Math 350 Fall 2011 Midterm 1 review

- 1. Which of the following are subspaces of \mathbb{R}^n ? Prove your assertion.
 - (a) $\{(x_1, \ldots, x_n) \in \mathbb{R}^n : x_1 + 2x_2 + 3x_3 + \cdots + nx_n = 0\}$
 - (b) $\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 + 2x_2 + 3x_3 + \dots + nx_n = 1\}$

 - (c) $\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1 = x_2 = \dots = x_n\}$ (d) $\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1^2 + x_2^2 + \dots + x_n^2 = 1\}$ (e) $\{(x_1, \dots, x_n) \in \mathbb{R}^n : x_1^2 + x_2^2 + \dots + x_n^2 = 0\}$
- 2. Suppose V is the set of all polynomials on \mathbb{R} with real coefficients,

$$V_n = \{ P \in V \colon \deg P \le n \},\$$

and

$$W = \{ P \in V \colon P(x) = -P(-x) \text{ for all } x \}.$$

The usual addition and scalar multiplication for polynomials will be used throughout the question.

- (a) Prove that V is a vector space over \mathbb{R} . (Hint: Check all axioms of a vector space.)
- (b) Prove that V_n is a subspace of V for all $n \in \mathbb{N} \cup \{0\}$.
- (c) Is V_n a vector space over \mathbb{R} ? (Hint: You can use parts (a) and (b).)
- (d) Is W a vector space over \mathbb{R} ? (Hint: You may mimic your strategy in (c).)
- 3. Let V be the following vector spaces over \mathbb{R} , and S be the following subsets of V. Is S linearly independent? Does S span V? Prove your assertions.
 - (a) $V = \mathbb{R}^3$, $S = \{(1, 2, 3), (0, 1, 2), (1, 0, 3)\}$
 - (b) $V = \mathbb{R}^3$, $S = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1)\}$
 - (c) $V = \mathbb{R}^3$, $S = \{(1, 2, 3), (0, 1, 2), (-1, 0, 1), (1, 1, 1)\}$ (d) $V = \mathbb{R}^3, S = \{(1, 2, 3), (4, 5, 6)\}$

(e)
$$V = \{2 \times 2 \text{ real matrices}\}, S = \{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}, \begin{pmatrix} 1 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & 1 \\ 1 & 0 \end{pmatrix}\}$$

- (f) $V = \{2 \times 2 \text{ real matrices}\}, S = \{\begin{pmatrix} 1 & 0 \\ 0 & 1 \end{pmatrix}, \begin{pmatrix} 1 & 0 \\ 0 & 2 \end{pmatrix}, \begin{pmatrix} 2 & 1 \\ -1 & 1 \end{pmatrix}, \begin{pmatrix} 0 & -1 \\ 1 & 3 \end{pmatrix}\}$ (g) $V = \{\text{ polynomials on } \mathbb{R} \text{ with real coefficients and that has degree at most } 3\},$
- $S = \{1 + x + x^2, x + x^2 + x^3, 1 + x^3, x x^2\}$
- (h) $V = \{ \text{ even polynomials on } \mathbb{R} \text{ with real coefficients } \}, S = \{1, x^2, x^4, x^6, \dots \}$
- (i) $V = \{ \text{ polynomials on } \mathbb{R} \text{ with real coefficients } \},$ $S = \{1, (x-1), (x-1)^2, (x-1)^3, \dots\}$
- 4. Let $V = \{ \text{ polynomials on } \mathbb{R} \text{ with real coefficients and that has degree at most } 3 \}$ be a vector space over \mathbb{R} , $S = \{1 - x, x - x^2, x^2 - x^3\}$. Show that the span of S is given by

$$\{a_0 + a_1x + a_2x^2 + a_3x^3 : a_0 + a_1 + a_2 + a_3 = 0\}.$$

- 5. Write down your favorite (non-trivial) vector space, and find a basis for that vector space.
- 6. Write down your favorite infinite dimensional vector space, and find a basis for that vector space.

