Math 350 Fall 2011 Worksheet 1

Name:

The goal of this worksheet is to introduce to you the concept of a quotient space, and to guide you through the proof the rank-nullity theorem.

From now on, let V be a vector space over a field F, and W be a subspace of V.

Definition 1. We say two vectors $v_1, v_2 \in V$ are equivalent¹, and write $v_1 \sim v_2$, if and only if $v_1 - v_2 \in W$.

Question 1. For example, suppose now $V = \mathbb{R}^2$, $F = \mathbb{R}$ and $W = \{(x, 0) : x \in \mathbb{R}\}$ is the x-axis.

- (a) Can you find all vectors in V that are equivalent to the vector (0,0)? Represent your answer on the Cartesian plane.
- (b) Can you find all vectors in V that are equivalent to the vector (1,2)? Represent your answer on the Cartesian plane.
- (c) Can you find all vectors in V that are equivalent to the vector (x, y)? Represent your answer on the Cartesian plane.

 $^{^1\}mathrm{For}$ those who knows equivalence relations, this is an equivalent relation on V, in the sense that

^{1.} $v \sim v$ for all $v \in V$,

^{2.} $v_1 \sim v_2$ if and only if $v_2 \sim v_1$, and

^{3.} if $v_1 \sim v_2$ and $v_2 \sim v_3$, then $v_1 \sim v_3$.

So in the above example, the set of vectors in \mathbb{R}^2 that are equivalent to a given vector (x, y) is given by

$$\{(x, y) + (u, v) \colon (u, v) \in W\}.$$

In general, it can be shown, that if V is vector space over a field F and W is a subspace, then the set of vectors in V that are equivalent to a given vector $v \in V$ is given by

$$\{v+w\colon w\in W\}.$$

Since this set of vectors is obtained by adding to the given v an arbitrary vector $w \in W$, this set will also be written as v + W. In other words, we have the following definition:

Definition 2. If v is a vector in V and W is a subspace of V, we define the set v + W to be a subset of V given by

$$v + W := \{v + w \colon w \in W\}.$$

Definition 3. Any subset of V of the form v + W for some $v \in V$ is called a coset of W in V, and the set of cosets of W in V is denoted as V/W.

Let's check your understanding now. Do you understand the following statements?

(a) A coset of the x-axis in R² is a line in R² that is parallel to the x-axis.
(b) R²/(x-axis) is the set of all lines in R² that is parallel to the x-axis.

Question 2. Now let's look again at the example in Question 1, i.e. assume $V = \mathbb{R}^2$ and W = x-axis. We knew that the line $\{(x, y) : y = 2\}$ is an element of V/W. In fact this line can be written as (1, 2) + W, as we have seen in Question 1(b). But there are actually many ways of writing this coset in the form v + W where $v \in V$. For example, the same line can also be written as (7, 2) + W, i.e.

$$(1,2) + W = (7,2) + W.$$

(Why?) In general, check, in this example, that

 $(x_1, y_1) + W = (x_2, y_2) + W$ if and only if $(x_1, y_1) - (x_2, y_2) \in W$.

Back to our general situation. Suppose V is a vector space over a field F and W is a subspace of V. It can be shown that

Theorem 1. Two cosets $v_1 + W$ and $v_2 + W$ are equal (as subsets of V) if and only if $v_1 - v_2 \in W$.

The proof of this is left as an exercise.

So far we have defined V/W as a set of subsets of V. To proceed further, we are going to make V/W a vector space over F. Now V/W is a set of sets. Every element of V/W is a set of vectors from V. It is thus perhaps not completely clear how one should add two elements of V/W. We make the following definition. Take two elements from V/W. They are then of the form $v_1 + W$ and $v_2 + W$ for some $v_1, v_2 \in V$. (Why?)

