
Math 350 Fall 2011 Worksheet 2

Name:

The goal of this worksheet is to help you understand why every linear map
between two finite dimensional vector spaces can be represented by a matrix. All
vector spaces in this worksheet will be finite dimensional.

To begin with, suppose V is a vector space, and {v1, . . . , vn} is a basis of V . We
are going to call v1 the first basis vector in this basis, v2 the second vector in this
basis, and so on, making {v1, . . . , vn} an ordered basis1 of V (i.e. a basis of V with
an ordering of the basis vectors). An ordered basis is usually denoted by Greek
letters (like α, β, γ) in the book, and we adopt the same convention.

Example 1. Let V = R2 and α = {(1, 0), (0, 1)}. Then α is an ordered basis of V ,
where (1, 0) is the first basis vector, (0, 1) is the second basis vector.

Example 2. Let V = R2 and β = {(1, 1), (0, 1)}. Then β is another ordered basis
of V , which is different from α.

Example 3. Let V = R2 and γ = {(0, 1), (1, 0)}. Then γ is also an ordered basis
of V , which is also different from α. Reason: The first basis vector in γ is (0, 1),
which is not the same as the first basis vector in α (which was (1, 0)).

Now suppose V is a vector space with an ordered basis α = {v1, . . . , vn}. Then
every vector in V can be written uniquely as v = a1v1 + · · ·+anvn for some scalars
a1, . . . , an. We define the coordinate vector of v with respect to α to be

a1
a2
...
an

 .

This is usually denoted by [v]α.

Question 1. Suppose V = R2 and v = (3, 7) ∈ V . Then if α, β, γ are the ordered
bases as in the previous examples, check that

[v]α =

(
3
7

)
, [v]γ =

(
7
3

)
, and [v]β =

(
3
4

)
.

1Technically, to indicate that there is an ordering of the elements in say α above, it is better
to write α = ((1, 0), (0, 1)) with a pair of paratheses ( ) rather than a pair of braces { }. But

since this is the notation adopted in the book, we will follow this notation.
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In fact, if you weren’t told the answer that [v]β =

(
3
4

)
in the above example,

one way of figuring this out is the following. Suppose [v]β =

(
a
b

)
for some real

numbers a and b that you want to determine. Then

(3, 7) = a(1, 1) + b(0, 1)

(why?), so

(3, 7) = (a, a+ b),

i.e. {
a = 3

a+ b = 7
.

From here you can solve for a and b and show that a = 3, b = 4.

Question 2. Suppose V = R2 and v = (7,−1) ∈ V . Let α, β and γ be the ordered
basis of V as above. Find [v]α, [v]β and [v]γ .

Question 3. Suppose V is the vector space of all polynomials on R of degree at
most 3. Then α := {1, x, x2, x3} is an ordered basis of V . Let p(x) = 3x3 + 4x2− 1
and q(x) = (x+ 1)2 so that p(x), q(x) ∈ V . What is [p(x)]α? What is [q(x)]α?

Question 4. Suppose V and α are as in the previous question, and r(x) ∈ V is

such that [r(x)]α =


−1
0
0
3

. What is r(x)?
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Now we move on to representing linear maps by matrices. Let’s begin with an
explicit example.

Question 5. Suppose V is the vector space of all real polynomials of degree at most
3 over R, and T : V → V is the linear map

T (p(x)) = p′(x)

for all p(x) ∈ V . Let β = {x3, x2, x, 1} be an ordered basis of V .

(a) Suppose q(x) ∈ V and [q(x)]β =


−1
0
0
3

.

(i) What is q(x)?

(ii) Compute T (q(x)).

(iii) What is [T (q(x))]β?

(b) More generally, suppose p(x) ∈ V is such that [p(x)]β =


a
b
c
d

. Can you

compute [T (p(x))]β?

From the above question, we see that for any p(x) ∈ V , if [p(x)]β =


a
b
c
d

,

then we have

[T (p(x))]β = a


0
3
0
0

+b


0
0
2
0

+c


0
0
0
1

+d


0
0
0
0

 =


0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0




a
b
c
d
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It follows that for any p(x) ∈ V , we have

[T (p(x))]β =


0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0

 [p(x)]β .

We therefore say that the linear map T : V → V is represented, with respect to the
basis β of V , by the matrix 

0 0 0 0
3 0 0 0
0 2 0 0
0 0 1 0

 .

