MATH6081A Homework 5

1. Suppose $\gamma>0$ and $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Show that $f \in \Lambda^{\gamma}$, if and only if there exists a sequence of C^{∞} functions $\left\{f_{j}\right\}_{j \geq 0}$ on \mathbb{R}^{n}, such that

$$
\left\|\partial^{\beta} f_{j}\right\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \lesssim_{\beta} 2^{-j \gamma} 2^{j|\beta|} \quad \text { for all } j \geq 0 \text { and all multiindices } \beta
$$

and

$$
f=\sum_{j \geq 0} f_{j}
$$

with convergence in the topology of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. (Hint: Adapt an argument from the lecture notes. You will also need to use the fact that the Littlewood-Paley projections $P_{k}(k \geq 1)$ can be chosen to be convolutions against dilations of a Schwartz function Φ with zero moments, i.e. one that satisfies $\int_{\mathbb{R}^{n}} y^{\beta} \Phi(y) d y=0$ for all monomials y^{β}. Then in estimating

$$
P_{k} f_{j}(x)=\int_{\mathbb{R}^{n}} f_{j}(x-y) 2^{k n} \Phi\left(2^{k} y\right) d y
$$

you may Taylor expand $f_{j}(x-y)$ in y up to order $\lfloor\gamma\rfloor$, and proceed as in the lecture.)
2. (a) Show that $\Lambda^{\gamma}\left(\mathbb{R}^{n}\right)$ embeds continuously into $\Lambda^{\beta}\left(\mathbb{R}^{n}\right)$ if $0<\beta<\gamma$.
(b) Show that $W^{\alpha, p}\left(\mathbb{R}^{n}\right)$ embeds continuously into $W^{\beta, q}\left(\mathbb{R}^{n}\right)$ if

$$
0 \leq \beta<\alpha, \quad 1<p \leq q<\infty, \quad \text { and } \quad \frac{1}{q} \leq \frac{1}{p}-\frac{\alpha-\beta}{n}
$$

(c) Show that $W^{\alpha, \frac{n}{\alpha}}\left(\mathbb{R}^{n}\right)$ does not embed into $L^{\infty}\left(\mathbb{R}^{n}\right)$ if $0<\alpha<n$. (Hint: An illustrative way of constructing such a function is to take

$$
f(x)=\sum_{k=1}^{\infty} \frac{1}{k} g\left(2^{k+1} x\right)
$$

where $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ is a function such that \widehat{g} is supported on an annulus $|\xi| \simeq 1$, and $g(0)=1$. Then one easily checks that $f \notin L^{\infty}\left(\mathbb{R}^{n}\right)$ because it is unbounded near the origin. But if $I=\sum_{j=0}^{\infty} P_{j}$ is the standard Littlewood-Paley decomposition, then we have

$$
\sum_{j=0}\left(2^{j \alpha}\left|P_{j} f(x)\right|\right)^{2} \lesssim \begin{cases}|x|^{-2 \alpha} \log \left(\frac{1}{|x|}\right)^{-2} & \text { for }|x| \leq 1 / 2 \\ |x|^{-N} & \text { for any } N \text { for }|x| \geq 1 / 2\end{cases}
$$

Since $0<\alpha<n$, one can raise both sides to power $\frac{n}{2 \alpha}$, and integrate; this shows $f \in W^{\alpha, \frac{n}{\alpha}}\left(\mathbb{R}^{n}\right)$. Alternatively, take $f(x)=\log \log \frac{1}{|x|}$ if $|x|<e^{-1}$, and zero otherwise, and mimic the above strategy. One can also avoid the use of Littlewood-Paley decompositions if α were a positive integer.)
3. Suppose $k \in \mathbb{N}$ and $1 \leq p<\infty$. Show that $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ is dense in the Sobolev space $W^{k, p}\left(\mathbb{R}^{n}\right)$. (Hint: For $f \in W^{k, p}\left(\mathbb{R}^{n}\right)$, consider spatial cut-offs of $f * \Psi_{\varepsilon}(x)$ where $\Psi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $\int \Psi=1$, and $\Psi_{\varepsilon}(x)=\varepsilon^{-n} \Psi\left(\varepsilon^{-1} x\right)$.)
4. (a) Suppose $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right), n \geq 2$. Show that

