Math 350 Fall 2011
 Notes about Diagonalization and Invariant subspaces

1. Diagonalization of a matrix

In this section, let A be an $n \times n$ matrix with entries in a field F.
Definition 1. The characteristic polynomial of A is by definition the polynomial

$$
f(t)=\operatorname{det}(A-t I)
$$

where I is the $n \times n$ identity matrix.

It is thus a polynomial of degree n in a single variable t with coefficients in F.
Question 1. Consider the following 2×2 real matrix

$$
\left(\begin{array}{ll}
1 & -4 \\
0 & -1
\end{array}\right)
$$

Compute its characteristic polynomial.
Definition 2. λ is said to be an eigenvalue of A if it is a zero of the characteristic polynomial of A in F.

So $\lambda \in F$ is an eigenvalue of A, if and only if $\operatorname{det}(A-\lambda I)=0$. It then follows that the nullspace of $A-\lambda I$ is non-zero; so there exists a non-zero vector $v \in F^{n}$ such that $(A-\lambda I) v=0$, i.e. $A v=\lambda v$.
Definition 3. A vector $v \in F^{n}$ is said to be an eigenvector of A, if $v \neq 0$ and $A v=\lambda v$ for some $\lambda \in F$.

In fact if $v \neq 0$ and $A v=\lambda v$, then v is said to be an eigenvector of A corresponding to the eigenvalue λ. Equivalently, if $v \neq 0$, then v is an eigenvector of A corresponding to λ, if and only if v is in the nullspace of $A-\lambda I$.
Question 2. Find all eigenvalues and eigenvectors of the matrix in Question 1.
Definition 4. A is said to be diagonalizable (over F) if there exists an invertible matrix P, and a diagonal matrix D, both of which are $n \times n$ and have entries in F, such that

$$
A=P D P^{-1}
$$

If A is diagonalizable, a representation of A in the form $P D P^{-1}$, where P is invertible and D is diagonal, is called a diagonalization of A.

In other words, A is diagonalizable if and only if it is similar to a diagonal matrix (over F).

Question 3. Show that the matrix in Question 1 over \mathbb{R} is diagonalizable over \mathbb{R}, and diagonalize it.
Theorem 1. A is diagonalizable over F, if and only if A has n linearly independent eigenvectors in F^{n}.

Proof. Suppose $A=P D P^{-1}$ for some invertible matrix P and a diagonal matrix D. Then $A P=P D$, so if v_{1}, \ldots, v_{n} are the columns of P, and $\lambda_{1}, \ldots, \lambda_{n}$ are the entries on the diagonal of D, then $A v_{i}=\lambda_{i} v_{i}$ for all $i=1, \ldots, n$. In particular, v_{1}, \ldots, v_{n} are eigenvectors of A. They are linearly independent since P is invertible.

Conversely, suppose v_{1}, \ldots, v_{n} are linearly independent eigenvectors of A, say corresponding to eigenvalues $\lambda_{1}, \ldots, \lambda_{n} \in F$. Let P be the matrix whose i-th row is v_{i}, and D be the diagonal matrix whose i-th entry on the diagonal is λ_{i}. Then P is invertible, since its columns are linearly independent, and we have $A P=P D$, since $A v_{i}=\lambda_{i} v_{i}$ for $i=1,2, \ldots, n$. It follows that $A=P D P^{-1}$, which implies that A is diagonalizable over F.

Definition 5. A set of n linearly independent eigenvectors of A in F^{n} is said to be an eigenbasis of F^{n} associated to A.

The above theorem can now be reformulated as
Theorem 2. A is diagonalizable over F, if and only if there exists an eigenbasis of F^{n} associated to A.

Definition 6. The span of all eigenvectors of A corresponding to an eigenvalue λ of A is called the eigenspace of A corresponding to λ.

Thus any eigenspace of A is in particular a subspace of F^{n}. In general one should think about eigenspaces instead of eigenvectors as much as possible, since eigenspaces are canonical objects associated to a matrix, while eigenvectors are not.

2. Diagonalization of a linear map

In this and subsequent sections, V is a vector space over F of dimension $n<\infty$, and $T: V \rightarrow V$ is a linear map from V into itself.

