MATH6081A Homework 1

1. Prove Young's convolution inequality. (Hint: If $f \in L^{p}$ and $g \in L^{q}$ are non-negative, without loss of generality assume $\|f\|_{p}=\|g\|_{q}=1$. Then for $1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$, we have

$$
f * g(x) \leq \int f(x-y)^{\frac{p}{r}} g(y)^{\frac{q}{r}} f(x-y)^{\frac{r-p}{r}} g(y)^{\frac{r-q}{r}} d y
$$

Applying Hölder's inequality with

$$
1=\frac{1}{r}+\left(\frac{1}{p}-\frac{1}{r}\right)+\left(\frac{1}{q}-\frac{1}{r}\right)
$$

and using the normalizations of f and g, we get

$$
f * g(x) \leq\left(\int f(x-y)^{p} g(y)^{q} d y\right)^{\frac{1}{r}}
$$

Raising both sides to power r and integrate, we obtain the desired inequality. Alternatively, we can rewrite this proof more symmetrically using duality: let $s=r^{\prime}$ so that $\frac{1}{p}+\frac{1}{q}+\frac{1}{s}=2$. Then

$$
\iint f(x-y) g(y) h(x) d y d x=\iint\left[f(x-y)^{p} g(y)^{q}\right]^{1-\frac{1}{s}}\left[f(x-y)^{p} h(x)^{s}\right]^{1-\frac{1}{q}}\left[g(y)^{q} h(x)^{s}\right]^{1-\frac{1}{p}} d y d x
$$

Apply Hölder's inequality with

$$
1=\left(1-\frac{1}{s}\right)+\left(1-\frac{1}{q}\right)+\left(1-\frac{1}{p}\right)
$$

we obtain the desired inequality.)
2. For $x \in \mathbb{T}$, let

$$
D_{N}(x)=\sum_{|n| \leq N} e^{2 \pi i n x} \quad \text { for } N \in \mathbb{N} \cup\{0\}
$$

and

$$
F_{N}(x)=\frac{D_{0}(x)+D_{1}(x)+\cdots+D_{N-1}(x)}{N} \text { for } N \in \mathbb{N}
$$

Find a closed formula for both $D_{N}(x)$ and $F_{N}(x)$.
3. (a) Show that if $f \in L^{p}(\mathbb{T}), 1 \leq p<\infty$, then

$$
\lim _{N \rightarrow \infty}\left\|f * F_{N}-f\right\|_{L^{p}(\mathbb{T})}=0
$$

(Hint: Approximate f by a continuous function.)
(b) Show that if $f \in L^{1}(\mathbb{T})$ and

$$
\widehat{f}(n)=0
$$

for all $n \in \mathbb{Z}$, then $f(x)=0$ a.e. Hence if $f, g \in L^{1}(\mathbb{T})$ and

$$
\widehat{f}(n)=\widehat{g}(n)
$$

for all $n \in \mathbb{Z}$, then $f(x)=g(x)$ a.e. (Hint: Use (a).)
4. Let $f: \mathbb{T} \rightarrow \mathbb{C}$. Show that
(a) If $f \in C^{k}(\mathbb{T})$ for some positive integer k, then

$$
|\widehat{f}(n)| \lesssim(1+|n|)^{-k}
$$

In particular the Fourier series of f converges absolutely and uniformly if $k \geq 2$.
(b) If f is Lipschitz on \mathbb{T}, then

$$
|\widehat{f}(n)| \lesssim(1+|n|)^{-1}
$$

(c) If f is Hölder continuous of some order $\alpha \in(0,1)$ on \mathbb{T}, then

$$
|\widehat{f}(n)| \lesssim(1+|n|)^{-\alpha}
$$

Show also that

$$
\sum_{2^{k} \leq|n|<2^{k+1}}|\widehat{f}(n)|^{2} \lesssim 2^{-2 k \alpha}
$$

for all positive integers k, so the Fourier series of f converges absolutely and uniformly as long as $\alpha>1 / 2$. (Hint: For the second estimate, consider the L^{2} norm of $F_{h}(x):=f(x+h)-f(x)$ for some h with $|h| \simeq 2^{-k}$.)
5. Prove the Riemann-Lebesgue lemma for the Fourier transform on \mathbb{R}^{n} : if $f \in L^{1}\left(\mathbb{R}^{n}\right)$, then \widehat{f} is continuous on \mathbb{R}^{n} and vanishes at infinity. (Hint: Approximate $f \in L^{1}\left(\mathbb{R}^{n}\right)$ by a Schwartz function on \mathbb{R}^{n}.) How do you prove a similar statement on \mathbb{T} ?
6. (a) Show that if $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p<\infty$, then