$$
|f(x)| \lesssim \mathcal{I}_{1}(|\nabla f|)(x)
$$

for any $x \in \mathbb{R}^{n}$. Hence if $k \in \mathbb{N}, 1 \leq k<n$, then $|f(x)| \lesssim \mathcal{I}_{k}\left(\left|\nabla^{k} f\right|\right)(x)$ for any $x \in \mathbb{R}^{n}$. (Hint: $f(x)=\int_{0}^{\infty} \omega \cdot \nabla f(x-t \omega) d t$ for every $x \in \mathbb{R}^{n}$ and $\omega \in \mathcal{S}^{n-1}$. Average over $\omega \in \mathcal{S}^{n-1}$ and change coordinates $y=t \omega$.)
(b) Use this and the mapping properties of \mathcal{I}_{k} to give an alternative proof of the Sobolev embedding theorem for $W^{k, p}\left(\mathbb{R}^{n}\right)$ if $1<p<n / k$.
(c) The above proof can be modified to give an alternative proof of the Sobolev embedding theorem in the case $p=1$. The key is to show that $W^{1,1}\left(\mathbb{R}^{n}\right)$ embeds into $L^{n /(n-1)}$. To do so, let $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$. For $j \in \mathbb{Z}$, let g_{j} be the continuous function given by

$$
g_{j}(x)=\max \left\{\min \left\{|f(x)|, 2^{j+1}\right\}, 2^{j-1}\right\}-2^{j-1} .
$$

Then the distributional derivative of g_{j} is given by

$$
\nabla g_{j}(x)= \begin{cases}\nabla|f(x)| & \text { if } 2^{j-1}<|f(x)|<2^{j+1} \\ 0 & \text { otherwise }\end{cases}
$$

Show first

$$
2^{\frac{j(n-1)}{n}}\left|\left\{x \in \mathbb{R}^{n}: g_{j}(x)>2^{j-1}\right\}\right| \lesssim\left\|\nabla g_{j}\right\|_{L^{1}} \lesssim \int_{2^{j-1}<|f(x)|<2^{j+1}}|\nabla f(x)| d x
$$

using that \mathcal{I}_{1} is of weak-type $\left(1, \frac{n}{n-1}\right)$. Then sum over $j \in \mathbb{Z}$, noting that $\left\{x \in \mathbb{R}^{n}: 2^{j}<|f(x)| \leq 2^{j+1}\right\} \subset\left\{x \in \mathbb{R}^{n}: g_{j}(x)>2^{j-1}\right\}$.
(d) Show that if C_{n} is the best constant of the Gagliardo-Nirenberg inequality in $\mathbb{R}^{n}, n \geq 2$, i.e. if C_{n} is the smallest constant such that

$$
\|f\|_{L^{n-1}} \mathbb{R}_{\left.\mathbb{R}^{n}\right)} \leq C_{n}\|\nabla f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

for all $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, then for any bounded smooth domain $\Omega \subset \mathbb{R}^{n}$, we have

$$
|\Omega|^{\frac{n-1}{n}} \leq C_{n}|\partial \Omega|
$$

(Hint: Approximate the characteristic function of Ω by $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.)
5. (a) Suppose $f \in C^{\infty}$ on some open ball $B \subset \mathbb{R}^{n}, n \geq 2$. Show that

$$
\left|f(x)-f_{B}\right| \lesssim \mathcal{I}_{1}\left(|\nabla f| \chi_{B}\right)(x)
$$

for any $x \in B$. Here $f_{B}:=f_{B} f$ is the average of f on B, and χ_{B} is the characteristic function of B. (Hint: Compute $f(z)-f(x)$ for $z \in B$ by writing $z=x+t \omega$ with $t>0, \omega \in \mathcal{S}^{n-1}$ and applying the fundamental theorem of calculus in the t variable. Then average over $z \in B$.)
(b) Hence give an alternative proof of Morrey's embedding theorem for $W^{k, p}\left(\mathbb{R}^{n}\right)$ when $p \in(n / k, \infty)$. (Hint: Without loss of generality, assume $k=1$ and $p \in(n, \infty)$. Then

