Math 350 Fall 2011
 Midterm 2 review

In this set of problems, $M_{m \times n}$ is the vector space of real $m \times n$ matrices, and P_{n} is the vector space of all polynomials of degree $\leq n$ of one variable with real coefficients. These are vector spaces over \mathbb{R}.

1. (a) Is $T: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, defined by $T(x, y, z)=(x+2 y+3 z,-x-y-z)$ a linear map? Explain.
(b) Is $S: \mathbb{R}^{3} \rightarrow \mathbb{R}^{2}$, defined by $T(x, y, z)=(x+y+z, x y z)$ a linear map? Explain.
(c) Is $U: M_{n \times n} \rightarrow \mathbb{R}$, defined by $U(A)=\operatorname{det}(A)$, a linear map if $n \geq 2$? Explain.
(d) Is $W: M_{n \times n} \rightarrow \mathbb{R}$, defined by $W(A)=\operatorname{Trace}(A)$, a linear map? Explain.
2. Suppose $T: P_{4} \rightarrow P_{4}$ is the linear map

$$
T(p(x))=x^{2} p^{\prime \prime}(x)+x p^{\prime}(x)+p(x)
$$

(a) Show that T is a linear map.
(b) Is T one-to-one? Verify your assertion.
(c) Is T onto? Verify your assertion. (Hint: Use part (b).)
3. Suppose $T: M_{2 \times 2} \rightarrow M_{2 \times 2}$ is the linear map defined by

$$
T(A)=A+A^{t}
$$

(a) Find the range and kernel of T.
(b) Find the rank and nullity of T.
(c) Let

$$
\alpha=\left\{\left(\begin{array}{ll}
1 & 0 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right),\left(\begin{array}{ll}
0 & 0 \\
0 & 1
\end{array}\right)\right\}
$$

be an ordered basis of $M_{2 \times 2}$. Find the matrix representation $[T]_{\alpha}$ of T with respect to α.
(d) Compute the determinant of the 4×4 matrix you've found in part (c). (Hint: The answer can be read off from part (b) without any actual calculation.)
4. Suppose $T: \mathbb{R}^{2} \rightarrow P_{4}$ is a linear map satisfying

$$
T(1,1)=x+5 x^{3} \quad \text { and } \quad T(3,5)=1-x^{2}+x^{4}
$$

(a) Compute $T(1,3)$.
(b) Let $\alpha=\{(1,0),(0,1)\}$ be the standard basis of \mathbb{R}^{2}, and $\beta=\left\{1, x, x^{2}, x^{3}, x^{4}\right\}$ be the standard basis of P_{4}. Compute the matrix representation $[T]_{\alpha}^{\beta}$ of T with respect to α and β.
(c) Find the kernel and range of T.
(d) Find the rank and nullity of T. Is T one-to-one? Is T onto?
5. Suppose

$$
A=\left(\begin{array}{cccc}
4 & 3 & -1 & 7 \\
1 & 1 & 0 & 2 \\
2 & 5 & 3 & 7
\end{array}\right)
$$

(a) Find a basis for the nullspace of A.
(b) Find a basis for the column space of A.
(c) If

$$
b=\left(\begin{array}{c}
1 \\
t \\
t^{2}
\end{array}\right)
$$

for some real number t and the system of equations $A x=b$ is solvable, find all possible value(s) of t.
(d) For each of the values of t you found in (c), solve the equation $A x=b$. (You should find all solutions of the equation.)
6. Let $T: P_{3} \rightarrow P_{3}$ be the linear map defined by

$$
T(p(x))=2 p(x)+p(2) x
$$

(a) Find all eigenvalues of T. Also, for each eigenvalue of T, find a basis of the corresponding eigenspace.
(b) Is T diagonalizable over \mathbb{R} ? Explain.
7. Show that if $T: V \rightarrow W$ is a linear map, then
(a) $T(0)=0$;
(b) the range of T is a subspace of W;
(c) the kernel of T is a subspace of V.
8. Show that if $T: V \rightarrow W$ is a linear map, then T is one-to-one if and only if the nullity of T is zero.
9. Show that if $T: V \rightarrow W$ is a linear map, and $\operatorname{dim}(V)=\operatorname{dim}(W)<\infty$, then T is one-to-one if and only if T is onto.
10. Let P be an invertible $n \times n$ real matrix. Define a linear map $T: M_{n \times n} \rightarrow M_{n \times n}$ by $T(A)=P A P^{-1}$ for all $A \in M_{n \times n}$. Show that T is an isomorphism.
11. Suppose $T: V \rightarrow W$ is a linear map between two finite dimensional vector spaces, with $\operatorname{dim}(V)=n, \operatorname{dim}(W)=m$.
(a) Show that

$$
\operatorname{nullity}(T) \geq n-m
$$

Hence conclude that T cannot be one-to-one if $n>m$.
(b) Show that

$$
\operatorname{rank}(T) \leq \min \{n, m\}
$$

Hence conclude that T cannot be onto if $n<m$.
12. Show that if A is an invertible $n \times n$ real matrix, then $\operatorname{det}\left(A^{-1}\right)=(\operatorname{det}(A))^{-1}$.
13. Suppose A, B are two $n \times n$ matrices with entries in \mathbb{R} (or \mathbb{C}). Show that it is impossible that $A B-B A=I$, where I is the $n \times n$ identity matrix. (Hint: Take the trace.)
14. Suppose A is a square matrix with $A^{n}=0$ for some positive integer n, and I is the identity matrix of the same size as A.
(a) Show that $I-A$ is invertible, and