$$
\lim _{y \rightarrow 0}\left\|\tau_{y} f-f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}=0
$$

where τ_{y} is the translation given by $\tau_{y} f(x):=f(x+y)$ for $y \in \mathbb{R}^{n}$.
(b) What can you say if $p=\infty$?
7. Compute the Fourier transform of the following L^{1} functions of x on \mathbb{R}^{n} :
(a) $e^{-\pi|x|^{2}}$
(b) $e^{-\pi t|x|^{2}}$, where $t>0$
(c) $\frac{1}{\left(1+|x|^{2}\right)^{\frac{n+1}{2}}}$
(Hint: Write

$$
\frac{1}{\left(1+|x|^{2}\right)^{\frac{n+1}{2}}}=\frac{\pi^{\frac{n+1}{2}}}{\Gamma\left(\frac{n+1}{2}\right)} \int_{0}^{\infty} e^{-\pi t\left(1+|x|^{2}\right)} t^{\frac{n+1}{2}} \frac{d t}{t}
$$

and use (b). This reduces the problem to the computation of an integral independent of n, and to compute that integral amounts to computing the Fourier transform of $\frac{1}{1+x^{2}}$ on \mathbb{R}, a task that can be accomplished by, for instance, calculus of residues. See also the method of subordination.)
(d) $\frac{y}{\left(y^{2}+|x|^{2}\right)^{\frac{n+1}{2}}}$, where $y>0$
8. If A is a positive definite real symmetric $n \times n$ matrix, show that the Fourier transform of $e^{-\pi\langle x, A x\rangle}$ on \mathbb{R}^{n} is $(\operatorname{det} A)^{-1 / 2} e^{-\pi\left\langle x, A^{-1} x\right\rangle}$. This generalizes Question 7(b).
9. From the answer of Question 7(d), it is easy to evaluate the Fourier transform of the L^{1} function $e^{-2 \pi y|x|}$ of $x \in \mathbb{R}^{n}$ for all $y>0$ (how?). In this question we give an alternative direct evaluation of the same Fourier transform, that does not require knowing the answer ahead of time.
(a) Compute directly the Fourier transform of $e^{-2 \pi|x|}$ in 1-dimension by evaluating

$$
\int_{\mathbb{R}} e^{-2 \pi|x|} e^{-2 \pi i x \xi} d x
$$

Hence deduce that

$$
e^{-2 \pi|u|}=\int_{\mathbb{R}} \frac{e^{2 \pi i u v}}{\pi\left(1+v^{2}\right)} d v
$$

for all $u \in \mathbb{R}$.
(b) Using the identity

$$
\frac{1}{\pi\left(1+v^{2}\right)}=\int_{0}^{\infty} e^{-\pi t\left(1+v^{2}\right)} d t
$$

(which is just a version of the display equation in the hint of Question 7(c)), express $e^{-2 \pi|u|}$ as a suitable weighted average of $e^{-\pi t u^{2}}$ over $t \in(0, \infty)$ for all $u \in \mathbb{R}$.
(c) The above allows us to write $e^{-2 \pi|x|}$ as a suitable weighted average of $e^{-\pi t|x|^{2}}$ over $t \in(0, \infty)$ for every $x \in \mathbb{R}^{n}$. Combine this with the answer of Question $7(\mathrm{~b})$ to evaluate the Fourier transform of $e^{-2 \pi|x|}$ on \mathbb{R}^{n}.
(d) Hence evaluate the Fourier transform of $e^{-2 \pi y|x|}$ on \mathbb{R}^{n} for every $y>0$.
10. Compute the k-fold convolution $e^{-\pi a_{1}|x|^{2}} * e^{-\pi a_{2}|x|^{2}} * \cdots * e^{-\pi a_{k}|x|^{2}}$ on \mathbb{R}^{n}, if a_{1}, \ldots, a_{k} are positive real numbers. (Hint: What is the fastest way here?)
11. Prove the following inequality of Hardy's: If $p \in(1, \infty)$, then for any non-negative measurable function f on $(0, \infty)$, we have

$$
\int_{0}^{\infty}\left(\frac{1}{x} \int_{0}^{x} f(t) d t\right)^{p} d x \leq\left(\frac{p}{p-1}\right)^{p} \int_{0}^{\infty} f(x)^{p} d x
$$