$$
|f(x)-f(y)| \leq\left|f(x)-f_{B}\right|+\left|f(y)-f_{B}\right|
$$

where B a ball of radius $\simeq|x-y|$ containing both x and y. Then apply the above estimate, and estimate the right-hand side using Hölder's inequality and the assumption that $\|\nabla f\|_{L^{p}}<\infty$ where $p>n$.)
(c) Prove also Poincare's inequality: if $f \in C^{\infty}$ on some open ball $B \subset \mathbb{R}^{n}, n \geq 1$, then

$$
\left\|f(x)-f_{B}\right\|_{L^{p}(B)} \lesssim r\|\nabla f\|_{L^{p}(B)}, \quad 1 \leq p \leq \infty
$$

where r is the radius of the ball B. (Hint: The case $n \geq 2$ follows from part (a) and Young's convolution inequality. Find a substitute of the proof in the case $n=1$.)
(d) Using the Poincare inequality in (c), give an alternative proof that $W^{1, n}\left(\mathbb{R}^{n}\right)$ embeds into BMO. This also implies that $W^{\alpha, \frac{n}{\alpha}}\left(\mathbb{R}^{n}\right)$ embeds into BMO for all $\alpha \in(1, n)$ by Question 2(b). (Hint: For any ball $B \subset \mathbb{R}^{n}$, we have
$f_{B}\left|f(x)-f_{B}\right| d x \leq\left(f_{B}\left|f(x)-f_{B}\right|^{n} d x\right)^{1 / n} \lesssim r\left(f_{B}|\nabla f(x)|^{n} d x\right)^{1 / n} \leq\|\nabla f\|_{L^{n}\left(\mathbb{R}^{n}\right)}$
where we have applied Poincare with $p=n$ in the second inequality.)
6. (a) Show that $\log |x|$ is a BMO function on \mathbb{R}^{n} for all $n \geq 1$. (Hint: If $\left|x_{0}\right| \leq 2 r$, then $B\left(x_{0}, r\right) \subset B(0,3 r)$, and

$$
f_{B(0,3 r)}|\log | x|-\log r| d x
$$

is a finite constant independent of r; on the other hand, if $\left|x_{0}\right| \geq 2 r$, then $\left|x_{0}\right| / 2 \leq|x| \leq 2\left|x_{0}\right|$ for all $x \in B\left(x_{0}, r\right)$, so

$$
f_{B\left(x_{0}, r\right)}|\log | x|-\log | x_{0}| | d x
$$

is bounded by $\log 2$.)
(b) Show that

$$
f(x)= \begin{cases}\log x & \text { if } x>0 \\ 0 & \text { if } x \leq 0\end{cases}
$$

is not a BMO function on \mathbb{R}. (Hint: Consider $f_{B}\left|f(x)-f_{B}\right| d x$ where $B=$ $(-r, r)$ and $r \rightarrow+\infty$.)
7. Let H be the Hilbert transform on \mathbb{R}.
(a) Show that H is not bounded on L^{1}. (Hint: Consider a sequence of L^{1} functions converging to the δ function in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.)
(b) Hence deduce that H is not bounded on L^{∞}. (Hint: Use duality.)
(c) Show that if H is extended as a continuous linear operator from L^{∞} to BMO and $f(x)=\operatorname{sgn}(x)$, then $H f(x)=\frac{2}{\pi} \log |x|$. This provides a direct proof that H is not bounded on L^{∞}.
8. (a) Show that we could have used cubes instead of balls in the definition of BMO.
(b) Show that if f is a BMO function, then so is $|f|$.
(c) Show that if f, g are both BMO functions, then so is $\max \{f, g\}$ and $\min \{f, g\}$.
(d) Show that if f is a BMO function, then

$$
f_{B_{R}}\left|f(x)-f_{B_{1}}\right| d x \lesssim(\log R)\|f\|_{B M O} \quad \text { for every } R \geq 10
$$

and

$$
\int_{\mathbb{R}^{n}} \frac{\left|f(x)-f_{B_{1}}\right|}{(1+|x|)^{n+\varepsilon}} d x \lesssim\|f\|_{B M O} \quad \text { for every } \varepsilon>0
$$