7. Suppose V is a vector space over $\mathbb{R}, \{v_1, \ldots, v_n\} \subseteq V$, and

$$u = v_1 + 2v_2 + \dots + (n-1)v_{n-1}$$

- (a) Suppose $\{v_1, \ldots, v_n\}$ is linearly independent.
 - (i) Show that $\{u, v_2, \ldots, v_n\}$ is also linearly independent.
 - (ii) What about $\{v_1, u, v_3, \dots, v_n\}$ and $\{v_1, \dots, v_{n-1}, u\}$? Are they also linearly independent?
- (b) Show that the span of $\{v_1, \ldots, v_n\}$ is the same as the span of $\{u, v_2, \ldots, v_n\}$.
- 8. Let l^1 be the space of all absolutely summable real sequences, i.e.

$$l^{1} = \{(x_{1}, x_{2}, \dots) : x_{n} \in \mathbb{R} \text{ for all } n = 1, 2, \dots, \text{ and } \sum_{n=1}^{\infty} |x_{n}| < \infty \}.$$

- (a) Is l^1 a vector space over \mathbb{R} ? Why?
- (b) For each $j \in \mathbb{N}$, let e_j be the sequence whose j-th term is 1 and all other terms are zero. Let $S = \{e_1, e_2, \dots\}$. Is S linearly independent? Why?
- (c) Consider the sequence $(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, ...)$ be a sequence whose *j*th term is $\frac{1}{2^j}$. Is this sequence in l^1 ? If yes, is it in the span of *S*? Why or why not?
- (d) Let c_0 be the set of sequences defined by

$$c_0 = \{\{(x_1, x_2, \dots) : x_n \in \mathbb{R} \ \forall n = 1, 2, \dots, \text{ and } \exists N \in \mathbb{N} \text{ such that } x_n = 0 \ \forall n \ge N\}.$$

- (i) Is c_0 a subset of l^1 ?
- (ii) Is c_0 a vector space over \mathbb{R} ?
- (iii) Write down a basis for c_0 . You should check that the set you write down is a basis.
- (iv) Is c_0 finite dimensional?
- 9. Let $V = \{a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} : a, b, c, d \in \mathbb{Q}\}.$
 - (a) Check that V is a vector space over \mathbb{Q} . (Hint: Use $V \subseteq \mathbb{R}$, and \mathbb{R} is a vector space over \mathbb{Q} .)
 - (b) Show that $\{1, \sqrt{2}\}$ is a linearly independent subset of V over \mathbb{Q} .
 - (c) Show that $\{1, \sqrt{2}, \sqrt{3}\}$ is a linearly independent subset of V over \mathbb{Q} . (Hint: It suffices to show that $\sqrt{3}$ is not in the span of $\{1, \sqrt{2}\}$ over \mathbb{Q} , and to do so, just notice that if $\sqrt{3} = a + b\sqrt{2}$ for some $a, b \in \mathbb{Q}$, then you can square both sides, and proceed...)
 - (d) In this part, we are going to prove that $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a linearly independent subset of V over \mathbb{Q} . Suppose $a + b\sqrt{2} + c\sqrt{3} + d\sqrt{6} = 0$ for some $a, b, c, d \in \mathbb{Q}$.
 - (i) Show that if $d \neq 0$, then

$$\sqrt{3} = -\frac{a+b\sqrt{2}}{c+d\sqrt{2}}.$$

(Why do you need $d \neq 0$ here?)

- (ii) Hence, show that if $d \neq 0$, then $\sqrt{3}$ is in the span of $\{1, \sqrt{2}\}$ over \mathbb{Q} .
- (iii) Hence conclude that d = 0.
- (iv) Hence conclude that a = b = c = d = 0.
- (e) Find the dimension of V over \mathbb{Q} .
- (f) (Optional) Show that V is a field. In fact it is the smallest field contained in \mathbb{R} that contains both $\sqrt{2}$ and $\sqrt{3}$.