Definition 4. We define the sum of two cosets of W in V to be another coset of W in V, according to the formula

$$(v_1 + W) + (v_2 + W) := (v_1 + v_2) + W.$$

Question 3. Suppose we are in the example in Question 1, i.e. $V = \mathbb{R}^2$ and W = x-axis. Compute ((1,2) + W) + ((3,7) + W). Draw your answer, as well as the two cosets (1,2) + W and (3,7) + W, on the same Cartesian plane.

Now the problem is that given an element of V/W, there are many ways of writing it as v + W with $v \in V$. So suppose you have two elements of V/W, and you decide to write them as $v_1 + W$ and $v_2 + W$ for some particular choice of $v_1, v_2 \in V$. And suppose your friend comes in, and decides to write the same elements of V/W as $u_1 + W$ and $u_2 + W$ instead, for some different choices $u_1, u_2 \in V$. Suppose both of you add the two elements of V/W using Definition 4. Do you two get the same answer? You had better hope that this is the case, because otherwise the definition we made would not be *well-defined*. Fortunately, this is the case:

Question 4. Prove that if

 $v_1 + W = u_1 + W$ and $v_2 + W = u_2 + W$

for some $v_1, v_2, u_1, u_2 \in V$, then

$$(v_1 + v_2) + W = (u_1 + u_2) + W.$$

(Hint: use Theorem 1 and the properties of a subspace.)

Next, now that we have defined an addition on V/W, we proceed to define a scalar multiplication on V/W. Recall that V was a vector space over a field F. Now take an element of V/W. Again it is then a set of the form v + W for some $v \in V$.

Definition 5. If $c \in F$ and $v + W \in V/W$, we define their scalar multiplication by

 $c \cdot (v + W) := (c \cdot v) + W.$

Question 5. Let's first understand what this means in the example in Question 1. If $V = \mathbb{R}^2$, $F = \mathbb{R}$ and W = x-axis, compute $4 \cdot ((1,2) + W)$. Draw both your answer, as well as the original coset (1,2) + W, on the same Cartesian plane.

Again we need to check that the scalar multiplication in Definition 5 is welldefined, because there are many ways of writing a given coset as v + W for some $v \in V$. So we have

Question 6. Prove that if

$$v + W = u + W$$

for some $v, u \in V$, and if $c \in F$, then

 $(c \cdot v) + W = (c \cdot u) + W.$

(Hint: use Theorem 1 and the properties of a subspace.)

Finally, we are ready to state the first main theorem today:

Theorem 2. If V is a vector space over a field F and W is a subspace of V, then V/W is a vector space over F under the addition and scalar multiplication defined above.

A vector space of the form V/W is usually called a *quotient vector space*, or a *quotient space* for short.

Question 7. Let's understand this in the example in Question 1. Suppose $V = \mathbb{R}^2$, $F = \mathbb{R}$ and W = x-axis, and we want to see whether V/W is a vector space.

(a) Is the sum of two elements of V/W another element of V/W? (Hint: What is the sum $((x_1, y_1) + W) + ((x_2, y_2) + W)$?)

- (b) Is it true that $((x_1, y_1) + W) + ((x_2, y_2) + W) = ((x_2, y_2) + W) + ((x_1, y_1) + W)$ for all $(x_1, y_1), (x_2, y_2) \in V$?
- (c) What would an additive identity be in V/W under the addition we defined? (Hint: compute ((x, y) + W) + ((0, 0) + W) for all $(x, y) \in V$.)
- (d) If $(x, y) \in V$, what would the additive inverse of ((x, y) + W) be in V/W under the addition we defined? Represent your answer on a Cartesian plane.
- (e) Is it true that $1 \cdot ((x, y) + W) = ((x, y) + W)$ for all $(x, y) \in V$?
- (f) Is it true that $(c_1 + c_2) \cdot ((x, y) + W) = c_1 \cdot ((x, y) + W) + c_2 \cdot ((x, y) + W)$ for all $c_1, c_2 \in F$ and all $(x, y) \in V$?