(Hint: Write $\frac{1}{x} \int_{0}^{x} f(t) d t$ as $\int_{0}^{1} f(x t) d t$ and use Minkowski's inequality. Alternatively, let $F(x)=x^{1 / p} f(x)$. Then the inequality to be proved can be reformulated as

$$
\left\|\int_{0}^{\infty} F(x t) g\left(t^{-1}\right) \frac{d t}{t}\right\|_{L^{p}\left(\mathbb{R}_{+}, \frac{d x}{x}\right)} \leq \frac{p}{p-1}\|F(x)\|_{L^{p}\left(\mathbb{R}_{+}, \frac{d x}{x}\right)}
$$

where $g(t):=t^{\frac{1}{p}-1} \chi_{[1, \infty)}(t)$. This is a convolution inequality on the multiplicative group \mathbb{R}_{+}, where $\frac{d x}{x}$ is the Haar measure on the group. Applying Young's convolution inequality yields the desired estimate.)
12. For $p \in(1, \infty)$, let

$$
C_{p}:=\int_{0}^{\infty} \frac{d t}{t^{1 / p}(1+t)}<\infty
$$

(a) Show that

$$
C_{p}=\frac{\pi}{\sin (\pi / p)}
$$

(Hint: Use contour integration.)
(b) For $f: \mathbb{R}_{+} \rightarrow \mathbb{C}$ (say bounded with compact support) and $x \in \mathbb{R}_{+}$, we define the Hilbert integral of f by

$$
H f(x)=\int_{0}^{\infty} \frac{f(t)}{x+t} d t
$$

Show that for $p \in(1, \infty)$, we have

$$
\left(\int_{0}^{\infty}|H f(x)|^{p} d x\right)^{1 / p} \leq C_{p}\left(\int_{0}^{\infty}|f(x)|^{p} d x\right)^{1 / p}
$$

Also show that this inequality is false if we replace C_{p} by anything strictly smaller. (Hint: To prove the positive result, a similar strategy to the previous question works. You can rewrite $H f(x)$ as $\int_{0}^{\infty} \frac{f(x t)}{1+t} d t$ and use Minkowski's inequality. Alternatively, let $F(x)=x^{1 / p} f(x)$. Then the inequality to be proved can be reformulated as

$$
\left\|\int_{0}^{\infty} F(x t) g\left(t^{-1}\right) \frac{d t}{t}\right\|_{L^{p}\left(\mathbb{R}_{+}, \frac{d x}{x}\right)} \leq C_{p}\|F(x)\|_{L^{p}\left(\mathbb{R}_{+}, \frac{d x}{x}\right)}
$$

where $g(t):=\frac{t^{1 / p}}{1+t}$. This is a convolution inequality on the multiplicative group \mathbb{R}_{+}, where $\frac{d x}{x}$ is the Haar measure on the group. Applying Young's convolution inequality yields the desired estimate. Now examine the proof of the positive result, to show that the constant C_{p} cannot be improved.)
13. We record here three equivalent reformulations of Hölder's inequality that are often useful, and give one application.
(a) If $p, q, r \in(0, \infty]$ and $\frac{1}{p}=\frac{1}{q}+\frac{1}{r}$, then for any measurable functions f and g,

$$
\|f g\|_{L^{p}} \leq\|f\|_{L^{q}}\|g\|_{L^{r}} .
$$

(b) If $\theta \in[0,1]$ and $p \in(0, \infty]$, then for any non-negative measurable functions F and G,

$$
\left\|F^{1-\theta} G^{\theta}\right\|_{L^{p}} \leq\|F\|_{L^{p}}^{1-\theta}\|G\|_{L^{p}}^{\theta}
$$

(c) If $\theta \in[0,1]$ and $p, p_{0}, p_{1} \in(0, \infty]$ with $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$, then for any non-negative measurable functions F and G,

$$
\left\|F^{1-\theta} G^{\theta}\right\|_{L^{p}} \leq\|F\|_{L^{p_{0}}}^{1-\theta}\|G\|_{L^{p_{1}}}^{\theta} .
$$

(d) In particular, if $\theta \in[0,1]$ and $p, p_{0}, p_{1} \in(0, \infty]$ with $\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}$, then for any measurable function f,

$$
\|f\|_{L^{p}} \leq\|f\|_{L^{p_{0}}}^{1-\theta}\|f\|_{L^{p_{1}}}^{\theta} .
$$

Indeed, (a) is clearly equivalent to the more familiar form of Hölder's inequality (which is the case $p=1$ of (a)). Applying (a) with $f=F^{1-\theta}, g=G^{\theta}, q=p_{0} /(1-\theta)$, $r=p_{1} / \theta$, we obtain (c). Specializing in (c) to the case $p_{0}=p_{1}=p$, we get (b). Applying (b) with $\theta=p / r, 1-\theta=p / q, F=|f|^{1 /(1-\theta)}$ and $G=|g|^{1 / \theta}$, we obtain (a). (d) follows from (c) by setting $F=G=|f|$. The inequality in (d) is a baby case of interpolation, which we will take up in Lecture 8.

