Math 350 Fall 2011 Midterm 1 review

1. Which of the following are subspaces of \mathbb{R}^{n} ? Prove your assertion.
(a) $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}+2 x_{2}+3 x_{3}+\cdots+n x_{n}=0\right\}$
(b) $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}+2 x_{2}+3 x_{3}+\cdots+n x_{n}=1\right\}$
(c) $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}=x_{2}=\cdots=x_{n}\right\}$
(d) $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=1\right\}$
(e) $\left\{\left(x_{1}, \ldots, x_{n}\right) \in \mathbb{R}^{n}: x_{1}^{2}+x_{2}^{2}+\cdots+x_{n}^{2}=0\right\}$
2. Suppose V is the set of all polynomials on \mathbb{R} with real coefficients,

$$
V_{n}=\{P \in V: \operatorname{deg} P \leq n\}
$$

and

$$
W=\{P \in V: P(x)=-P(-x) \text { for all } x\}
$$

The usual addition and scalar multiplication for polynomials will be used throughout the question.
(a) Prove that V is a vector space over \mathbb{R}. (Hint: Check all axioms of a vector space.)
(b) Prove that V_{n} is a subspace of V for all $n \in \mathbb{N} \cup\{0\}$.
(c) Is V_{n} a vector space over \mathbb{R} ? (Hint: You can use parts (a) and (b).)
(d) Is W a vector space over \mathbb{R} ? (Hint: You may mimic your strategy in (c).)
3. Let V be the following vector spaces over \mathbb{R}, and S be the following subsets of V. Is S linearly independent? Does S span V ? Prove your assertions.
(a) $V=\mathbb{R}^{3}, S=\{(1,2,3),(0,1,2),(1,0,3)\}$
(b) $V=\mathbb{R}^{3}, S=\{(1,2,3),(0,1,2),(-1,0,1)\}$
(c) $V=\mathbb{R}^{3}, S=\{(1,2,3),(0,1,2),(-1,0,1),(1,1,1)\}$
(d) $V=\mathbb{R}^{3}, S=\{(1,2,3),(4,5,6)\}$
(e) $V=\{2 \times 2$ real matrices $\}, S=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{cc}1 & 0 \\ 0 & -1\end{array}\right),\left(\begin{array}{cc}1 & 1 \\ -1 & 1\end{array}\right),\left(\begin{array}{ll}0 & 1 \\ 1 & 0\end{array}\right)\right\}$
(f) $V=\{2 \times 2$ real matrices $\}, S=\left\{\left(\begin{array}{ll}1 & 0 \\ 0 & 1\end{array}\right),\left(\begin{array}{ll}1 & 0 \\ 0 & 2\end{array}\right),\left(\begin{array}{cc}2 & 1 \\ -1 & 1\end{array}\right),\left(\begin{array}{cc}0 & -1 \\ 1 & 3\end{array}\right)\right\}$
(g) $V=\{$ polynomials on \mathbb{R} with real coefficients and that has degree at most 3 \}, $S=\left\{1+x+x^{2}, x+x^{2}+x^{3}, 1+x^{3}, x-x^{2}\right\}$
(h) $V=\{$ even polynomials on \mathbb{R} with real coefficients $\}, S=\left\{1, x^{2}, x^{4}, x^{6}, \ldots\right\}$
(i) $V=\{$ polynomials on \mathbb{R} with real coefficients $\}$,
$S=\left\{1,(x-1),(x-1)^{2},(x-1)^{3}, \ldots\right\}$
4. Let $V=\{$ polynomials on \mathbb{R} with real coefficients and that has degree at most 3 \} be a vector space over $\mathbb{R}, S=\left\{1-x, x-x^{2}, x^{2}-x^{3}\right\}$. Show that the span of S is given by

$$
\left\{a_{0}+a_{1} x+a_{2} x^{2}+a_{3} x^{3}: a_{0}+a_{1}+a_{2}+a_{3}=0\right\}
$$