In particular, if f is a BMO function, then

$$
\int_{\mathbb{R}^{n}} \frac{|f(x)|}{(1+|x|)^{n+\varepsilon}}<\infty \quad \text { for every } \varepsilon>0
$$

so every BMO function on \mathbb{R}^{n} is 'almost in L^{∞} ', and defines a tempered distribution on \mathbb{R}^{n}. (Hint: First recall

$$
f_{B_{2^{k}}}\left|f(x)-f_{B_{2^{k}}}\right| d x \leq\|f\|_{B M O}
$$

for all non-negative integers k; here $B_{2^{k}}$ is the ball of radius 2^{k} centered at the origin. Then compare this inequality with the one for $B_{2^{k-1}}$, to see that

$$
\left|f_{B_{2^{k}}}-f_{B_{2^{k-1}}}\right| \lesssim\|f\|_{B M O}
$$

Hence

$$
\left|f_{B_{2^{k}}}-f_{B_{1}}\right| \lesssim k\|f\|_{B M O}
$$

This easily gives the first desired inequality when $R=2^{k}$ for some positive integer k; the second desired inequality then follows by dividing $\mathbb{R}^{n} \backslash B_{1}$ into a union of dyadic annuli.)
9. The goal of this question is to prove the John-Nirenberg inequalities for BMO functions on \mathbb{R}^{n}.
(a) Show that there exists constants C_{1}, C_{2} depending only on n, such that for any BMO function f on \mathbb{R}^{n}, and any cube $Q \subset \mathbb{R}^{n}$, we have

$$
\frac{\left|\left\{x \in Q:\left|f(x)-f_{Q}\right|>\lambda\right\}\right|}{|Q|} \leq C_{1} e^{-\frac{C_{2} \lambda}{\|f\|_{B M O}}}
$$

for all $\lambda>0$. Here $f_{Q}:=f_{Q} f$ is the average of f on Q. (Hint: Without loss of generality, assume $\|f\|_{B M O}=1$. Then in particular $f_{Q}\left|f(x)-f_{Q}\right| d x \leq 1$.

Now perform a Calderon-Zygmund decomposition of $f-f_{Q}$ at height 2, by repeatedly bisecting Q into 2^{n} congruent sub-cubes, and keeping only those over which $\left|f-f_{Q}\right|$ has average >2. Then we obtain a family of cubes $\left\{Q_{j_{1}}\right\}$ so that

$$
2<f_{Q_{j_{1}}}\left|f-f_{Q}\right| \leq 2^{n+1} \quad \text { for all } j_{1}
$$

and

$$
\left|f(x)-f_{Q}\right| \leq 2 \quad \text { for a.e. } x \in Q \backslash \bigcup_{j_{1}} Q_{j_{1}}
$$

Now for each j_{1}, perform a Calderon-Zygmund decomposition of $f-f_{Q_{j_{1}}}$ at height 2 , by repeatedly bisecting $Q_{j_{1}}$ into 2^{n} congruent sub-cubes, and keeping only those over which $\left|f-f_{Q_{j_{1}}}\right|$ has average >2. Then we obtain a family of cubes $\left\{Q_{j_{1}, j_{2}}\right\}$ so that

$$
2<f_{Q_{j_{1}, j_{2}}}\left|f-f_{Q_{j_{1}}}\right| \leq 2^{n+1} \quad \text { for all } j_{1}, j_{2}
$$

and

$$
\left|f(x)-f_{Q_{j_{1}}}\right| \leq 2 \quad \text { for a.e. } x \in Q_{j_{1}} \backslash \bigcup_{j_{2}} Q_{j_{1}, j_{2}}
$$

for every j_{1}. Repeat this process k times, and we obtain a family of cubes $\left\{Q_{j_{1}, j_{2}, \ldots, j_{k}}\right\}$ so that

$$
\begin{equation*}
2<f_{Q_{j_{1}, j_{2}, \ldots, j_{k}}}\left|f-f_{Q_{j_{1}, j_{2}, \ldots, j_{k-1}}}\right| \leq 2^{n+1} \quad \text { for all } j_{1}, j_{2}, \ldots, j_{k} \tag{1}
\end{equation*}
$$

and

$$
\begin{equation*}
\left|f(x)-f_{Q_{j_{1}, j_{2}, \ldots, j_{k-1}}}\right| \leq 2 \quad \text { for a.e. } x \in Q_{j_{1}, j_{2}, \ldots, j_{k-1}} \backslash \bigcup_{j_{k}} Q_{j_{1}, j_{2}, \ldots, j_{k}} \tag{2}
\end{equation*}
$$

