1. Suppose $\gamma > 0$ and $f \in \mathcal{S}'(\mathbb{R}^n)$. Show that $f \in \Lambda^{\gamma}$, if and only if there exists a sequence of C^{∞} functions $\{f_j\}_{j\geq 0}$ on \mathbb{R}^n , such that

 $\|\partial^{\beta} f_{j}\|_{L^{\infty}(\mathbb{R}^{n})} \lesssim_{\beta} 2^{-j\gamma} 2^{j|\beta|} \quad \text{for all } j \ge 0 \text{ and all multiindices } \beta,$

and

$$f = \sum_{j \ge 0} f_j$$

with convergence in the topology of $\mathcal{S}'(\mathbb{R}^n)$. (Hint: Adapt an argument from the lecture notes. You will also need to use the fact that the Littlewood-Paley projections P_k $(k \ge 1)$ can be chosen to be convolutions against dilations of a Schwartz function Φ with zero moments, i.e. one that satisfies $\int_{\mathbb{R}^n} y^\beta \Phi(y) dy = 0$ for all monomials y^β . Then in estimating

$$P_k f_j(x) = \int_{\mathbb{R}^n} f_j(x-y) 2^{kn} \Phi(2^k y) dy,$$

you may Taylor expand $f_j(x-y)$ in y up to order $\lfloor \gamma \rfloor$, and proceed as in the lecture.)

- 2. (a) Show that $\Lambda^{\gamma}(\mathbb{R}^n)$ embeds continuously into $\Lambda^{\beta}(\mathbb{R}^n)$ if $0 < \beta < \gamma$.
 - (b) Show that $W^{\alpha,p}(\mathbb{R}^n)$ embeds continuously into $W^{\beta,q}(\mathbb{R}^n)$ if

$$0 \leq \beta < \alpha, \quad 1 < p \leq q < \infty, \quad \text{and} \quad \frac{1}{q} \leq \frac{1}{p} - \frac{\alpha - \beta}{n}.$$

(c) Show that $W^{\alpha,\frac{n}{\alpha}}(\mathbb{R}^n)$ does not embed into $L^{\infty}(\mathbb{R}^n)$ if $0 < \alpha < n$. (Hint: An illustrative way of constructing such a function is to take

$$f(x) = \sum_{k=1}^{\infty} \frac{1}{k} g(2^{k+1}x),$$

where $g \in \mathcal{S}(\mathbb{R}^n)$ is a function such that \widehat{g} is supported on an annulus $|\xi| \simeq 1$, and g(0) = 1. Then one easily checks that $f \notin L^{\infty}(\mathbb{R}^n)$ because it is unbounded near the origin. But if $I = \sum_{j=0}^{\infty} P_j$ is the standard Littlewood-Paley decomposition, then we have

$$\sum_{j=0} \left(2^{j\alpha} |P_j f(x)| \right)^2 \lesssim \begin{cases} |x|^{-2\alpha} \log(\frac{1}{|x|})^{-2} & \text{for } |x| \le 1/2, \\ |x|^{-N} & \text{for any } N \text{ for } |x| \ge 1/2. \end{cases}$$

Since $0 < \alpha < n$, one can raise both sides to power $\frac{n}{2\alpha}$, and integrate; this shows $f \in W^{\alpha,\frac{n}{\alpha}}(\mathbb{R}^n)$. Alternatively, take $f(x) = \log \log \frac{1}{|x|}$ if $|x| < e^{-1}$, and zero otherwise, and mimic the above strategy. One can also avoid the use of Littlewood-Paley decompositions if α were a positive integer.)

3. Suppose $k \in \mathbb{N}$ and $1 \leq p < \infty$. Show that $C_c^{\infty}(\mathbb{R}^n)$ is dense in the Sobolev space $W^{k,p}(\mathbb{R}^n)$. (Hint: For $f \in W^{k,p}(\mathbb{R}^n)$, consider spatial cut-offs of $f * \Psi_{\varepsilon}(x)$ where $\Psi \in \mathcal{S}(\mathbb{R}^n)$ with $\int \Psi = 1$, and $\Psi_{\varepsilon}(x) = \varepsilon^{-n} \Psi(\varepsilon^{-1}x)$.)