Recall that given any ordered basis α of V, one can find a matrix representation $[T]_{\alpha}$ of T with respect to α. This matrix is an $n \times n$ matrix with entries in F, and if β is a different ordered basis of V, then $[T]_{\beta}$ and $[T]_{\alpha}$ are similar to each other. Since the determinant of any two similar matrices are the same, we can make the following definition:

Definition 7. The determinant of a linear map $T: V \rightarrow V$ is defined to be the determinant of $[T]_{\alpha}$, where α is any ordered basis of V. We denote this by $\operatorname{det}(T)$.

This definition is independent of the choice of α. With this we define:
Definition 8. The characteristic polynomial of a linear map $T: V \rightarrow V$ is defined to be the polynomial $f(t)=\operatorname{det}(T-t I)$, where $I: V \rightarrow V$ is the identity map.

In other words, the characteristic polynomial of T is given by

$$
f(t)=\operatorname{det}\left([T]_{\alpha}-t I\right)
$$

where α is any ordered basis of V and I is the identity matrix. This is independent of the choice of α.
Question 4. Let V be the space of real polynomials of degree ≤ 2. It is a vector space over \mathbb{R}. Let $T: V \rightarrow V$ be the linear map

$$
T(p(x))=p^{\prime}(x)
$$

Find the characteristic polynomial of T.
Definition 9. λ is said to be an eigenvalue of T if it is a zero of the characteristic polynomial of T in F.

So $\lambda \in F$ is an eigenvalue of T, if and only if $\operatorname{det}(T-\lambda I)=0$. It then follows that the nullspace of $T-\lambda I$ is non-zero; so there exists a non-zero vector $v \in V$ such that ${ }^{1}(T-\lambda I) v=0$, i.e. $T v=\lambda v$. Conversely, if there is a non-zero vector $v \in V$ such that $T v=\lambda v$, then λ is an eigenvalue of T.
Definition 10. A vector $v \in V$ is said to be an eigenvector of T, if $v \neq 0$ and $T v=\lambda v$ for some $\lambda \in F$.

In fact if $v \neq 0$ and $T v=\lambda v$, then v is said to be an eigenvector of T corresponding to the eigenvalue λ. Equivalently, if $v \neq 0$, then v is an eigenvector of T corresponding to λ, if and only if v is in the nullspace of $T-\lambda I$.
Question 5. Find all the eigenvalues and eigenvectors of T where T is the linear map in Question 4.

Definition 11. A linear map $T: V \rightarrow V$ is said to be diagonalizable, if there exists an ordered basis α of V such that the matrix representation $[T]_{\alpha}$ of T is a diagonal matrix.

It follows that such an ordered basis of V consists only of eigenvectors of T; in fact $\alpha=\left\{v_{1}, \ldots, v_{n}\right\}$, and $[T]_{\alpha}$ is a diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n}$ on the diagonal, then $T v_{i}=\lambda_{i} v_{i}$ for all $i=1, \ldots, n$, and thus α consists of eigenvectors of T.

Conversely, if α is an ordered basis of T consisting only of eigenvectors of T, say $\alpha=\left\{v_{1}, \ldots, v_{n}\right\}$, and $T v_{i}=\lambda_{i} v_{i}$ for all $i=1, \ldots, n$ where $\lambda_{1}, \ldots, \lambda_{n} \in F$, then the matrix representation $[T]_{\alpha}$ of T is a diagonal matrix with entries $\lambda_{1}, \ldots, \lambda_{n}$, and T is diagonalizable. Thus we have proved:

Theorem 3. A linear map $T: V \rightarrow V$ is diagonalizable, if and only if there exists a basis of V that consists only of eigenvectors of T.

Such a basis is usually called an eigenbasis of V associated to T. Since in a vector space of dimension n, n vectors form a basis if and only if they are linearly independent, we have

Theorem 4. A linear map $T: V \rightarrow V$ is diagonalizable, if and only if there exists n linearly independent eigenvectors of T, where $n=\operatorname{dim}(V)$.

[^0]Question 6. Show that the linear map T in Question 4 is not diagonalizable.
Definition 12. If $T: V \rightarrow V$ is diagonalizable, then a diagonalization of T is by definition an ordered eigenbasis of V associated to T, together with the matrix representation $[T]_{\alpha}$.

In other words, it is a set of n linearly independent eigenvectors of T, and the diagonal matrix that consists of their corresponding eigenvalues.