5. Write down your favorite (non-trivial) vector space, and find a basis for that vector space.
6. Write down your favorite infinite dimensional vector space, and find a basis for that vector space.
7. Suppose V is a vector space over $\mathbb{R},\left\{v_{1}, \ldots, v_{n}\right\} \subseteq V$, and

$$
u=v_{1}+2 v_{2}+\cdots+(n-1) v_{n-1} .
$$

(a) Suppose $\left\{v_{1}, \ldots, v_{n}\right\}$ is linearly independent.
(i) Show that $\left\{u, v_{2}, \ldots, v_{n}\right\}$ is also linearly independent.
(ii) What about $\left\{v_{1}, u, v_{3}, \ldots, v_{n}\right\}$ and $\left\{v_{1}, \ldots, v_{n-1}, u\right\}$? Are they also linearly independent?
(b) Show that the span of $\left\{v_{1}, \ldots, v_{n}\right\}$ is the same as the span of $\left\{u, v_{2}, \ldots, v_{n}\right\}$.
8. Let l^{1} be the space of all absolutely summable real sequences, i.e.

$$
l^{1}=\left\{\left(x_{1}, x_{2}, \ldots\right): x_{n} \in \mathbb{R} \text { for all } n=1,2, \ldots, \text { and } \sum_{n=1}^{\infty}\left|x_{n}\right|<\infty\right\}
$$

(a) Is l^{1} a vector space over \mathbb{R} ? Why?
(b) For each $j \in \mathbb{N}$, let e_{j} be the sequence whose j-th term is 1 and all other terms are zero. Let $S=\left\{e_{1}, e_{2}, \ldots\right\}$. Is S linearly independent? Why?
(c) Consider the sequence $\left(1, \frac{1}{2}, \frac{1}{4}, \frac{1}{8}, \ldots\right)$ be a sequence whose j th term is $\frac{1}{2^{j}}$. Is this sequence in l^{1} ? If yes, is it in the span of S ? Why or why not?
(d) Let c_{0} be the set of sequences defined by
$c_{0}=\left\{\left\{\left(x_{1}, x_{2}, \ldots\right): x_{n} \in \mathbb{R} \forall n=1,2, \ldots\right.\right.$, and $\exists N \in \mathbb{N}$ such that $\left.x_{n}=0 \forall n \geq N\right\}$.
(i) Is c_{0} a subset of l^{1} ?
(ii) Is c_{0} a vector space over \mathbb{R} ?
(iii) Write down a basis for c_{0}. You should check that the set you write down is a basis.
(iv) Is c_{0} finite dimensional?
9. Let $V=\{a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}: a, b, c, d \in \mathbb{Q}\}$.
(a) Check that V is a vector space over \mathbb{Q}. (Hint: Use $V \subseteq \mathbb{R}$, and \mathbb{R} is a vector space over \mathbb{Q}.)
(b) Show that $\{1, \sqrt{2}\}$ is a linearly independent subset of V over \mathbb{Q}.
(c) Show that $\{1, \sqrt{2}, \sqrt{3}\}$ is a linearly independent subset of V over \mathbb{Q}. (Hint: It suffices to show that $\sqrt{3}$ is not in the span of $\{1, \sqrt{2}\}$ over \mathbb{Q}, and to do so, just notice that if $\sqrt{3}=a+b \sqrt{2}$ for some $a, b \in \mathbb{Q}$, then you can square both sides, and proceed...)
(d) In this part, we are going to prove that $\{1, \sqrt{2}, \sqrt{3}, \sqrt{6}\}$ is a linearly independent subset of V over \mathbb{Q}. Suppose $a+b \sqrt{2}+c \sqrt{3}+d \sqrt{6}=0$ for some $a, b, c, d \in \mathbb{Q}$.
(i) Show that if $d \neq 0$, then

$$
\sqrt{3}=-\frac{a+b \sqrt{2}}{c+d \sqrt{2}}
$$

(Why do you need $d \neq 0$ here?)
(ii) Hence, show that if $d \neq 0$, then $\sqrt{3}$ is in the span of $\{1, \sqrt{2}\}$ over \mathbb{Q}.
(iii) Hence conclude that $d=0$.
(iv) Hence conclude that $a=b=c=d=0$.
(e) Find the dimension of V over \mathbb{Q}.
(f) (Optional) Show that V is a field. In fact it is the smallest field contained in \mathbb{R} that contains both $\sqrt{2}$ and $\sqrt{3}$.

