Math 403 Spring 2011
 Midterm 2 review

1. Compute the following line integrals:
(a) $\int_{|z-i|=3} \frac{1}{e^{2 \pi z}(z-2 i)(z-5 i)} d z$
(b) $\int_{|z|=6} \frac{\sin (\pi z)}{(2 z-3)(z-2)} d z$
(c) $\int_{|z|=1} \frac{e^{z}}{z^{2011}} d z$
(d) $\int_{|z|=1} z^{2011} e^{1 / z} d z$
(e) $\int_{|z|=1} \frac{z}{\sin ^{2} z} d z$
(f) $\int_{|z|=1} \frac{1}{z(1-\cos z)} d z$
(g) $\int_{|z-1|=5} \frac{e^{z}}{z^{2}(z-3)} d z$
(h) $\int_{|z-\pi|=1} \frac{1}{\sin z} d z$

The circles should be oriented counter-clockwise.
2. Suppose γ is the following curve:

Compute $\int_{\gamma} \frac{e^{2 z}}{z^{2}\left(1-z^{2}\right)} d z$.
3. Find the principal parts of the Laurent series of the following functions when they are expanded in a small punctured disc centered at 0 . Also, determine whether 0 is a removable singularity, pole or essential singularity of the function in each case. If it is a pole, find also the order of the pole. Find also the residue of the functions at 0 .
(a) $\frac{z+1}{z^{3}(z+2 i)}$
(b) $\frac{1}{z^{3}(z+1) e^{z}}$ (Hint: Better write $1 / e^{z}$ as e^{-z} instead of carrying out a division of power series!)
(c) $\frac{1}{z^{2}(z+1) \sin z}$
(d) $z^{3} \cos (1 / z)$
(e) $\frac{1}{z^{2}-z}-\frac{1}{z}$
4. Expand the function $\frac{\sin (2 z)}{(z-3 \pi)^{6}}$ in Laurent series in a small punctured disc centered at 3π. Is 3π a removable singularity, pole or essential singularity of the function? If it is a pole, what is its order? Find also the residue of the function at 3π.
5. Compute the following integrals using complex analysis. You should give a careful argument when you need to estimate certain integrals. (On the other hand, a useful fact to know is that if you have a rational function, i.e. the quotient of two polynomials $P(z) / Q(z)$, then the maximum of $P(z) / Q(z)$ over the circle of radius R centered at the origin is comparable to, up to a multiplicative constant, $1 / R^{m}$ as $R \rightarrow \infty$, where m is the degree of Q minus the degree of P. You will be allowed to use this (only correctly!) in the midterm.)
(a) $\int_{0}^{2 \pi} \frac{d x}{5+4 \cos x}$ (Answer: $\frac{\pi}{3}$)
(b) $\int_{-\infty}^{\infty} \frac{1}{\left(x^{2}+1\right)^{2}} d x$ (Answer: $\frac{\pi}{2}$)
(c) $\int_{-\infty}^{\infty} \frac{\cos (3 x)}{\left(x^{2}+1\right)^{2} d x}$ (Answer: $\left.\frac{2 \pi}{e^{3}}\right)$
(d) $\int_{-\infty}^{\infty} \frac{\sin x}{x^{2}+4 x+5} d x$ (Answer: $-\frac{\pi}{e} \sin 2$)
(e) $\int_{0}^{\infty} \frac{1-\cos x}{x^{2}} d x$ (Hint: Use the indented semi-circle, as in Figure 2.16 of your textbook. In fact, this integral is just a variant of the one in Example 6 of Section 2.6 of your text.) (Answer: $\frac{\pi}{2}$)
6. Find the number of zeroes of the polynomial $P(z)=z^{10}-z^{4}+7 i z^{3}+2 z^{2}+z-1$ in each of the following regions (counting multiplicities):
(a) the closed unit disc $\{z:|z| \leq 1\}$
(b) the closed annulus $\{z: 1 \leq|z| \leq 2\}$
(c) the closed annulus $\{z:|z| \geq 2\}$.
7. Find the number of solutions of the equation $4 z^{3}=e^{z}$ in the closed unit disc $\{z:|z| \leq 1\}$, counting multiplicities.
8. Find the number of zeroes of $5 z e^{z}-1$ in the closed unit disc $\{z:|z| \leq 2\}$, counting multiplicities.
9. Find the number of solutions of the equation $z+3=e^{z}$ on the half plane $\{z: \operatorname{Re} z \leq 0\}$, counting multiplicities.
10. Suppose $f(z)$ is analytic in a small disc centered at z_{0}, and z_{0} is a zero of $f(z)$ of order 1. Show that