Question 7. Let V be the space of all real polynomials of degree ≤ 1. It is a vector space over \mathbb{R}. Let $S: V \rightarrow V$ be defined by

$$
S(p(x))=2(x-1) p^{\prime}(x)
$$

for all $p(x) \in V$. Show that S is diagonalizable, and find a diagonalization of S.

Finally, comparing what we had in these two sections, we have:
Theorem 5. Suppose A is an $n \times n$ matrix with entries in F. Then A is diagonalizable, if and only if the linear map $T: F^{n} \rightarrow F^{n}$ associated to A is diagonalizable.

We also have:
Definition 13. The span of all eigenvectors of T corresponding to an eigenvalue λ of T is called the eigenspace of T corresponding to λ.

Thus any eigenspace of T is in particular a subspace of V. Again in general one should think about eigenspaces instead of eigenvectors as much as possible when one considers linear maps.

3. Invariant subspaces

Again, in this section, $T: V \rightarrow V$ is a linear map from V into itself, where V is a vector space over a field F, and $\operatorname{dim}(V)=n<\infty$.
Definition 14. W is said to be an invariant subspace associated to T if it is a subspace of V, and $T(w) \in W$ for all $w \in W$.

Sometimes we also say that W is a T-invariant subspace of V.
Question 8. For example, let $T: \mathbb{R}^{2} \rightarrow \mathbb{R}^{2}$ be given by

$$
T\binom{x}{y}=\left(\begin{array}{ll}
2 & -4 \\
0 & -1
\end{array}\right)\binom{x}{y}
$$

Show that the x-axis is a T-invariant subspace of \mathbb{R}^{2}, while the y-axis is not.

If $T: V \rightarrow V$ is a linear map, then the following are all trivial T-invariant subspaces of $V:\{0\}, V$, the nullspace of T, and the range of T. Also, any eigenspace of T, i.e. the nullspace of $T-\lambda I$ for any λ, is a T-invariant subspace of V; so is the range of $T-\lambda I$ for any λ.

Definition 15. If $T: V \rightarrow V$ is linear and W is a T-invariant subspace of V, one can define the restriction of T to W by

$$
\begin{gathered}
\left.T\right|_{W}: W \rightarrow W \\
\left.T\right|_{W}(w)=T(w) \quad \text { for all } w \in W
\end{gathered}
$$

The restriction of T to W is a linear map from W to W. One important fact is:
Theorem 6. If W is a T-invariant subspace of V, then the characteristic polynomial of $\left.T\right|_{W}$ divides the characteristic polynomial of T; more precisely, if $f(t)$ and $g(t)$ are the characteristic polynomials of T and $\left.T\right|_{W}$ respectively, then there is a polynomial $q(t)$ with coefficients in F such that

$$
f(t)=g(t) q(t)
$$

Proof. Suppose $\alpha=\left\{v_{1}, \ldots, v_{m}\right\}$ is an ordered basis of W. Extend it to an ordered basis $\beta=\left\{v_{1}, \ldots, v_{n}\right\}$ of V. Then the matrix representation $[T]_{\beta}$ of T is of the form

$$
\left(\begin{array}{ll}
A & B \\
0 & C
\end{array}\right)
$$

where A is an $m \times m$ matrix, B is an $m \times(n-m)$ matrix, C is an $(n-m) \times$ $(n-m)$ matrix and 0 is the $(n-m) \times m$ zero matrix. In fact A is then the matrix representation $\left[\left.T\right|_{W}\right]_{\alpha}$. It follows that if $f(t)$ and $g(t)$ are the characteristic polynomials of T and $\left.T\right|_{W}$ respectively, then

$$
f(t)=\operatorname{det}\left(\left(\begin{array}{cc}
A & B \\
0 & C
\end{array}\right)-t I\right)=\operatorname{det}\left(\begin{array}{cc}
A-t I & B \\
0 & C-t I
\end{array}\right)
$$

so

$$
f(t)=\operatorname{det}(A-t I) \operatorname{det}(C-t I)=g(t) \operatorname{det}(C-t I)
$$

and letting $q(t)=\operatorname{det}(C-t I)$ we have the claim.
Question 9. For example, if W is the x-axis, and T is the linear map in Question 8, find the characteristic polynomial of $\left.T\right|_{W}$, and show that it divides the characteristic polynomial of T.