In general, we have the following theorem:

Theorem 1. Suppose V and W are vector spaces over some field F , with dimV = n
and dimW = m. Suppose T : V →W is a linear map. If β is an ordered basis for
V and γ is an ordered basis for W , then there exists a unique m×n matrix A such
that

[T (v)]γ = A[v]β for all v ∈ V .

The matrix A is usually written [T ]γβ , and we call [T ]γβ a matrix representation

of T (with respect to the ordered bases β and γ).

Question 6. Let Pn be the vector space of all real polynomials of degree at most n
over R. Let V = P3 and W = P2. Let T : V →W be the linear map

T (p(x)) = 2p′(x) + p′′(x).

Let β = {1, x, x2, x3} be an ordered basis of V , and γ = {1, x, x2} be an ordered
basis of W . Find [T ]γβ.
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Conversely, if V and W are as in the theorem above, and β, γ are ordered bases
of V and W respectively, then for any m×n matrix A, then one can define a linear
map T : V →W such that

[T (v)]γ = A[v]β for all v ∈ V .
In other words, there is a linear operator T : V →W with [T ]γβ = A.

Question 7. Let Pn be as in the previous question. Suppose V = P2 and W = P3.
Let β := {1, x, x2} and γ := {1, x, x2, x3} be ordered bases of V and W respectively.
Let A be the matrix 

0 0 0
1 0 0
0 1/2 0
0 0 1/3

 .

Let T : V →W be a map defined by [T (v)]γ = A[v]β for all v ∈ V . Show that

T (p(x)) =

∫ x

0

p(t)dt

for all p(x) ∈ V , and that T is linear.

From the discussion above we see that there is a correspondence between linear
maps and matrices. Now if you are given two linear maps (with the correct domains
and targets), you can compose them, and you still get a linear map; if you are given
two matrices (of the correct sizes), you can multiply them. It turns out even this
composition and multiplication corresponds to each other.
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Theorem 2. Suppose T1 : U → V and T2 : V →W are linear maps between vector
spaces. Let α be an ordered basis of U , β be an ordered basis of V and γ be an
ordered basis of W . Then

[T2 ◦ T1]γα = [T2]γβ [T1]βα.

In other words, the matrix representation of the linear map T2 ◦ T1 : U → W is
the product of the matrix representations of T2 and T1 (taken with respect to the
respective bases).

Note that one has to keep the order of the matrix multiplication on the right
hand side here, since matrix multiplications do not commute.

In fact matrix multiplication was defined so that this theorem holds; this is the
real reason why matrices have to be multiplied in the peculiar way that you have
learned.

The proof of this theorem is very easy: if u ∈ U , then

[(T2 ◦ T1)(u)]γ = [T2(T1(u))]γ = [T2]γβ [T1(u)]β = [T2]γβ [T1]βα[u]α

so by the uniqueness assertion in Theorem 1, one has

[T2 ◦ T1]γα = [T2]γβ [T1]βα.

If T : V → W is a linear map between two vector spaces and β, γ are ordered
bases of V and W respectively, then the matrix [T ]γβ obviously depends on β and
γ.

Question 8. For example, consider the identity map Id : R2 → R2. Let β =
{(1, 3), (0, 2)} be an ordered basis of R2, and γ = {(1, 0), (0, 1)} be the standard
ordered basis of R2.

(i) Can you compute [Id]γγ?

(Remark: In fact, if V is any vector space and γ is any ordered basis of V ,
then [Id]γγ is the identity matrix of the appropriate size.)

(ii) What about [Id]γβ?
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(iii) What about [Id]βγ?

In general, if V is a vector space, and β, β̃ are two ordered bases of V , then

the matrix [IdV ]β̃β is called the change of coordinate matrix from β to β̃, where
IdV : V → V is the identity map on V .

Question 9. Let V be the vector space of all real polynomials of degree at most 3
over R. Let β = {1, x, x2, x3} and β̃ = {1 + x, x+ x2, x2 + x3, 1 + x+ x2 + x3} be

two ordered basis of V . What is the change of coordinate matrix from β to β̃?

