Math 350 Fall 2011 Worksheet 1

Name:

The goal of this worksheet is to introduce to you the concept of a quotient space, and to guide you through the proof the rank-nullity theorem.

From now on, let V be a vector space over a field F, and W be a subspace of V.
Definition 1. We say two vectors $v_{1}, v_{2} \in V$ are equivalent ${ }^{1}$, and write $v_{1} \sim v_{2}$, if and only if $v_{1}-v_{2} \in W$.

Question 1. For example, suppose now $V=\mathbb{R}^{2}, F=\mathbb{R}$ and $W=\{(x, 0): x \in \mathbb{R}\}$ is the x-axis.
(a) Can you find all vectors in V that are equivalent to the vector $(0,0)$? Represent your answer on the Cartesian plane.
(b) Can you find all vectors in V that are equivalent to the vector $(1,2)$? Represent your answer on the Cartesian plane.
(c) Can you find all vectors in V that are equivalent to the vector (x, y) ? Represent your answer on the Cartesian plane.

[^0]So in the above example, the set of vectors in \mathbb{R}^{2} that are equivalent to a given vector (x, y) is given by

$$
\{(x, y)+(u, v):(u, v) \in W\} .
$$

In general, it can be shown, that if V is vector space over a field F and W is a subspace, then the set of vectors in V that are equivalent to a given vector $v \in V$ is given by

$$
\{v+w: w \in W\} .
$$

Since this set of vectors is obtained by adding to the given v an arbitrary vector $w \in W$, this set will also be written as $v+W$. In other words, we have the following definition:

Definition 2. If v is a vector in V and W is a subspace of V, we define the set $v+W$ to be a subset of V given by

$$
v+W:=\{v+w: w \in W\}
$$

Definition 3. Any subset of V of the form $v+W$ for some $v \in V$ is called a coset of W in V, and the set of cosets of W in V is denoted as V / W.

Let's check your understanding now. Do you understand the following statements?
(a) A coset of the x-axis in \mathbb{R}^{2} is a line in \mathbb{R}^{2} that is parallel to the x-axis.
(b) $\mathbb{R}^{2} /(x$-axis $)$ is the set of all lines in \mathbb{R}^{2} that is parallel to the x-axis.

Question 2. Now let's look again at the example in Question 1, i.e. assume $V=\mathbb{R}^{2}$ and $W=x$-axis. We knew that the line $\{(x, y): y=2\}$ is an element of V / W. In fact this line can be written as $(1,2)+W$, as we have seen in Question 1(b). But there are actually many ways of writing this coset in the form $v+W$ where $v \in V$. For example, the same line can also be written as $(7,2)+W$, i.e.

$$
(1,2)+W=(7,2)+W
$$

(Why?) In general, check, in this example, that

$$
\left(x_{1}, y_{1}\right)+W=\left(x_{2}, y_{2}\right)+W \quad \text { if and only if } \quad\left(x_{1}, y_{1}\right)-\left(x_{2}, y_{2}\right) \in W
$$

Back to our general situation. Suppose V is a vector space over a field F and W is a subspace of V. It can be shown that

Theorem 1. Two cosets $v_{1}+W$ and $v_{2}+W$ are equal (as subsets of V) if and only if $v_{1}-v_{2} \in W$.

The proof of this is left as an exercise.
So far we have defined V / W as a set of subsets of V. To proceed further, we are going to make V / W a vector space over F. Now V / W is a set of sets. Every element of V / W is a set of vectors from V. It is thus perhaps not completely clear how one should add two elements of V / W. We make the following definition. Take two elements from V / W. They are then of the form $v_{1}+W$ and $v_{2}+W$ for some $v_{1}, v_{2} \in V$. (Why?)
Definition 4. We define the sum of two cosets of W in V to be another coset of W in V, according to the formula

$$
\left(v_{1}+W\right)+\left(v_{2}+W\right):=\left(v_{1}+v_{2}\right)+W
$$

Question 3. Suppose we are in the example in Question 1, i.e. $V=\mathbb{R}^{2}$ and $W=x$-axis. Compute $((1,2)+W)+((3,7)+W)$. Draw your answer, as well as the two cosets $(1,2)+W$ and $(3,7)+W$, on the same Cartesian plane.