One important example of construction of invariant subspaces is the following. Suppose $T: V \rightarrow V$ is a linear map, where V is a finite dimensional vector space over a field F. Suppose $v \in V, v \neq 0$. Let k be the largest positive integer such that $\left\{v, T v, T^{2} v, \ldots, T^{k-1} v\right\}$ are linearly independent ${ }^{2}$. Such k exists since V is finite dimensional. Let W be the span of $\left\{v, T v, \ldots, T^{k-1} v\right\}$. Then W is a subspace of V, and we claim that W is T-invariant: in fact if $w \in W$, then

$$
w=a_{0} v+a_{1} T v+\cdots+a_{k-1} T^{k-1} v
$$

for some scalars $a_{0}, \ldots, a_{k-1} \in F$, so

$$
T w=a_{0} T v+a_{1} T^{2} v+\cdots+a_{k-1} T^{k} v
$$

[^1]But $T^{k} v$ is a linear combination of $v, T v, \ldots, T^{k-1} v$, since $\left\{v, T v, \ldots, T^{k-1} v, T^{k} v\right\}$ is linearly dependent. Thus we have $T w \in W$, which proves that W is T-invariant.

Now $\left\{v, T v, \ldots, T^{k-1} v\right\}$ is a basis of W (why?), so $\operatorname{dim}(W)=k$. If

$$
T^{k} v=-b_{0} v-b_{1} T v-\cdots-b_{k-1} T^{k-1} v
$$

for some scalars b_{0}, \ldots, b_{k-1}, then the characteristic polynomial of $\left.T\right|_{W}$ can be shown to be

$$
g(t)=(-1)^{k}\left(b_{0}+b_{1} t+\cdots+b_{k-1} t^{k-1}+t^{k}\right)
$$

(check!), so in particular $g(T)(v)=(-1)^{k}\left(b_{0} v+b_{1} T v+\cdots+b_{k-1} T^{k-1} v+T^{k} v\right)=0$.
Now if $f(t)$ is the characteristic polynomial of T, then $g(t)$ divides $f(t)$, i.e. there exists a polynomial $q(t)$ with coefficients in F such that $f(t)=g(t) q(t)$. It follows that $f(T)(v)=q(T) g(T) v=q(T)(0)=0$. Since this is true for all $v \in V$, we see that $f(T)$ is the zero map from V to V. This proves:

Theorem 7 (Cayley-Hamilton). If V is a finite dimensional vector space over a field $F, T: V \rightarrow V$ is a linear map, and $f(t)$ is the characteristic polynomial of T, then the linear map $f(T): V \rightarrow V$ is the zero map, i.e. T 'satisfies' the characteristic polynomial of T.

Corollary 8. If A is an $n \times n$ matrix with entries in a field F, and $f(t)$ is the characteristic polynomial of A, then $f(A)$ is the zero matrix.

4. Criteria about diagonalizability

Again in this section, V is a vector space over a field F of dimension $n<\infty$, and $T: V \rightarrow V$ is a linear map from V into itself. We state some important criteria about the diagonalizability of T.

Theorem 9. If $v_{1}, \ldots, v_{k} \in V$ are eigenvectors of T corresponding to the eigenvalues $\lambda_{1}, \ldots, \lambda_{k} \in F$, and the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ are pairwise distinct, then the set of vectors $\left\{v_{1}, \ldots, v_{k}\right\}$ is linearly independent.

Proof. The proof is by induction on k. The claim is trivial if $k=1$. Now when $k=2$, i.e. if v_{1}, v_{2} are eigenvectors of T corresponding to eigenvalues λ_{1} and λ_{2}, with $\lambda_{1} \neq \lambda_{2}$, then suppose

$$
a_{1} v_{1}+a_{2} v_{2}=0
$$

for some scalars a_{1}, a_{2}. Applying $T-\lambda_{2} I$ to both sides, we get

$$
a_{1}\left(\lambda_{1}-\lambda_{2}\right) v_{1}=0
$$

which implies $a_{1}=0$. Hence $a_{2}=0$. So the case $k=2$ is proved.
More generally, suppose the claim is true for a certain value of k. Suppose one has $k+1$ eigenvectors of T, namely v_{1}, \ldots, v_{k+1}, corresponding to eigenvalues $\lambda_{1}, \ldots, \lambda_{k+1}$, such that no two of the λ_{i} 's are equal. Then if a_{1}, \ldots, a_{k+1} are scalars such that

$$
a_{1} v_{1}+\cdots+a_{k+1} v_{k+1}=0
$$

by applying $T-\lambda_{k+1} I$ to both sides, we get

$$
a_{1}\left(\lambda_{1}-\lambda_{k+1}\right) v_{1}+\cdots+a_{k}\left(\lambda_{k}-\lambda_{k+1}\right) v_{k}=0 .
$$