The important theorem about the change of coordinate matrices is the following:



8

Theorem 3. Suppose T : V → W is a linear map. Suppose β, β̃ are two ordered
bases of V , and γ, γ̃ are two ordered bases of W . Then

[T ]γ̃
β̃

= [IdW ]γ̃γ [T ]γβ [IdV ]β
β̃
.

This is in fact just a direct application of Theorem 2, once one notes that

T = IdW ◦ T ◦ IdV .

Let’s see an example of an application of this theorem. Let V = P3, W = P2

and T : V → W be given by T (p(x)) = 2p′(x) + p′′(x) as in Question 6. Let
β = {1, x, x2, x3} be an ordered basis of V , and γ = {1, x, x2} be an ordered basis
of W . We have computed [T ]γβ in Question 6. If now we want to compute [T ]γ

β̃

instead, where β̃ is the ordered basis of V in Question 9, then one just needs to
apply the previous theorem; in particular,

[T ]γ
β̃

= (answer of Q.6)(answer of Q.9).

Next, we have the following theorem:

Theorem 4. If V is a vector space, with two ordered basis β and β̃, and if B is
the change of coordinate matrix from β to β̃, then B is invertible, and the change
of coordinate matrix from β̃ to β is given by B−1.

Indeed, suppose the change of coordinate matrix from β̃ to β is a matrix C.
Then

BC = [IdV ]β̃β [IdV ]β
β̃

= [IdV ]β̃
β̃

= I

where I is the identity matrix of the appropriate size. The second equality is
an application of Theorem 2, and the last equality follows from the remark after
Question 8(i). Similarly, one can show that CB = I. Thus

BC = CB = I,

which says B is invertible and C = B−1, as desired.

A piece of convention: If T : V → V is a linear map mapping a vector space V

into itself, and if β is an ordered basis of V , then [T ]ββ is usually abbreviated as

[T ]β .

From the above discussion, we see that

Theorem 5. Suppose T : V → V is a linear map, and β, β̃ are two ordered bases
of V . If B is the change of coordinate matrix from β to β̃, then

[T ]β̃ = B[T ]βB
−1.

Two n × n matrices M and N are said to be similar, if there is an invertible
matrix B such that M = BNB−1. Thus if T : V → V is a linear map of V into
itself, and if β, β̃ are two ordered bases of V , then [T ]β and [T ]β̃ are similar to each
other.
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Finally, we have the following theorem:

Theorem 6. Suppose V and W are vector spaces over some field F of dimensions
n and m respectively. The set of all linear maps from V to W is a vector space of
dimension mn, and is in fact isomorphic to the vector space of all m× n matrices
with entries in F via the isomorphism

T 7→ [T ]γβ ,

where β, γ are any ordered bases of V and W respectively.

See Theorem 2.20 of the book and its Corollary.

We close by mentioning the following. We have been studying linear maps in this
course, and we have seen a correspondence between matrices and linear maps in the
above discussion. It turns out that this correspondence can be used, in conjunction
with our understanding of linear maps, to understand matrices. For instance, if M
is a m×n real matrix, then there is an associated linear map TM : Rn → Rm given
by

TM (v) = Mv for all v ∈ Rn.
The rank of the matrix M is then defined to be the rank of this linear map TM ;
the nullity of the matrix M is then defined to be the nullity of this linear map TM .
It follows that the rank of a matrix is the dimension of its column space, and the
nullity of a matrix is the dimension of its nullspace. The rank-nullity theorem for
linear maps then says for any m× n matrix M , one has

(1) rank(M) + nullity(M) = n.

In particular, if m = n, i.e. if M is an n × n matrix, then the following are
equivalent:

(a) The columns of M are linearly independent vectors in Rn;
(b) The system of equations Mx = 0 has only the trivial solution x = 0;
(c) The nullity of M is 0;
(d) The rank of M is n;
(e) The columns of M span Rn;
(f) The map x ∈ Rn 7→Mx ∈ Rn is bijective;
(g) The matrix M is invertible.

In fact, it is easy to see, from definitions, that (a) ⇔ (b) ⇔ (c), and that (d) ⇔
(e). The equivalence of (c) and (d) follows from (1). Thus (a) through (e) are
equivalent; then their equivalence with (f) and (g) follows. We have seen a proof
of the equivalence of (a) and (e) already in Chapter 1; the above provides a second
proof of this equivalence, via the rank-nullity theorem.