$$
\int_{\gamma} \frac{1}{f(z)} d z=2 \pi i \frac{1}{f^{\prime}\left(z_{0}\right)}
$$

if γ is a sufficiently small circle centered at z_{0}. This is a very useful fact to know when computing line integrals. You should try using this to solve Question 1(h) above.
11. Suppose $g(z)$ is analytic in a small disc centered at z_{0}. Show that the residue of the function $\frac{g(z)}{\left(z-z_{0}\right)^{k}}$ is equal to

$$
\frac{1}{(k-1)!} g^{(k-1)}\left(z_{0}\right)
$$

if k is a positive integer. Again, this gives you a very easy way of computing the line integral of $\frac{g(z)}{\left(z-z_{0}\right)^{k}}$ around a small circle centered at z_{0} (how?). You should try using this to solve Questions 1(c)(g), Question 2 and compute the residues in Questions 3(b)(c) again.
12. Suppose $h(z)$ is analytic in a small disc centered at z_{0}, and $h\left(z_{0}\right) \neq 0$. Show that

$$
\int_{\gamma} \frac{1}{\left(z-z_{0}\right)^{2} h(z)} d z=-2 \pi i \frac{h^{\prime}\left(z_{0}\right)}{h^{2}\left(z_{0}\right)}
$$

if γ is a sufficiently small circle centered at z_{0}. (Hint: Use the previous question.)
13. The purpose of this question is to show the remarkable identity

$$
\begin{equation*}
\frac{\pi^{2}}{\sin ^{2}(\pi z)}=\sum_{n=-\infty}^{\infty} \frac{1}{(z+n)^{2}} \tag{1}
\end{equation*}
$$

which holds whenever z is a complex number that is not an integer. (In particular, this is true if z is a real number but not an integer, and this is already not so easy to prove without complex analysis ${ }^{1}!$) There are two derivations, both using complex analysis, and we will carry out both.
(a) Fix z in $\mathbb{C} \backslash \mathbb{Z}$. Consider the function

$$
f(w)=\frac{\pi \cot (\pi w)}{(w+z)^{2}}
$$

(i) Show that every integer is a pole of $f(w)$, and that the only other pole of $f(w)$ is at $w=-z$.
(ii) Suppose n is an integer. Show that the residue of $f(w)$ at $w=n$ is $\frac{1}{(z+n)^{2}}$.
(iii) Show that the residue of $f(w)$ at $-z$ is $-\frac{\pi^{2}}{\sin ^{2}(\pi z)}$.
(iv) Show that there is some constant C such that

$$
\max _{|z|=N+\frac{1}{2}}|f(z)| \leq \frac{C}{N^{2}}
$$

for all positive integer N.
(v) Show that

$$
\lim _{N \rightarrow \infty} \int_{|z|=N+\frac{1}{2}} f(z) d z \rightarrow 0
$$

where N tends to infinity along the positive integers.
(vi) Conclude that (1) holds.

[^0](b) Consider the function
$$
g(z)=\frac{\pi^{2}}{\sin ^{2}(\pi z)}-\sum_{n=-\infty}^{\infty} \frac{1}{(z+n)^{2}} .
$$

This function is analytic in z except possibly at the integers. We want to show that $g(z)$ is identically zero.
(i) Compute the principal part of the Laurent series expansion of the function

$$
\frac{\pi^{2}}{\sin ^{2}(\pi z)}
$$

in a small punctured disc centered at $z=0$. Hence, conclude that 0 is a removable singularity of $g(z)$.
(ii) Show that $g(z+m)=g(z)$ for any integer m.
(iii) Show that any integer is a removable singularity of $g(z)$. (Hint: Use (i) and (ii) above.) It follows that $g(z)$ extends to an entire function on \mathbb{C}.
(iv) Show that

$$
\max _{|\operatorname{Im} z|=y}|g(z)| \rightarrow 0 \quad \text { as } y \rightarrow+\infty .
$$

(v) Show that $g(z)$ is a bounded function. (Hint: Use (ii) and (iv).)
(vi) Conclude that $g(z)$ is constant. (Hint: Liouville's theorem.)
(vii) Conclude that $g(z)$ is identically zero. (Hint: Use (iv) and (vi).)

[^0]: ${ }^{1}$ This can be proved, on the other hand, using the Poisson summation formula in Fourier analysis if z is real and non-integral.