There are certainly other axioms that one has to check to prove that V/W is a vector space in this situation, but I think the above gives you an idea of how the other axioms should be checked.

The proof of Theorem 2 in full generality will be left as an exercise. Basically, to prove Theorem 2, you will need to check the long list of axioms of a vector space like we did above for the specific example, since V/W is not a subset of any vector space; in particular, one should *always* remember that V/W is NOT a subspace of V.

We will need the following theorem about the dimension of a quotient space.

Theorem 3. Suppose V is a vector space over a field F and W is a subspace of V. If V is finite dimensional, then so is V/W, and

$$\dim(V/W) = \dim(V) - \dim(W).$$

Proof. Let $n = \dim(V)$ and $m = \dim(W)$. Then $m \leq n$, and we want to show that $\dim(V/W) = n - m$. Now pick a basis of W. This basis will consists of m vectors; call them w_1, w_2, \ldots, w_m . Then extend it to a basis of V; i.e. pick some vectors $v_1, \ldots, v_k \in V$ such that $\{w_1, \ldots, w_m, v_1, \ldots, v_k\}$ is a basis of V. This is

always possible by a theorem we proved before the midterm. Now any basis of V has exactly n vectors. So m+k = n, i.e. k = n-m. We claim that $\{v_1+W, \ldots, v_k+W\}$ is a basis of V/W. If that is the case, then $\dim(V/W) = k = n - m$, which is our desired result.

The proof of the claim is left as an exercise.

Finally, we will prove the following rank-nullity theorem:

Theorem 4 (Rank-nullity theorem). Suppose V, V' are vector spaces over a field F, and $\dim(V) < \infty$. Suppose $T: V \to V'$ is a linear map. Then the image of T is finite dimensional, and

$$\dim(image(T)) = \dim(V) - \dim(kernel(T)).$$

The theorem is such called since $\dim(\operatorname{image}(T))$ is sometimes called the *rank* of T, and $\dim(\operatorname{kernel}(T))$ is sometimes called the *nullity* of T. The theorem says that the sum of the rank and nullity of a linear map is equal to the dimension of its domain, if the domain is finite dimensional.

The proof consists of several steps. First, let W = kernel(T), and U = image(T). We knew from our previous class that W is a subspace of V, and that U is a vector space over F. Since W is a subspace of V, it makes sense to talk about the quotient space V/W. We claim that we can define a new map

$$\tilde{T}: V/W \to U$$

such that

$$\tilde{T}(v+W) := T(v) \text{ for all } v \in V$$

There is again a problem of well-definedness; an element of V/W can be written in the form v + W for many different choices of $v \in V$. Hence we need to answer the following question:

Question 8. If

 $v_1 + W = v_2 + W$

for some $v_1, v_2 \in V$, is it true that

$$T(v_1) = T(v_2)?$$

(*Hint:* The answer had better be yes, and to check that one uses Theorem 1 again, together with the fact that W = kernel(T).)

Now we have checked that the map $\tilde{T}: V/W \to U$ we introduced above is welldefined. To proceed further, we claim that \tilde{T} is linear: **Question 9.** Check that $\tilde{T}: V/W \to U$ is linear. (Hint: What do you need to check? You need to check that

$$\tilde{T}((v_1+W)+(v_2+W)) = \tilde{T}(v_1+W) + \tilde{T}(v_2+W)$$

for all $v_1, v_2 \in V$, and

$$\tilde{T}(c \cdot (v+W)) = c \cdot \tilde{T}(v+W)$$

for all $c \in F$ and all $v \in V$.)

Next, we claim that $\tilde{T} \colon V/W \to U$ is an isomorphism between the two vector spaces:

Question 10. Check that \tilde{T} is injective. (Hint: If $\tilde{T}(v+W) = 0$ for some $v \in V$, what can you say about v? Can you conclude that v + W = 0 + W?)