4. (a) Suppose $f \in C_c^{\infty}(\mathbb{R}^n)$, $n \ge 2$. Show that

$$|f(x)| \lesssim \mathcal{I}_1(|\nabla f|)(x)$$

for any $x \in \mathbb{R}^n$. Hence if $k \in \mathbb{N}$, $1 \leq k < n$, then $|f(x)| \leq \mathcal{I}_k(|\nabla^k f|)(x)$ for any $x \in \mathbb{R}^n$. (Hint: $f(x) = \int_0^\infty \omega \cdot \nabla f(x - t\omega) dt$ for every $x \in \mathbb{R}^n$ and $\omega \in \mathcal{S}^{n-1}$. Average over $\omega \in \mathcal{S}^{n-1}$ and change coordinates $y = t\omega$.)

- (b) Use this and the mapping properties of \mathcal{I}_k to give an alternative proof of the Sobolev embedding theorem for $W^{k,p}(\mathbb{R}^n)$ if 1 .
- (c) The above proof can be modified to give an alternative proof of the Sobolev embedding theorem in the case p = 1. The key is to show that $W^{1,1}(\mathbb{R}^n)$ embeds into $L^{n/(n-1)}$. To do so, let $f \in C_c^{\infty}(\mathbb{R}^n)$. For $j \in \mathbb{Z}$, let g_j be the continuous function given by

$$g_j(x) = \max\{\min\{|f(x)|, 2^{j+1}\}, 2^{j-1}\} - 2^{j-1}.$$

Then the distributional derivative of g_j is given by

$$\nabla g_j(x) = \begin{cases} \nabla |f(x)| & \text{if } 2^{j-1} < |f(x)| < 2^{j+1} \\ 0 & \text{otherwise} \end{cases}$$

Show first

$$2^{\frac{j(n-1)}{n}} |\{x \in \mathbb{R}^n \colon g_j(x) > 2^{j-1}\}| \lesssim \|\nabla g_j\|_{L^1} \lesssim \int_{2^{j-1} < |f(x)| < 2^{j+1}} |\nabla f(x)| dx$$

using that \mathcal{I}_1 is of weak-type $(1, \frac{n}{n-1})$. Then sum over $j \in \mathbb{Z}$, noting that $\{x \in \mathbb{R}^n \colon 2^j < |f(x)| \le 2^{j+1}\} \subset \{x \in \mathbb{R}^n \colon g_j(x) > 2^{j-1}\}.$

(d) Show that if C_n is the best constant of the Gagliardo-Nirenberg inequality in \mathbb{R}^n , $n \geq 2$, i.e. if C_n is the smallest constant such that

$$\|f\|_{L^{\frac{n}{n-1}}(\mathbb{R}^n)} \le C_n \|\nabla f\|_{L^1(\mathbb{R}^n)}$$

for all $f \in C_c^{\infty}(\mathbb{R}^n)$, then for any bounded smooth domain $\Omega \subset \mathbb{R}^n$, we have

$$|\Omega|^{\frac{n-1}{n}} \le C_n |\partial \Omega|.$$

(Hint: Approximate the characteristic function of Ω by $C_c^{\infty}(\mathbb{R}^n)$.)

5. (a) Suppose $f \in C^{\infty}$ on some open ball $B \subset \mathbb{R}^n$, $n \ge 2$. Show that

$$|f(x) - f_B| \lesssim \mathcal{I}_1(|\nabla f|\chi_B)(x)$$

for any $x \in B$. Here $f_B := \oint_B f$ is the average of f on B, and χ_B is the characteristic function of B. (Hint: Compute f(z) - f(x) for $z \in B$ by writing $z = x + t\omega$ with t > 0, $\omega \in S^{n-1}$ and applying the fundamental theorem of calculus in the t variable. Then average over $z \in B$.)

(b) Hence give an alternative proof of Morrey's embedding theorem for $W^{k,p}(\mathbb{R}^n)$ when $p \in (n/k, \infty)$. (Hint: Without loss of generality, assume k = 1 and $p \in (n, \infty)$. Then

$$|f(x) - f(y)| \le |f(x) - f_B| + |f(y) - f_B|$$

where B a ball of radius $\simeq |x - y|$ containing both x and y. Then apply the above estimate, and estimate the right-hand side using Hölder's inequality and the assumption that $\|\nabla f\|_{L^p} < \infty$ where p > n.)