for every $j_{1}, j_{2}, \ldots, j_{k-1}$. (1) shows that

$$
\left|f_{Q_{j_{1}, j_{2}, \ldots, j_{k}}}-f_{Q_{j_{1}, j_{2}, \ldots, j_{k-1}}}\right| \leq 2^{n+1}
$$

for any j_{1}, \ldots, j_{k}, so iterating this gives

$$
\left|f_{Q_{j_{1}, j_{2}, \ldots, j_{k}}}-f_{Q}\right| \leq k 2^{n+1}
$$

for any j_{1}, \ldots, j_{k}. Together with (2) we get

$$
\left|f(x)-f_{Q}\right| \leq k 2^{n+1} \quad \text { for a.e. } x \in Q \backslash \bigcup_{j_{1}, \ldots, j_{k}} Q_{j_{1}, j_{2}, \ldots, j_{k}}
$$

But (1) also shows that

$$
\sum_{j_{k}}\left|Q_{j_{1}, \ldots, j_{k}}\right| \leq \frac{1}{2} \sum_{j_{k}} \int_{Q_{j_{1}, \ldots, j_{k}}}\left|f-f_{Q_{j_{1}, j_{2}, \ldots, j_{k-1}}}\right| \leq \frac{1}{2}\left|Q_{j_{1}, j_{2}, \ldots, j_{k-1}}\right|
$$

so inductively we have

$$
\sum_{j_{1}, \ldots, j_{k}}\left|Q_{j_{1}, \ldots, j_{k}}\right| \leq \frac{1}{2^{k}}|Q| .
$$

Now it suffices to choose k so that $\lambda \simeq k 2^{n+1}$ (which is possible if $\lambda>2^{n+1}$; if not the estimate is trivial). This finishes the desired estimate.)
(b) Show that for any $p \in(1, \infty)$, there exists a constant $C_{n, p}$, such that

$$
\sup _{Q}\left(f_{Q}\left|f(y)-f_{Q}\right|^{p} d y\right)^{1 / p} \leq C_{n, p}\|f\|_{B M O}
$$

for every BMO function f on \mathbb{R}^{n}, where the supremum is over all cubes $Q \subset \mathbb{R}^{n}$. This is remarkable because the right hand side is certainly bounded by the left hand side, by Hölder's inequality. This inequality in question is thus sometimes called a reversed Hölder inequality. (Hint: Use

$$
f_{Q}\left|f(y)-f_{Q}\right|^{p} d y=\int_{0}^{\infty} p \lambda^{p-1} \frac{\left|\left\{x \in Q:\left|f(x)-f_{Q}\right|>\lambda\right\}\right|}{|Q|} d \lambda
$$

and use part (a). This shows $C_{n, p}^{p} \leq C_{1} \Gamma(p+1) C_{2}^{-p}$ where C_{1}, C_{2} are as in part (a).)
(c) Show that there exists constants $c, C>0$ depending only on n, such that for every BMO function f on \mathbb{R}^{n} and every cube $Q \subset \mathbb{R}^{n}$, we have

$$
f_{Q} \exp \left(\frac{c\left|f(y)-f_{Q}\right|}{\|f\|_{B M O}}\right) d y \leq C
$$

(Hint: Expand exp as a power series, and apply (b) with $p=m$ for every positive integer m. We also need the explicit bound for $C_{n, p}$ as in the hint of part (b). Indeed, we use that

$$
\sum_{m=1}^{\infty} \frac{C_{1} \Gamma(m+1) C_{2}^{-m} c^{m}}{m!}=\sum_{m=1}^{\infty} C_{1} C_{2}^{-m} c^{m}
$$

which is finite if $c<C_{2}$.)
10. The Moser-Trudinger inequality states that if $n \geq 1$, and $\omega_{n-1}=\frac{2 \pi^{n / 2}}{\Gamma(n / 2)}$ is the surface area of \mathbb{S}^{n-1}, then there exists a constant C depending only on n, such that for every ball $B \subset \mathbb{R}^{n}$ and every $f \in C_{c}^{\infty}(B)$, we have

$$
f_{B} \exp \left(n \omega_{n-1}^{\frac{1}{n-1}}\left(\frac{|f(x)|}{\|\nabla f\|_{L^{n}\left(\mathbb{R}^{n}\right)}}\right)^{\frac{n}{n-1}}\right) d x \leq C
$$

