Math 350 Fall 2011 Midterm 2 review

In this set of problems, $M_{m \times n}$ is the vector space of real $m \times n$ matrices, and P_n is the vector space of all polynomials of degree $\leq n$ of one variable with real coefficients. These are vector spaces over \mathbb{R} .

- 1. (a) Is $T: \mathbb{R}^3 \to \mathbb{R}^2$, defined by T(x, y, z) = (x + 2y + 3z, -x y z) a linear map? Explain.
 - (b) Is $S: \mathbb{R}^3 \to \mathbb{R}^2$, defined by T(x, y, z) = (x+y+z, xyz) a linear map? Explain.
 - (c) Is $U: M_{n \times n} \to \mathbb{R}$, defined by $U(A) = \det(A)$, a linear map if $n \ge 2$? Explain.

(d) Is $W: M_{n \times n} \to \mathbb{R}$, defined by W(A) = Trace(A), a linear map? Explain.

2. Suppose $T: P_4 \to P_4$ is the linear map

$$T(p(x)) = x^2 p''(x) + xp'(x) + p(x).$$

- (a) Show that T is a linear map.
- (b) Is T one-to-one? Verify your assertion.
- (c) Is T onto? Verify your assertion. (Hint: Use part (b).)
- 3. Suppose $T: M_{2\times 2} \to M_{2\times 2}$ is the linear map defined by

$$T(A) = A + A^t.$$

- (a) Find the range and kernel of T.
- (b) Find the rank and nullity of T.
- (c) Let

$$\alpha = \left\{ \left(\begin{array}{cc} 1 & 0 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 1 \\ 0 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 1 & 0 \end{array} \right), \left(\begin{array}{cc} 0 & 0 \\ 0 & 1 \end{array} \right) \right\}$$

be an ordered basis of $M_{2\times 2}$. Find the matrix representation $[T]_{\alpha}$ of T with respect to α .

- (d) Compute the determinant of the 4×4 matrix you've found in part (c). (Hint: The answer can be read off from part (b) without any actual calculation.)
- 4. Suppose $T: \mathbb{R}^2 \to P_4$ is a linear map satisfying

$$T(1,1) = x + 5x^3$$
 and $T(3,5) = 1 - x^2 + x^4$.

- (a) Compute T(1,3).
- (b) Let $\alpha = \{(1,0), (0,1)\}$ be the standard basis of \mathbb{R}^2 , and $\beta = \{1, x, x^2, x^3, x^4\}$ be the standard basis of P_4 . Compute the matrix representation $[T]^{\beta}_{\alpha}$ of T with respect to α and β .
- (c) Find the kernel and range of T.
- (d) Find the rank and nullity of T. Is T one-to-one? Is T onto?

5. Suppose

$$A = \left(\begin{array}{rrrr} 4 & 3 & -1 & 7 \\ 1 & 1 & 0 & 2 \\ 2 & 5 & 3 & 7 \end{array}\right).$$

- (a) Find a basis for the nullspace of A.
- (b) Find a basis for the column space of A.

(c) If

$$b = \begin{pmatrix} 1 \\ t \\ t^2 \end{pmatrix}$$

for some real number t and the system of equations Ax = b is solvable, find all possible value(s) of t.

- (d) For each of the values of t you found in (c), solve the equation Ax = b. (You should find *all* solutions of the equation.)
- 6. Let $T: P_3 \to P_3$ be the linear map defined by

$$T(p(x)) = 2p(x) + p(2)x.$$

- (a) Find all eigenvalues of T. Also, for each eigenvalue of T, find a basis of the corresponding eigenspace.
- (b) Is T diagonalizable over \mathbb{R} ? Explain.
- 7. Show that if $T: V \to W$ is a linear map, then
 - (a) T(0) = 0;
 - (b) the range of T is a subspace of W;
 - (c) the kernel of T is a subspace of V.
- 8. Show that if $T: V \to W$ is a linear map, then T is one-to-one if and only if the nullity of T is zero.
- 9. Show that if $T: V \to W$ is a linear map, and $\dim(V) = \dim(W) < \infty$, then T is one-to-one if and only if T is onto.
- 10. Let P be an invertible $n \times n$ real matrix. Define a linear map $T: M_{n \times n} \to M_{n \times n}$ by $T(A) = PAP^{-1}$ for all $A \in M_{n \times n}$. Show that T is an isomorphism.
- 11. Suppose $T: V \to W$ is a linear map between two finite dimensional vector spaces, with $\dim(V) = n$, $\dim(W) = m$.
 - (a) Show that

$$\operatorname{nullity}(T) \ge n - m.$$

Hence conclude that T cannot be one-to-one if n > m.

(b) Show that

$$\operatorname{rank}(T) \le \min\{n, m\}.$$

Hence conclude that T cannot be onto if n < m.

12. Show that if A is an invertible $n \times n$ real matrix, then $\det(A^{-1}) = (\det(A))^{-1}$.

- 13. Suppose A, B are two $n \times n$ matrices with entries in \mathbb{R} (or \mathbb{C}). Show that it is impossible that AB BA = I, where I is the $n \times n$ identity matrix. (Hint: Take the trace.)
- 14. Suppose A is a square matrix with $A^n = 0$ for some positive integer n, and I is the identity matrix of the same size as A.
 - (a) Show that I A is invertible, and

$$(I - A)^{-1} = I + A + A^2 + \dots + A^{n-1}.$$

(Hint: Just compute $(I - A)(I + A + A^2 + \dots + A^{n-1})$.)