(c) Prove also Poincare's inequality: if $f \in C^{\infty}$ on some open ball $B \subset \mathbb{R}^n, n \ge 1$, then

$$||f(x) - f_B||_{L^p(B)} \lesssim r ||\nabla f||_{L^p(B)}, \quad 1 \le p \le \infty,$$

where r is the radius of the ball B. (Hint: The case $n \ge 2$ follows from part (a) and Young's convolution inequality. Find a substitute of the proof in the case n = 1.)

(d) Using the Poincare inequality in (c), give an alternative proof that $W^{1,n}(\mathbb{R}^n)$ embeds into BMO. This also implies that $W^{\alpha,\frac{n}{\alpha}}(\mathbb{R}^n)$ embeds into BMO for all $\alpha \in (1, n)$ by Question 2(b). (Hint: For any ball $B \subset \mathbb{R}^n$, we have

$$\oint_{B} |f(x) - f_{B}| dx \le \left(\oint_{B} |f(x) - f_{B}|^{n} dx \right)^{1/n} \lesssim r \left(\oint_{B} |\nabla f(x)|^{n} dx \right)^{1/n} \le \|\nabla f\|_{L^{n}(\mathbb{R}^{n})}$$

where we have applied Poincare with p = n in the second inequality.)

6. (a) Show that $\log |x|$ is a BMO function on \mathbb{R}^n for all $n \ge 1$. (Hint: If $|x_0| \le 2r$, then $B(x_0, r) \subset B(0, 3r)$, and

$$\oint_{B(0,3r)} |\log |x| - \log r |dx|$$

is a finite constant independent of r; on the other hand, if $|x_0| \ge 2r$, then $|x_0|/2 \le |x| \le 2|x_0|$ for all $x \in B(x_0, r)$, so

$$\oint_{B(x_0,r)} |\log|x| - \log|x_0| |dx$$

is bounded by $\log 2$.)

(b) Show that

$$f(x) = \begin{cases} \log x & \text{if } x > 0\\ 0 & \text{if } x \le 0 \end{cases}$$

is not a BMO function on \mathbb{R} . (Hint: Consider $\int_B |f(x) - f_B| dx$ where B = (-r, r) and $r \to +\infty$.)

- 7. Let H be the Hilbert transform on \mathbb{R} .
 - (a) Show that H is not bounded on L^1 . (Hint: Consider a sequence of L^1 functions converging to the δ function in $\mathcal{S}'(\mathbb{R}^n)$.)

- (b) Hence deduce that H is not bounded on L^{∞} . (Hint: Use duality.)
- (c) Show that if H is extended as a continuous linear operator from L^{∞} to BMO and $f(x) = \operatorname{sgn}(x)$, then $Hf(x) = \frac{2}{\pi} \log |x|$. This provides a direct proof that H is not bounded on L^{∞} .
- 8. (a) Show that we could have used cubes instead of balls in the definition of BMO.
 - (b) Show that if f is a BMO function, then so is |f|.
 - (c) Show that if f, g are both BMO functions, then so is $\max\{f, g\}$ and $\min\{f, g\}$.
 - (d) Show that if f is a BMO function, then

$$\int_{B_R} |f(x) - f_{B_1}| dx \lesssim (\log R) ||f||_{BMO} \quad \text{for every } R \ge 10,$$

and

$$\int_{\mathbb{R}^n} \frac{|f(x) - f_{B_1}|}{(1+|x|)^{n+\varepsilon}} dx \lesssim ||f||_{BMO} \quad \text{for every } \varepsilon > 0.$$