Now the problem is that given an element of V / W, there are many ways of writing it as $v+W$ with $v \in V$. So suppose you have two elements of V / W, and you decide to write them as $v_{1}+W$ and $v_{2}+W$ for some particular choice of $v_{1}, v_{2} \in V$. And suppose your friend comes in, and decides to write the same elements of V / W as $u_{1}+W$ and $u_{2}+W$ instead, for some different choices $u_{1}, u_{2} \in V$. Suppose both of you add the two elements of V / W using Definition 4. Do you two get the same answer? You had better hope that this is the case, because otherwise the definition we made would not be well-defined. Fortunately, this is the case:
Question 4. Prove that if

$$
v_{1}+W=u_{1}+W \quad \text { and } \quad v_{2}+W=u_{2}+W
$$

for some $v_{1}, v_{2}, u_{1}, u_{2} \in V$, then

$$
\left(v_{1}+v_{2}\right)+W=\left(u_{1}+u_{2}\right)+W
$$

(Hint: use Theorem 1 and the properties of a subspace.)

Next, now that we have defined an addition on V / W, we proceed to define a scalar multiplication on V / W. Recall that V was a vector space over a field F. Now take an element of V / W. Again it is then a set of the form $v+W$ for some $v \in V$.

Definition 5. If $c \in F$ and $v+W \in V / W$, we define their scalar multiplication by

$$
c \cdot(v+W):=(c \cdot v)+W
$$

Question 5. Let's first understand what this means in the example in Question 1. If $V=\mathbb{R}^{2}, F=\mathbb{R}$ and $W=x$-axis, compute $4 \cdot((1,2)+W)$. Draw both your answer, as well as the original coset $(1,2)+W$, on the same Cartesian plane.

Again we need to check that the scalar multiplication in Definition 5 is welldefined, because there are many ways of writing a given coset as $v+W$ for some $v \in V$. So we have

Question 6. Prove that if

$$
v+W=u+W
$$

for some $v, u \in V$, and if $c \in F$, then

$$
(c \cdot v)+W=(c \cdot u)+W
$$

(Hint: use Theorem 1 and the properties of a subspace.)

Finally, we are ready to state the first main theorem today:
Theorem 2. If V is a vector space over a field F and W is a subspace of V, then V / W is a vector space over F under the addition and scalar multiplication defined above.

A vector space of the form V / W is usually called a quotient vector space, or a quotient space for short.

Question 7. Let's understand this in the example in Question 1. Suppose $V=\mathbb{R}^{2}$, $F=\mathbb{R}$ and $W=x$-axis, and we want to see whether V / W is a vector space.
(a) Is the sum of two elements of V / W another element of V / W ? (Hint: What is the $\operatorname{sum}\left(\left(x_{1}, y_{1}\right)+W\right)+\left(\left(x_{2}, y_{2}\right)+W\right)$? $)$
(b) Is it true that $\left(\left(x_{1}, y_{1}\right)+W\right)+\left(\left(x_{2}, y_{2}\right)+W\right)=\left(\left(x_{2}, y_{2}\right)+W\right)+\left(\left(x_{1}, y_{1}\right)+W\right)$ for all $\left(x_{1}, y_{1}\right),\left(x_{2}, y_{2}\right) \in V$?
(c) What would an additive identity be in V / W under the addition we defined? (Hint: compute $((x, y)+W)+((0,0)+W)$ for all $(x, y) \in V$.
(d) If $(x, y) \in V$, what would the additive inverse of $((x, y)+W)$ be in V / W under the addition we defined? Represent your answer on a Cartesian plane.
(e) Is it true that $1 \cdot((x, y)+W)=((x, y)+W)$ for all $(x, y) \in V$?
(f) Is it true that $\left(c_{1}+c_{2}\right) \cdot((x, y)+W)=c_{1} \cdot((x, y)+W)+c_{2} \cdot((x, y)+W)$ for all $c_{1}, c_{2} \in F$ and all $(x, y) \in V$?

There are certainly other axioms that one has to check to prove that V / W is a vector space in this situation, but I think the above gives you an idea of how the other axioms should be checked.

The proof of Theorem 2 in full generality will be left as an exercise. Basically, to prove Theorem 2, you will need to check the long list of axioms of a vector space like we did above for the specific example, since V / W is not a subset of any vector space; in particular, one should always remember that V / W is NOT a subspace of V.