Moreover the constant $n \omega_{n-1}^{\frac{1}{n-1}}$ is sharp, in the sense that the inequality is false if that were replaced by any larger constant. The goal of this question is to prove a version of this inequality with a non-sharp constant.
Suppose $0<\alpha<n$. We will prove that there exist constants μ, C depending only on α and n, such that for every ball $B \subset \mathbb{R}^{n}$ and every $g \in C_{c}^{\infty}(B)$, we have

$$
\begin{equation*}
f_{B} \exp \left(\mu\left(\frac{\left|\mathcal{I}_{\alpha} g(x)\right|}{\|g\|_{L^{\frac{n}{\alpha}}(B)}}\right)^{\frac{n}{n-\alpha}}\right) d x \leq C \tag{3}
\end{equation*}
$$

Without loss of generality, assume that B has radius $1 / 2$.
(a) Show that for every $q \in\left[\frac{n}{\alpha}-1, \infty\right)$, we have

$$
\int_{B}\left|\mathcal{I}_{\alpha} g(x)\right|^{\frac{q n}{n-\alpha}} d x \leq\left(\frac{\omega_{n-1}}{n}(q+1)\right)^{q+1}\|g\|_{L^{\frac{\alpha}{\alpha}(B)}}^{\frac{q n}{n-\alpha}}
$$

(Hint: Use Young's convolution inequality.)
(b) Show that (3) holds if μ is chosen sufficiently small. (Hint: Expand exp in power series, use (a) and Stirling's formula.)
11. (a) Let $n \in \mathbb{N}, \alpha>0, p \in\left(\frac{n}{\alpha}, \infty\right)$. Show that if $\left\{f_{n}\right\}$ is a bounded sequence in $W^{\alpha, p}\left(\mathbb{R}^{n}\right)$, then there exists a subsequence that converges uniformly on compact subsets of \mathbb{R}^{n}. (Hint: Use Morrey's embedding and the Arzela-Ascoli theorem.)
(b) Let $n \in \mathbb{N}, 1 \leq p<n$ and $1 \leq q<p^{*}$ where $\frac{1}{p^{*}}=\frac{1}{p}-\frac{1}{n}$. Let Ω be a bounded subset of \mathbb{R}^{n}. Show that if $\left\{f_{n}\right\}$ is a bounded sequence in $W^{1, p}\left(\mathbb{R}^{n}\right)$, then there exists a subsequence that converges in $L^{q}(\Omega)$. This is called the Rellich compactness theorem. (Hint: By interpolation and Sobolev embedding, it suffices to prove the case $q=1$. Fix $\varepsilon>0$. We want to show that there exists $N \in \mathbb{N}$, such that

$$
\left\|f_{n}-f_{m}\right\|_{L^{1}(\Omega)}<\varepsilon
$$

whenever $m, n \geq N$. To do so, fix $\Psi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}} \Psi=1$, let $\Psi_{\delta}(x)=$ $\delta^{-n} \Psi\left(\delta^{-1} x\right)$ for $\delta>0$, and choose δ so small so that

$$
\left\|f_{n}-f_{n, \delta}\right\|_{L^{1}(\Omega)}<\varepsilon / 2
$$

where $f_{n, \delta}:=f_{n} * \Psi_{\delta}$. This is possible because

$$
\left|f_{n}(x)-f_{n, \delta}(x)\right| \leq \int_{\mathbb{R}^{n}}|\Psi(y)||f(x)-f(x-\delta y)| d y \leq \int_{\mathbb{R}^{n}} \int_{0}^{\delta|y|}|\Psi(y)||\nabla f|\left(x-t \frac{y}{|y|}\right) d t d y
$$

which we may integrate over $x \in \Omega$; the smallness comes from the smallness of δ. Now for this fixed $\delta,\left\{f_{n, \delta}\right\}$ is a sequence of uniformly bounded and equicontinuous functions on Ω; indeed

$$
\sup _{n \in \mathbb{N}}\left(\left\|f_{n, \delta}\right\|_{L^{\infty}(\Omega)}+\left\|\nabla f_{n, \delta}\right\|_{L^{\infty}(\Omega)}\right) \leq C_{\delta} \sup _{n \in \mathbb{N}}\left\|f_{n, \delta}\right\|_{L^{1}(\Omega)} \lesssim C_{\delta} \sup _{n \in \mathbb{N}}\left\|f_{n}\right\|_{W^{1, p}\left(\mathbb{R}^{n}\right)}
$$