In particular, if f is a BMO function, then

$$\int_{\mathbb{R}^n} \frac{|f(x)|}{(1+|x|)^{n+\varepsilon}} < \infty \quad \text{for every } \varepsilon > 0,$$

so every BMO function on \mathbb{R}^n is 'almost in L^{∞} ', and defines a tempered distribution on \mathbb{R}^n . (Hint: First recall

$$\int_{B_{2^k}} |f(x) - f_{B_{2^k}}| dx \le \|f\|_{BMO}$$

for all non-negative integers k; here B_{2^k} is the ball of radius 2^k centered at the origin. Then compare this inequality with the one for $B_{2^{k-1}}$, to see that

$$|f_{B_{2k}} - f_{B_{2k-1}}| \lesssim ||f||_{BMO}.$$

Hence

$$|f_{B_{2k}} - f_{B_1}| \lesssim k \|f\|_{BMO}.$$

This easily gives the first desired inequality when $R = 2^k$ for some positive integer k; the second desired inequality then follows by dividing $\mathbb{R}^n \setminus B_1$ into a union of dyadic annuli.)

- The goal of this question is to prove the John-Nirenberg inequalities for BMO functions on ℝⁿ.
 - (a) Show that there exists constants C_1 , C_2 depending only on n, such that for any BMO function f on \mathbb{R}^n , and any cube $Q \subset \mathbb{R}^n$, we have

$$\frac{|\{x \in Q \colon |f(x) - f_Q| > \lambda\}|}{|Q|} \le C_1 e^{-\frac{C_2 \lambda}{\|f\|_{BMO}}}$$

for all $\lambda > 0$. Here $f_Q := \oint_Q f$ is the average of f on Q. (Hint: Without loss of generality, assume $||f||_{BMO} = 1$. Then in particular $\oint_Q |f(x) - f_Q| dx \leq 1$.

Now perform a Calderon-Zygmund decomposition of $f - f_Q$ at height 2, by repeatedly bisecting Q into 2^n congruent sub-cubes, and keeping only those over which $|f - f_Q|$ has average > 2. Then we obtain a family of cubes $\{Q_{j_1}\}$ so that

$$2 < \oint_{Q_{j_1}} |f - f_Q| \le 2^{n+1}$$
 for all j_1

and

$$|f(x) - f_Q| \le 2$$
 for a.e. $x \in Q \setminus \bigcup_{j_1} Q_{j_1}$.

Now for each j_1 , perform a Calderon-Zygmund decomposition of $f - f_{Q_{j_1}}$ at height 2, by repeatedly bisecting Q_{j_1} into 2^n congruent sub-cubes, and keeping only those over which $|f - f_{Q_{j_1}}|$ has average > 2. Then we obtain a family of cubes $\{Q_{j_1,j_2}\}$ so that

$$2 < \oint_{Q_{j_1,j_2}} |f - f_{Q_{j_1}}| \le 2^{n+1} \quad \text{for all } j_1, j_2$$

and

$$|f(x) - f_{Q_{j_1}}| \le 2$$
 for a.e. $x \in Q_{j_1} \setminus \bigcup_{j_2} Q_{j_1,j_2}$

for every j_1 . Repeat this process k times, and we obtain a family of cubes $\{Q_{j_1,j_2,\ldots,j_k}\}$ so that

$$2 < \oint_{Q_{j_1,j_2,\dots,j_k}} |f - f_{Q_{j_1,j_2,\dots,j_{k-1}}}| \le 2^{n+1} \quad \text{for all } j_1, j_2,\dots,j_k \tag{1}$$

and

$$|f(x) - f_{Q_{j_1, j_2, \dots, j_{k-1}}}| \le 2$$
 for a.e. $x \in Q_{j_1, j_2, \dots, j_{k-1}} \setminus \bigcup_{j_k} Q_{j_1, j_2, \dots, j_k}$ (2)

for every $j_1, j_2, \ldots, j_{k-1}$. (1) shows that

$$|f_{Q_{j_1,j_2,\dots,j_k}} - f_{Q_{j_1,j_2,\dots,j_{k-1}}}| \le 2^{n+1}$$

for any j_1, \ldots, j_k , so iterating this gives

$$|f_{Q_{j_1,j_2,\dots,j_k}} - f_Q| \le k2^{n+1}$$

for any j_1, \ldots, j_k . Together with (2) we get

$$|f(x) - f_Q| \le k2^{n+1}$$
 for a.e. $x \in Q \setminus \bigcup_{j_1,\dots,j_k} Q_{j_1,j_2,\dots,j_k}$.

