can be generalized to higher dimensions. To do so, we first develop some algebraic preliminaries in this question.

First, for j = 1, ..., n, we define $s_j(t_1, ..., t_n)$ to be the coefficient of t^{n-j} in the polynomial $p(t) := (t + t_1) ... (t + t_n)$. This s_j is usually called the *j*-th elementary symmetric polynomial of the *n* variables $t_1, ..., t_n$.

A bijective map $\sigma: \{1, \ldots, n\} \to \{1, \ldots, n\}$ is usually called a permutation of n letters. The set of all such is denoted S_n , the symmetric group of n letters. A polynomial $P(t_1, \ldots, t_n)$ of n variables is said to be symmetric if

$$P(t_{\sigma(1)},\ldots,t_{\sigma(n)}) = P(t_1,\ldots,t_n)$$
 for all $\sigma \in S_n$.

(a) Show that

$$s_1(t_1,\ldots,t_n) = t_1 + \cdots + t_n$$

and

$$s_n(t_1,\ldots,t_n) = t_1\ldots t_n.$$

- (b) Show that the s_j defined above is a symmetric polynomial of t_1, \ldots, t_n , for each $j = 1, \ldots, n$. Hence, any polynomial in s_1, \ldots, s_n is a symmetric polynomial of t_1, \ldots, t_n .
- (c) Show that if $P(t_1, \ldots, t_n)$ is a symmetric polynomial of n variables, then there exists a polynomial Q of n variables such that

$$P(t_1,\ldots,t_n)=Q(s_1(t_1,\ldots,t_n),\ldots,s_n(t_1,\ldots,t_n)).$$

(Hint: Use a double induction here, first on the number of variables n, then on the total degree of the given polynomial P. In fact, suppose a symmetric polynomial $P(t_1, \ldots, t_n)$ of t_1, \ldots, t_n is given. Then the polynomial $P(t_1, \ldots, t_{n-1}, 0)$, obtained by plugging in $t_n = 0$, is a symmetric polynomial of the n-1 variables t_1, \ldots, t_{n-1} . Hence by induction hypothesis, there exists a polynomial q of n-1 variables such that

$$P(t_1,\ldots,t_{n-1},0) = q(s_1(t_1,\ldots,t_{n-1}),\ldots,s_{n-1}(t_1,\ldots,t_{n-1})).$$

Now consider

$$R(t_1, \dots, t_n) := P(t_1, \dots, t_n) - q(s_1(t_1, \dots, t_n), \dots, s_{n-1}(t_1, \dots, t_n)).$$

Then R is a symmetric polynomial of n variables t_1, \ldots, t_n . Also, by construction, $R(t_1, \ldots, t_{n-1}, 0) = 0$, so t_n divides R, and it follows by the symmetry of R that $t_1 \ldots t_n$ divides R, i.e. $s_n(t_1, \ldots, t_n)$ divides R. Then

$$\frac{R(t_1,\ldots,t_n)}{s_n(t_1,\ldots,t_n)}$$

is a symmetric polynomial of n variables that has smaller total degree than $P(t_1, \ldots, t_n)$, so by induction hypothesis,

$$\frac{R(t_1,\ldots,t_n)}{s_n(t_1,\ldots,t_n)} = r(s_1(t_1,\ldots,t_n),\ldots,s_n(t_1,\ldots,t_n))$$

for some polynomial r of n variables. Thus

$$P(t_1, ..., t_n)$$

=q(s₁(t₁, ..., t_n), ..., s_{n-1}(t₁, ..., t_n))
+ s_n(t₁, ..., t_n)r(s₁(t₁, ..., t_n), ..., s_n(t₁, ..., t_n)),

completing the proof of the induction step.)

- 3. This question is a generalization of Question 1 to n dimensions.
 - (a) Suppose A is an $n \times n$ matrix with entries in \mathbb{C} . Suppose $\lambda_1, \ldots, \lambda_n$ is a listing (with multiplicities) of the eigenvalues of A. Let also

$$f(t) = (-1)^n (t^n + a_{n-1}t^{n-1} + \dots + a_0)$$

be the characteristic polynomial of A.

- (i) Show that a_0, \ldots, a_{n-1} are polynomials in the entries of A.
- (ii) Show that $a_j = (-1)^{n-j} s_{n-j}(\lambda_1, \dots, \lambda_n)$ for all $j = 0, \dots, n-1$.

(iii) Suppose

$$P(t_1,\ldots,t_n) := \prod_{1 \le i < j \le n} (t_i - t_j)^2$$

Show that $P(t_1, \ldots, t_n)$ is a symmetric polynomial of the *n* variables t_1, \ldots, t_n . Hence, using Question 2 and part (ii), show that $P(\lambda_1, \ldots, \lambda_n)$ is a polynomial of a_0, \ldots, a_{n-1} . It then follows from part (i) that $P(\lambda_1, \ldots, \lambda_n)$ is a polynomial of the entries of A.