One then concludes the proof using Arzela-Ascoli.)
12. Prove that if $n \in \mathbb{N}, 1<p<\infty$ and $\alpha>\frac{n}{p}$, then $W^{\alpha, p}\left(\mathbb{R}^{n}\right)$ is an algebra, and that

$$
\|f g\|_{W^{\alpha, p}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{W^{\alpha, p}\left(\mathbb{R}^{n}\right)}\|g\|_{W^{\alpha, p}\left(\mathbb{R}^{n}\right)}
$$

This is a simple version of the fractional Leibniz rule. (Hint: Let $I=\sum_{j=0}^{\infty} P_{j}$ be a standard Littlewood-Paley decomposition, so that if $f \in W^{\alpha, p}\left(\mathbb{R}^{n}\right)$, then the frequency support of $P_{0} f$ is in $|\xi| \leq 2$, and the frequency support of $P_{j} f$ is in $2^{j-1} \leq|\xi| \leq 2^{j+1}$ for all $j \geq 1$. Then for $j \geq 1$,

$$
P_{j}(f g)=\sum_{k, \ell \geq 0} P_{j}\left(\left(P_{k} f\right)\left(P_{\ell} g\right)\right) .
$$

Many terms in the double sum are zero because of the frequency support considerations. The only ones that survive are the following cases:
(i) $k \simeq j, \ell \lesssim j$
(ii) $k \lesssim j, \ell \simeq j$
(iii) $k \simeq \ell \gg j$

These are known as high-low interactions, low-high interactions, and high-high interactions respectively. To treat the high-low interactions, we use

$$
\left|P_{j}\left(\left(P_{k} f\right)\left(P_{\ell} g\right)\right)\right| \lesssim\left(\left|P_{k} f\right| M g\right) * k_{j} ;
$$

here k_{j} is the absolute value of the convolution kernel of P_{j}. To treat the low-high interactions, we use

$$
\left|P_{j}\left(\left(P_{k} f\right)\left(P_{\ell} g\right)\right)\right| \lesssim\left(M f\left|P_{\ell} g\right|\right) * k_{j} ;
$$

to treat the high-high interactions, we may use any of the two inequalities above. Now we need to estimate

$$
\left\|\left(\sum_{j=1}^{\infty}\left|2^{\alpha j} P_{j}(f g)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

Triangle inequality, Question 16 of Homework 4, together with the above considerations allows one to bound this by

$$
\begin{aligned}
& \left\|\left(\sum_{j=1}^{\infty}\left(2^{\alpha j} \sum_{k \simeq j}\left|P_{k} f\right| M g\right)^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}+\left\|\left(\sum_{j=1}^{\infty}\left(2^{\alpha j} \sum_{\ell \simeq j} M f\left|P_{\ell g}\right|\right)^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \\
& \quad+\left\|\left(\sum_{j=1}^{\infty}\left(2^{\alpha j} \sum_{k \gg j}\left|P_{k} f\right| M g\right)^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
\end{aligned}
$$

The first two terms can be estimated by bounding $M g$ and $M f$ by their L^{∞} norms, which are in turn bounded by their $W^{\alpha, p}$ norms. The last term can be bounded by using triangle inequality:

$$
\sum_{r=1}^{\infty}\left\|\left(\sum_{j=1}^{\infty}\left(2^{\alpha j}\left|P_{j+r} f\right| M g\right)^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

which upon shifting summation and bounding $M g$ by L^{∞} is bounded by

$$
\sum_{r=1}^{\infty} 2^{-\alpha r}\left\|\left(\sum_{j=r}^{\infty}\left(2^{\alpha j}\left|P_{j} f\right|\right)^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|g\|_{W^{\alpha, p}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{W^{\alpha, p}\left(\mathbb{R}^{n}\right)}\|g\|_{W^{\alpha, p}\left(\mathbb{R}^{n}\right)}
$$

This almost finishes the proof of the desired estimate; one still needs to estimate $\left\|P_{0}(f g)\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}$, but that is much easier.)