By induction hypothesis, $\left\{v_{1}, \ldots, v_{k}\right\}$ are linearly independent, so

$$
a_{1}\left(\lambda_{1}-\lambda_{k+1}\right)=a_{2}\left(\lambda_{2}-\lambda_{k+1}\right)=\cdots=a_{k}\left(\lambda_{k}-\lambda_{k+1}\right)=0 .
$$

Since $\lambda_{1}, \ldots, \lambda_{k}$ are all different from λ_{k+1}, this implies

$$
a_{1}=\cdots=a_{k}=0,
$$

so $a_{k+1}=0$ as well, and that completes the induction.
Corollary 10. If $T: V \rightarrow V$ has n distinct eigenvalues over F, where $n=\operatorname{dim}(V)$, then T is diagonalizable.

Corollary 11. Suppose V_{1}, \ldots, V_{k} are eigenspaces of T corresponding to eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$, and the eigenvalues $\lambda_{1}, \ldots, \lambda_{k}$ are pairwise distinct.
(a) If $v_{1} \in V_{1}, \ldots, v_{k} \in V_{k}$ satisfies

$$
v_{1}+\cdots+v_{k}=0,
$$

then

$$
v_{1}=\cdots=v_{k}=0 .
$$

(b) If $\beta_{1}, \ldots, \beta_{k}$ are linearly independent subsets of V_{1}, \ldots, V_{k} respectively, then $\beta_{1} \cup \beta_{2} \cup \cdots \cup \beta_{k}$ is a linearly independent subset of V.

These are easy corollaries of the previous theorem. Their proofs are left as exercises.

Next is a little piece of terminology from algebra:
Definition 16. If $p(t)$ is a polynomial of one variable with coefficients in a field F and that has degree n, then we say that $p(t)$ splits over F if there are scalars $c, a_{1}, \ldots, a_{n} \in F$ such that

$$
p(t)=c\left(t-a_{1}\right)\left(t-a_{2}\right) \ldots\left(t-a_{n}\right) .
$$

In other words, $p(t)$ is said to split over F if and only if $p(t)$ can be completely factorized into a product of linear factors with coefficients in F.

Question 10. Show that the polynomial $t^{2}+1$ splits over \mathbb{C}, but not over \mathbb{R}.
Theorem 12. Suppose V is a finite dimensional vector space over F, and a linear map $T: V \rightarrow V$ is diagonalizable. Then the characteristic polynomial of T splits over F.

Definition 17. If λ is an eigenvalue of a linear map $T: V \rightarrow V$, its algebraic multiplicity is the number of times the factor $(t-\lambda)$ appears in the factorization of the characteristic polynomial of T, and its geometric multiplicity is the dimension of the eigenspace corresponding to λ.

Question 11. Suppose V is the vector space of real polynomials of degree ≤ 2 on \mathbb{R}. Let $T: V \rightarrow V$ be the linear map defined by

$$
T(p(x))=2(x-1) p^{\prime}(x)+(x-1)^{2} p^{\prime \prime}(x)
$$

Find the eigenvalues of T, and their algebraic and geometric multiplicities.

From Theorem 12, we have:
Lemma 1. Suppose $T: V \rightarrow V$ is a linear map and $\operatorname{dim}(V)=n$. If T is diagonalizable, then the sum of the algebraic multiplicities of the eigenvalues of T is equal to n.

This is because if T is diagonalizable over F, then by Theorem 12 , the characteristic polynomial of T splits, meaning that the characteristic polynomial of T has exactly n zeroes (counting multiplicities) in F. Thus the sum of the algebraic multiplicities of the eigenvalues of T is n, as desired.

The main result of this section is:
Theorem 13. The algebraic multiplicity of any eigenvalue of T is bigger than or equal to its geometric multiplicity. Furthermore, T is diagonalizable, if and only if equality holds for every eigenvalue of T, i.e. if and only if the algebraic multiplicity of every eigenvalue of T is equal to its geometric multiplicity.