$$
(I-A)^{-1}=I+A+A^{2}+\cdots+A^{n-1}
$$

(Hint: Just compute $(I-A)\left(I+A+A^{2}+\cdots+A^{n-1}\right)$.)
(b) Hence show that $\operatorname{det}(I-A) \neq 0$. Similarly, show that $\operatorname{det}(I+A) \neq 0$.
15. Suppose A is any $n \times n$ real matrix that is diagonalizable over \mathbb{R}. Show that

$$
\operatorname{det}(I+t A)=1+s_{1} t+s_{2} t^{2}+\cdots+s_{n} t^{n}
$$

for some coefficients s_{1}, \ldots, s_{n} that are determined by A. In fact, show that $s_{1}=\operatorname{Trace}(A)$ and $s_{n}=\operatorname{det}(A)$.
16. Suppose $T: V \rightarrow V$ is a bijective linear map, where V is a finite dimensional vector space over a field F. Show that
(a) All eigenvalues of T are non-zero;
(b) v is an eigenvector of T, if and only if v is an eigenvector of T^{-1};
(c) λ is an eigenvalue of T, if and only if λ^{-1} is an eigenvalue of T^{-1};
(d) T is diagonalizable, if and only if T^{-1} is diagonalizable.
17. Show that if v is an eigenvector of a linear map $T: V \rightarrow V$ corresponding to an eigenvalue λ, then v is an eigenvector of $T^{2}: V \rightarrow V$ with eigenvalue λ^{2}. (Remember T^{2} is a shorthand for $T \circ T$.)
18. (a) Show that λ is an eigenvalue of a matrix A if and only if it is an eigenvalue of A^{t}. (Hint: Consider $\operatorname{det}(A-\lambda I)$ and $\operatorname{det}\left(A^{t}-\lambda I\right)$.)
(b) Suppose λ is an eigenvalue of a matrix A. Show that the dimension of the eigenspace of A corresponding to λ is the same as the dimension of the eigenspace of A^{t} corresponding to λ. (Hint: Consider the nullity of $A-\lambda I$ and the nullity of $A^{t}-\lambda I$.)
19. Show that if a matrix A is diagonalizable, then $\operatorname{det}(A)$ is the product of its eigenvalues (counting multiplicities). How does the trace of a diagonalizable matrix relate to its eigenvalues?
20. In this question, we write $\mathfrak{g l}(n)$ as a shorthand for $M_{n \times n}$. It is a vector space over \mathbb{R}.
For any $A, B \in \mathfrak{g l}(n)$, we define $[A, B]$ to be the matrix given by

$$
[A, B]:=A B-B A
$$

this is sometimes called the commutator between A and B. For any $A \in \mathfrak{g l}(n)$, define a $\operatorname{map}_{\operatorname{ad}_{A}}: \mathfrak{g l}(n) \rightarrow \mathfrak{g l}(n)$ by

$$
\operatorname{ad}_{A}(B)=[A, B]
$$

(a) Show that ad_{A} is a linear map for any $A \in \mathfrak{g l}(n)$.
(b) Show that for any $A, B \in \mathfrak{g l}(n)$, we have $[A, B]=-[B, A]$.
(c) Show that for any $A, B \in \mathfrak{g l}(n)$, we have $\operatorname{ad}_{[A, B]}=\left[\operatorname{ad}_{A}, \operatorname{ad}_{B}\right]$, where $\left[\operatorname{ad}_{A}, \operatorname{ad}_{B}\right]$ is by definition the linear map from $\mathfrak{g l}(n)$ to $\mathfrak{g l}(n)$ defined by $\left[\operatorname{ad}_{A}, \operatorname{ad}_{B}\right]:=\operatorname{ad}_{A} \circ \operatorname{ad}_{B}-\operatorname{ad}_{B} \circ \operatorname{ad}_{A}$. (This is usually called the Jacobi identity.)
(d) Let $\mathfrak{s l}(n)$ be the space of all $n \times n$ real matrices whose trace is equal to zero. It is a subspace of $\mathfrak{g l}(n)$. Show that if $A, B \in \mathfrak{s l}(n)$, then $\operatorname{ad}_{A}(B) \in \mathfrak{s l}(n)$; in other words, if $A \in \mathfrak{s l}(n)$, then ad_{A} maps $\mathfrak{s l}(n)$ into $\mathfrak{s l}(n)$.
(e) From now on we focus our attention to the space $\mathfrak{s l}(2)$. Let

$$
X=\left(\begin{array}{ll}
0 & 1 \\
0 & 0
\end{array}\right), \quad Y=\left(\begin{array}{ll}
0 & 0 \\
1 & 0
\end{array}\right), \quad H=\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right) .
$$

(i) Check that

$$
[X, Y]=H, \quad[H, X]=2 X, \quad[H, Y]=-2 Y
$$

(ii) Check that $\{X, Y, H\}$ is a basis of $\mathfrak{s l}(2)$.
(iii) Let α be the ordered basis $\{X, Y, H\}$ of $\mathfrak{s l}(2)$. Compute the matrix representation of the linear map $\operatorname{ad}_{H}: \mathfrak{s l}(2) \rightarrow \mathfrak{s l}(2)$ with respect to α; i.e. compute $\left[\operatorname{ad}_{H}\right]_{\alpha}$.
(iv) Show that $\operatorname{ad}_{H}: \mathfrak{s l}(2) \rightarrow \mathfrak{s l}(2)$ is diagonalizable. Also find the eigenvalues of this map, and the corresponding eigenvectors.