- (iv) Suppose P is defined as in part (iii). Show that if $P(\lambda_1, \ldots, \lambda_n) \neq 0$, then A is diagonalizable. Hence, using part (iii), find a sufficient condition on the entries of A such that A is diagonalizable.
- (b) One can now prove the following: Suppose B is an n×n matrix with entries in C. Show that there exists a sequence B_m of n×n matrices with entries in C such that B_m is diagonalizable over C for all m, and that

$$\lim_{m \to \infty} B_m = B_s$$

in the sense that

$$\lim_{m \to \infty} (B_m)_{i,j} = B_{i,j} \quad \text{for all } 1 \le i, j \le n,$$

where $(B_m)_{i,j}$ and $B_{i,j}$ are the (i, j)-th entry of the matrices B_m and B respectively.

- 4. The result of Question 3(b) can be restated as follows: the set of all $n \times n$ complex matrices that are diagonalizable over \mathbb{C} is dense in the set of all $n \times n$ complex matrices. On the other hand, show that the set of all *unitarily* diagonalizable matrices is NOT dense in the set of all $n \times n$ complex matrices. (Hint: A complex $n \times n$ matrix is unitarily diagonalizable if and only if it is normal, and the set of normal matrices is a proper closed subset of the set of all $n \times n$ complex matrices.) Also, the result of Question 1(b) is false if \mathbb{C} is replaced by \mathbb{R} , since there are many 2×2 real matrices that does not even have real eigenvalues.
- 5. In this question we see some applications of the result in Question 3(b).
 - (a) We have seen that if B is a diagonalizable $n \times n$ matrix over \mathbb{C} , then

$$\det(I+tB) = 1 + s_1t + \dots + s_nt^n$$

for some coefficients s_1, \ldots, s_n , where $s_1 = \text{trace}(B)$ and $s_n = \det(B)$. Using Question 3(b), show that the same conclusion holds without the assumption that *B* is diagonalizable. It follows that if *B* is any $n \times n$ matrix with entries in \mathbb{C} , then *B* is invertible if and only if $\det(I + tB)$ is a polynomial of degree *n* in *t*.

(b) Suppose A is an n×n complex matrix. We define the exponential, sine and cosine of A by the following formula:

$$e^{A} := \lim_{m \to \infty} \left(I + \frac{1}{1!}A + \frac{1}{2!}A^{2} + \dots + \frac{1}{m!}A^{m} \right)$$

$$\sin(A) := \lim_{m \to \infty} \left(\frac{1}{1!} A - \frac{1}{3!} A^3 + \frac{1}{5!} A^5 + \dots + \frac{(-1)^m}{(2m+1)!} A^{2m+1} \right)$$
$$\cos(A) := \lim_{m \to \infty} \left(I - \frac{1}{2!} A^2 + \frac{1}{4!} A^4 + \dots + \frac{(-1)^m}{(2m)!} A^{2m} \right).$$

Here the limits of the matrices are defined as in Question 3(b). These mimic the definition of the exponential, sine and cosine of a complex number by power series.

(i) Show that if A is diagonalizable over \mathbb{C} , say $A = PDP^{-1}$ where D is a diagonal matrix, then

$$e^A = P e^D P^{-1},$$

$$\sin(A) = P\sin(D)P^{-1}$$
 and $\cos(A) = P\cos(D)P^{-1}$

- (ii) Show that if D is a diagonal matrix with entries $\lambda_1, \ldots, \lambda_n$, then e^D is a diagonal matrix with entries $e^{\lambda_1}, \ldots, e^{\lambda_n}$. State and prove a similar statement for $\sin(D)$ and $\cos(D)$.
- (iii) Show that

4

$$\sin^2(D) + \cos^2(D) = I$$

for all diagonal matrices D. (Here we write $\sin^2(D)$ for $(\sin(D))^2$, etc.) (Hint: Here you may use freely the fact that $\sin^2(\lambda) + \cos^2(\lambda) = 1$ for all complex numbers λ .)

(iv) Using part (i), show that

$$\sin^2(A) + \cos^2(A) = I$$

if A is diaognalizable over \mathbb{C} .

- (v) Hence, using Question 3(c), prove that the same conclusion holds without the assumption that A is diagonalizable over \mathbb{C} .
- (vi) Similarly, show that $det(e^A) = e^{Trace(A)}$ for all $n \times n$ complex matrix A. (In particular, we have the conclusions of parts (v) and (vi) for all $n \times n$ real matrices A, which is not very easy to see without first passing to complex matrices!)