- (b) Hence show that $det(I A) \neq 0$. Similarly, show that $det(I + A) \neq 0$.
- 15. Suppose A is any $n \times n$ real matrix that is diagonalizable over \mathbb{R} . Show that

$$\det(I + tA) = 1 + s_1t + s_2t^2 + \dots + s_nt^n$$

for some coefficients s_1, \ldots, s_n that are determined by A. In fact, show that $s_1 = \text{Trace}(A)$ and $s_n = \det(A)$.

- 16. Suppose $T: V \to V$ is a bijective linear map, where V is a finite dimensional vector space over a field F. Show that
 - (a) All eigenvalues of T are non-zero;
 - (b) v is an eigenvector of T, if and only if v is an eigenvector of T^{-1} ;
 - (c) λ is an eigenvalue of T, if and only if λ^{-1} is an eigenvalue of T^{-1} ;
 - (d) T is diagonalizable, if and only if T^{-1} is diagonalizable.
- 17. Show that if v is an eigenvector of a linear map $T: V \to V$ corresponding to an eigenvalue λ , then v is an eigenvector of $T^2: V \to V$ with eigenvalue λ^2 . (Remember T^2 is a shorthand for $T \circ T$.)
- 18. (a) Show that λ is an eigenvalue of a matrix A if and only if it is an eigenvalue of A^t . (Hint: Consider det $(A \lambda I)$ and det $(A^t \lambda I)$.)
 - (b) Suppose λ is an eigenvalue of a matrix A. Show that the dimension of the eigenspace of A corresponding to λ is the same as the dimension of the eigenspace of A^t corresponding to λ . (Hint: Consider the nullity of $A \lambda I$ and the nullity of $A^t \lambda I$.)
- 19. Show that if a matrix A is diagonalizable, then det(A) is the product of its eigenvalues (counting multiplicities). How does the trace of a diagonalizable matrix relate to its eigenvalues?
- 20. In this question, we write $\mathfrak{gl}(n)$ as a shorthand for $M_{n \times n}$. It is a vector space over \mathbb{R} .

For any $A, B \in \mathfrak{gl}(n)$, we define [A, B] to be the matrix given by

$$[A,B] := AB - BA;$$

this is sometimes called the commutator between A and B. For any $A \in \mathfrak{gl}(n)$, define a map $\operatorname{ad}_A : \mathfrak{gl}(n) \to \mathfrak{gl}(n)$ by

$$\operatorname{ad}_A(B) = [A, B].$$

- (a) Show that ad_A is a linear map for any $A \in \mathfrak{gl}(n)$.
- (b) Show that for any $A, B \in \mathfrak{gl}(n)$, we have [A, B] = -[B, A].
- (c) Show that for any $A, B \in \mathfrak{gl}(n)$, we have $\operatorname{ad}_{[A,B]} = [\operatorname{ad}_A, \operatorname{ad}_B]$, where $[\operatorname{ad}_A, \operatorname{ad}_B]$ is by definition the linear map from $\mathfrak{gl}(n)$ to $\mathfrak{gl}(n)$ defined by $[\operatorname{ad}_A, \operatorname{ad}_B] := \operatorname{ad}_A \circ \operatorname{ad}_B \operatorname{ad}_B \circ \operatorname{ad}_A$. (This is usually called the Jacobi identity.)
- (d) Let $\mathfrak{sl}(n)$ be the space of all $n \times n$ real matrices whose trace is equal to zero. It is a subspace of $\mathfrak{gl}(n)$. Show that if $A, B \in \mathfrak{sl}(n)$, then $\mathrm{ad}_A(B) \in \mathfrak{sl}(n)$; in other words, if $A \in \mathfrak{sl}(n)$, then ad_A maps $\mathfrak{sl}(n)$ into $\mathfrak{sl}(n)$.
- (e) From now on we focus our attention to the space $\mathfrak{sl}(2)$. Let

$$X = \begin{pmatrix} 0 & 1 \\ 0 & 0 \end{pmatrix}, \quad Y = \begin{pmatrix} 0 & 0 \\ 1 & 0 \end{pmatrix}, \quad H = \begin{pmatrix} 1 & 0 \\ 0 & -1 \end{pmatrix}.$$

(i) Check that

$$[X,Y] = H, \quad [H,X] = 2X, \quad [H,Y] = -2Y.$$

- (ii) Check that $\{X, Y, H\}$ is a basis of $\mathfrak{sl}(2)$.
- (iii) Let α be the ordered basis $\{X, Y, H\}$ of $\mathfrak{sl}(2)$. Compute the matrix representation of the linear map $\mathrm{ad}_H : \mathfrak{sl}(2) \to \mathfrak{sl}(2)$ with respect to α ; i.e. compute $[\mathrm{ad}_H]_{\alpha}$.
- (iv) Show that $\operatorname{ad}_H : \mathfrak{sl}(2) \to \mathfrak{sl}(2)$ is diagonalizable. Also find the eigenvalues of this map, and the corresponding eigenvectors.