We will need the following theorem about the dimension of a quotient space.
Theorem 3. Suppose V is a vector space over a field F and W is a subspace of V. If V is finite dimensional, then so is V / W, and

$$
\operatorname{dim}(V / W)=\operatorname{dim}(V)-\operatorname{dim}(W)
$$

Proof. Let $n=\operatorname{dim}(V)$ and $m=\operatorname{dim}(W)$. Then $m \leq n$, and we want to show that $\operatorname{dim}(V / W)=n-m$. Now pick a basis of W. This basis will consists of m vectors; call them $w_{1}, w_{2}, \ldots, w_{m}$. Then extend it to a basis of V; i.e. pick some vectors $v_{1}, \ldots, v_{k} \in V$ such that $\left\{w_{1}, \ldots, w_{m}, v_{1}, \ldots, v_{k}\right\}$ is a basis of V. This is
always possible by a theorem we proved before the midterm. Now any basis of V has exactly n vectors. So $m+k=n$, i.e. $k=n-m$. We claim that $\left\{v_{1}+W, \ldots, v_{k}+W\right\}$ is a basis of V / W. If that is the case, then $\operatorname{dim}(V / W)=k=n-m$, which is our desired result.

The proof of the claim is left as an exercise.

Finally, we will prove the following rank-nullity theorem:
Theorem 4 (Rank-nullity theorem). Suppose V, V^{\prime} are vector spaces over a field F, and $\operatorname{dim}(V)<\infty$. Suppose $T: V \rightarrow V^{\prime}$ is a linear map. Then the image of T is finite dimensional, and

$$
\operatorname{dim}(\operatorname{image}(T))=\operatorname{dim}(V)-\operatorname{dim}(\operatorname{kernel}(T))
$$

The theorem is such called since dim(image $(T))$ is sometimes called the rank of T, and $\operatorname{dim}(\operatorname{kernel}(T))$ is sometimes called the nullity of T. The theorem says that the sum of the rank and nullity of a linear map is equal to the dimension of its domain, if the domain is finite dimensional.

The proof consists of several steps. First, let $W=\operatorname{kernel}(T)$, and $U=\operatorname{image}(T)$. We knew from our previous class that W is a subspace of V, and that U is a vector space over F. Since W is a subspace of V, it makes sense to talk about the quotient space V / W. We claim that we can define a new map

$$
\tilde{T}: V / W \rightarrow U
$$

such that

$$
\tilde{T}(v+W):=T(v) \quad \text { for all } v \in V
$$

There is again a problem of well-definedness; an element of V / W can be written in the form $v+W$ for many different choices of $v \in V$. Hence we need to answer the following question:

Question 8. If

$$
v_{1}+W=v_{2}+W
$$

for some $v_{1}, v_{2} \in V$, is it true that

$$
T\left(v_{1}\right)=T\left(v_{2}\right) ?
$$

(Hint: The answer had better be yes, and to check that one uses Theorem 1 again, together with the fact that $W=\operatorname{kernel}(T)$.)

Now we have checked that the map $\tilde{T}: V / W \rightarrow U$ we introduced above is welldefined. To proceed further, we claim that \tilde{T} is linear:

Question 9. Check that $\tilde{T}: V / W \rightarrow U$ is linear. (Hint: What do you need to check? You need to check that

$$
\tilde{T}\left(\left(v_{1}+W\right)+\left(v_{2}+W\right)\right)=\tilde{T}\left(v_{1}+W\right)+\tilde{T}\left(v_{2}+W\right)
$$

for all $v_{1}, v_{2} \in V$, and

$$
\tilde{T}(c \cdot(v+W))=c \cdot \tilde{T}(v+W)
$$

for all $c \in F$ and all $v \in V$.)

Next, we claim that $\tilde{T}: V / W \rightarrow U$ is an isomorphism between the two vector spaces:
Question 10. Check that \tilde{T} is injective. (Hint: If $\tilde{T}(v+W)=0$ for some $v \in V$, what can you say about v? Can you conclude that $v+W=0+W$?)

Question 11. Check that \tilde{T} is surjective. (Hint: Given $u \in U$, there exists $v \in V$ such that $T(v)=u$. (Why?) Now what is $\tilde{T}(v+W)$? Conclude the proof from here.)

Hence to conclude, $\tilde{T}: V / W \rightarrow U$ is an isomorphism. Thus

$$
\operatorname{dim}(U)=\operatorname{dim}(V / W)=\operatorname{dim}(V)-\operatorname{dim}(W)
$$

in other words,

$$
\operatorname{dim}(\operatorname{image}(T))=\operatorname{dim}(V)-\operatorname{dim}(\operatorname{kernel}(T))
$$

This proves the rank-nullity theorem.