Proof. If λ is an eigenvalue of T and M, m are its algebraic multiplicity and geometric multiplicities respectively, we first show $m \leq M$. To do so, let W be the eigenspace of T corresponding to λ, and $\left.T\right|_{W}$ be the restriction of T to W. Let also $f(t)$ be the characteristic polynomial of T, and $g(t)$ be the characteristic polynomial of $\left.T\right|_{W}$. Then by Theorem $6, g(t)$ divides $f(t)$. But $\operatorname{dim}(W)=m$, and by computing explicitly the characteristic polynomial of $\left.T\right|_{W}$, we get

$$
g(t)=(\lambda-t)^{m} .
$$

Now M is the number of factors of $(\lambda-t)$ that arises in the factorization of $f(t)$. So from $(\lambda-t)^{m}$ divides $f(t)$, we conclude that $m \leq M$, which is the desired claim.

Next, suppose the algebraic multiplicity of every eigenvalue of T is equal to its geometric multiplicity. Then let $\lambda_{1}, \ldots, \lambda_{k}$ be a listing of the distinct eigenvalues of T, and M_{1}, \ldots, M_{k} be their corresponding algebraic or geometric multiplicities. By Lemma 1, we get

$$
M_{1}+M_{2}+\cdots+M_{k}=n
$$

Now let V_{1}, \ldots, V_{k} be the eigenspaces of T corresponding to $\lambda_{1}, \ldots, \lambda_{k}$. Then their dimensions are M_{1}, \ldots, M_{k} respectively. Let $\beta_{1}, \ldots, \beta_{k}$ be a basis of V_{1}, \ldots, V_{k} respectively. Then $\beta:=\beta_{1} \cup \cdots \cup \beta_{k}$ is linearly independent by Corollary 11(b). Furthermore, β has $M_{1}+\cdots+M_{k}=n$ vectors, and all elements of β are all eigenvectors of T. Thus T has n linearly independent eigenvectors, which shows that T is diagonalizable.

Now suppose T is diagonalizable. Then there exists an eigenbasis β of V associated to T. Let $\lambda_{1}, \ldots, \lambda_{k}$ be a listing of the distinct eigenvalues of T, and V_{1}, \ldots, V_{k}
be the eigenspaces of T corresponding to $\lambda_{1}, \ldots, \lambda_{k}$ respectively. For $i=1, \ldots, k$, let $\beta_{i}=\beta \cap V_{i}$, and n_{i} be the number of elements of β_{i}. Then β is the disjoint union of $\beta_{1}, \ldots, \beta_{k}$, since every vector in β is an eigenvector, and thus belongs to exactly one of the β_{i} 's. It follows that

$$
\begin{equation*}
n=\sum_{i=1}^{k} n_{i} . \tag{1}
\end{equation*}
$$

If now m_{i} is the geometric multiplicity of λ_{i}, and M_{i} be the algebraic multiplicity of λ_{i}, then

$$
\begin{equation*}
n_{i} \leq m_{i} \leq M_{i} \quad \text { for all } i=1, \ldots, k \tag{2}
\end{equation*}
$$

The first inequality holds since β_{i} is a set of linearly independent vectors in V_{i}, where $m_{i}=\operatorname{dim}\left(V_{i}\right)$ and $n_{i}=$ number of elements of β_{i}; the second inequality holds by the first part of our theorem. On the other hnad,

$$
\begin{equation*}
\sum_{i=1}^{k} M_{i}=n \tag{3}
\end{equation*}
$$

by Lemma 1. From (1), (2) and (3), we conclude that $m_{i}=M_{i}$ for all $i=1, \ldots, k$. This proves that the algebraic and geometric multiplicities are the same for each eigenvalue of T, and we conclude the proof of the theorem.

Question 12. Show that the linear map T in Question 11 is diagonalizable using Theorem 13.

[^0]: ${ }^{1}$ From now on we write $T v$ for $T(v)$ for the sake of brevity.

[^1]: ${ }^{2}$ From now on, we write T^{i} for the composition of i copies of T. In other words, $T^{2} v$ is a shorthand of $T(T v), T^{3} v$ is a shorthand for $T(T(T v))$, etc. More generally, if $f(t)$ is a polynomial in a single variable t, say $f(t)=a_{0}+a_{1} t+\cdots+a_{m} t^{m}$, and $T: V \rightarrow V$ is a linear map, then $f(T)$ is by definition a linear map from V to V such that $f(T) v=a_{0} v+a_{1} T v+\cdots+a_{m} T^{m} v$ for all $v \in V$.