Question 11. Check that \tilde{T} is surjective. (Hint: Given $u \in U$, there exists $v \in V$ such that T(v) = u. (Why?) Now what is $\tilde{T}(v + W)$? Conclude the proof from here.)

Hence to conclude, $\tilde{T}: V/W \to U$ is an isomorphism. Thus $\dim(U) = \dim(V/W) = \dim(V) - \dim(W);$

in other words,

 $\dim(\operatorname{image}(T)) = \dim(V) - \dim(\operatorname{kernel}(T)).$

This proves the rank-nullity theorem.

Exercises.

- 1. Let $V = \mathbb{R}^2$ be a vector space over \mathbb{R} , and $W = \{(x,y): x + y = 0\}$ be a subspace of V. Represent on a Cartesian plane some cosets of W in V. Computer ((0,3)+W) + ((0,-4)+W) and $3 \cdot ((0,2)+W)$. Can you describe how you add two elements of V/W with a picture?
- 2. Let $V = \mathbb{R}^3$ be a vector space over \mathbb{R} , and $W_1 = \{(x, y, z) : z = x + y\}$ be a subspace of V. Draw some cosets of W_1 in V on a Cartesian coordinate chart. Also, if now $W_2 = \{(x, y, z) : x = 0, y = z\}$, so that W_2 is also a subspace of V, can you draw some cosets of W_2 in V on a separate picture?
- 3. Prove Theorem 1. (Hint: Suppose first $v_1 v_2 \in W$. Then $v_1 = v_2 + w_0$ for some $w_0 \in W$. Now we need to check $v_1 + W \subseteq v_2 + W$, and $v_2 + W \subseteq v_1 + W$. But the former follows, since if $w \in W$, then $v_1 + w = v_2 + w_0 + w \in v_2 + W$. Similarly, one can check that $v_2 + W \subseteq v_1 + W$. Thus $v_1 + W = v_2 + W$, as desired.

Next, suppose $v_1 + W = v_2 + W$. Then since $v_1 = v_1 + 0$ and $0 \in W$, we have $v_1 \in v_1 + W$. Thus $v_1 \in v_2 + W$, i.e. $v_1 = v_2 + w_0$ for some $w_0 \in W$. Thus $v_1 - v_2 = w_0 \in W$.)

4. Suppose $w_1, \ldots, w_m, v_1, \ldots, v_k$ are as in the proof of Theorem 3. Let

$$S = \{v_1 + W, \dots, v_k + W\}$$

be a subset of V/W with k elements.

(a) Prove that S is linearly independent. (Hint: Suppose

$$a_1(v_1 + W) + \dots + a_k(v_k + W) = 0 + W$$

for some $a_1, \ldots, a_k \in F$. Then one has

$$a_1v_1 + \dots + a_kv_k \in W$$

(why?), and thus there are coefficients $b_1, \ldots, b_m \in F$ such that

$$a_1v_1 + \dots + a_kv_k = b_1w_1 + \dots + b_mw_m.$$

(why?) Now conclude that $a_1 = \cdots = a_k = 0$.)

(b) Prove that S spans V/W. (Hint: Pick an element from V/W. Then it is of the form v+W for some $v \in V$. Now there are scalars $a_1, \ldots, a_k, b_1, \ldots, b_m \in F$ such that

$$v = a_1v_1 + \dots + a_kv_k + b_1w_1 + \dots + b_mv_m.$$

(why?) Then

$$v + W = a_1(v_1 + W) + \dots + a_k(v_k + W)$$

+ $b_1(w_1 + W) + \dots + b_m(w_m + W).$

(why?) Now $w_1 + W = \cdots = w_m + W = 0 + W$ (why?). So the above equation says

 $v + W = a_1(v_1 + W) + \dots + a_k(v_k + W).$

(why?) This concludes the proof. (why?))

Together, we proved that S is a basis of V/W, establishing the claim in the proof of Theorem 3.

5. Give a proof of Theorem 2.

8