Exercises.

1. Let $V=\mathbb{R}^{2}$ be a vector space over \mathbb{R}, and $W=\{(x, y): x+y=0\}$ be a subspace of V. Represent on a Cartesian plane some cosets of W in V. Computer $((0,3)+W)+((0,-4)+W)$ and $3 \cdot((0,2)+W)$. Can you describe how you add two elements of V / W with a picture?
2. Let $V=\mathbb{R}^{3}$ be a vector space over \mathbb{R}, and $W_{1}=\{(x, y, z): z=x+y\}$ be a subspace of V. Draw some cosets of W_{1} in V on a Cartesian coordinate chart. Also, if now $W_{2}=\{(x, y, z): x=0, y=z\}$, so that W_{2} is also a subspace of V, can you draw some cosets of W_{2} in V on a separate picture?
3. Prove Theorem 1. (Hint: Suppose first $v_{1}-v_{2} \in W$. Then $v_{1}=v_{2}+w_{0}$ for some $w_{0} \in W$. Now we need to check $v_{1}+W \subseteq v_{2}+W$, and $v_{2}+W \subseteq v_{1}+W$. But the former follows, since if $w \in W$, then $v_{1}+w=v_{2}+w_{0}+w \in v_{2}+W$. Similarly, one can check that $v_{2}+W \subseteq v_{1}+W$. Thus $v_{1}+W=v_{2}+W$, as desired.

Next, suppose $v_{1}+W=v_{2}+W$. Then since $v_{1}=v_{1}+0$ and $0 \in W$, we have $v_{1} \in v_{1}+W$. Thus $v_{1} \in v_{2}+W$, i.e. $v_{1}=v_{2}+w_{0}$ for some $w_{0} \in W$. Thus $\left.v_{1}-v_{2}=w_{0} \in W.\right)$
4. Suppose $w_{1}, \ldots, w_{m}, v_{1}, \ldots, v_{k}$ are as in the proof of Theorem 3. Let

$$
S=\left\{v_{1}+W, \ldots, v_{k}+W\right\}
$$

be a subset of V / W with k elements.
(a) Prove that S is linearly independent. (Hint: Suppose

$$
a_{1}\left(v_{1}+W\right)+\cdots+a_{k}\left(v_{k}+W\right)=0+W
$$

for some $a_{1}, \ldots, a_{k} \in F$. Then one has

$$
a_{1} v_{1}+\cdots+a_{k} v_{k} \in W
$$

(why?), and thus there are coefficients $b_{1}, \ldots, b_{m} \in F$ such that

$$
a_{1} v_{1}+\cdots+a_{k} v_{k}=b_{1} w_{1}+\cdots+b_{m} w_{m} .
$$

(why?) Now conclude that $a_{1}=\cdots=a_{k}=0$.)
(b) Prove that S spans V / W. (Hint: Pick an element from V / W. Then it is of the form $v+W$ for some $v \in V$. Now there are scalars $a_{1}, \ldots, a_{k}, b_{1}, \ldots, b_{m} \in$ F such that

$$
v=a_{1} v_{1}+\cdots+a_{k} v_{k}+b_{1} w_{1}+\cdots+b_{m} v_{m}
$$

(why?) Then

$$
\begin{aligned}
v+W=a_{1} & \left(v_{1}+W\right)+\cdots+a_{k}\left(v_{k}+W\right) \\
& +b_{1}\left(w_{1}+W\right)+\cdots+b_{m}\left(w_{m}+W\right)
\end{aligned}
$$

(why?) Now $w_{1}+W=\cdots=w_{m}+W=0+W$ (why?). So the above equation says

$$
v+W=a_{1}\left(v_{1}+W\right)+\cdots+a_{k}\left(v_{k}+W\right)
$$

(why?) This concludes the proof. (why?))
Together, we proved that S is a basis of V / W, establishing the claim in the proof of Theorem 3.
5. Give a proof of Theorem 2.

[^0]: ${ }^{1}$ For those who knows equivalence relations, this is an equivalent relation on V, in the sense that

 1. $v \sim v$ for all $v \in V$,
 2. $v_{1} \sim v_{2}$ if and only if $v_{2} \sim v_{1}$, and
 3. if $v_{1} \sim v_{2}$ and $v_{2} \sim v_{3}$, then $v_{1} \sim v_{3}$.