But (1) also shows that

$$\sum_{j_k} |Q_{j_1,\dots,j_k}| \le \frac{1}{2} \sum_{j_k} \int_{Q_{j_1,\dots,j_k}} |f - f_{Q_{j_1,j_2,\dots,j_{k-1}}}| \le \frac{1}{2} |Q_{j_1,j_2,\dots,j_{k-1}}|,$$

so inductively we have

$$\sum_{j_1,\dots,j_k} |Q_{j_1,\dots,j_k}| \le \frac{1}{2^k} |Q|.$$

Now it suffices to choose k so that $\lambda \simeq k2^{n+1}$ (which is possible if $\lambda > 2^{n+1}$; if not the estimate is trivial). This finishes the desired estimate.)

(b) Show that for any $p \in (1, \infty)$, there exists a constant $C_{n,p}$, such that

$$\sup_{Q} \left(\oint_{Q} |f(y) - f_{Q}|^{p} dy \right)^{1/p} \le C_{n,p} \|f\|_{BMO}$$

for every BMO function f on \mathbb{R}^n , where the supremum is over all cubes $Q \subset \mathbb{R}^n$. This is remarkable because the right hand side is certainly bounded by the left hand side, by Hölder's inequality. This inequality in question is thus sometimes called a reversed Hölder inequality. (Hint: Use

$$\int_{Q} |f(y) - f_{Q}|^{p} dy = \int_{0}^{\infty} p\lambda^{p-1} \frac{|\{x \in Q \colon |f(x) - f_{Q}| > \lambda\}|}{|Q|} d\lambda$$

and use part (a). This shows $C_{n,p}^p \leq C_1 \Gamma(p+1) C_2^{-p}$ where C_1, C_2 are as in part (a).)

(c) Show that there exists constants c, C > 0 depending only on n, such that for every BMO function f on \mathbb{R}^n and every cube $Q \subset \mathbb{R}^n$, we have

$$\oint_Q \exp\left(\frac{c|f(y) - f_Q|}{\|f\|_{BMO}}\right) dy \le C.$$

(Hint: Expand exp as a power series, and apply (b) with p = m for every positive integer m. We also need the explicit bound for $C_{n,p}$ as in the hint of part (b). Indeed, we use that

$$\sum_{m=1}^{\infty} \frac{C_1 \Gamma(m+1) C_2^{-m} c^m}{m!} = \sum_{m=1}^{\infty} C_1 C_2^{-m} c^m$$

which is finite if $c < C_2$.)

10. The Moser-Trudinger inequality states that if $n \ge 1$, and $\omega_{n-1} = \frac{2\pi^{n/2}}{\Gamma(n/2)}$ is the surface area of \mathbb{S}^{n-1} , then there exists a constant C depending only on n, such that for every ball $B \subset \mathbb{R}^n$ and every $f \in C_c^{\infty}(B)$, we have

$$\int_{B} \exp\left(n\omega_{n-1}^{\frac{1}{n-1}} \left(\frac{|f(x)|}{\|\nabla f\|_{L^{n}(\mathbb{R}^{n})}}\right)^{\frac{n}{n-1}}\right) dx \le C.$$

Moreover the constant $n\omega_{n-1}^{\frac{1}{n-1}}$ is sharp, in the sense that the inequality is false if that were replaced by any larger constant. The goal of this question is to prove a version of this inequality with a non-sharp constant.

Suppose $0 < \alpha < n$. We will prove that there exist constants μ, C depending only on α and n, such that for every ball $B \subset \mathbb{R}^n$ and every $g \in C_c^{\infty}(B)$, we have

$$\oint_{B} \exp\left(\mu\left(\frac{|\mathcal{I}_{\alpha}g(x)|}{\|g\|_{L^{\frac{n}{\alpha}}(B)}}\right)^{\frac{n}{n-\alpha}}\right) dx \le C.$$
(3)

Without loss of generality, assume that B has radius 1/2.

(a) Show that for every $q \in [\frac{n}{\alpha} - 1, \infty)$, we have

$$\int_{B} |\mathcal{I}_{\alpha}g(x)|^{\frac{qn}{n-\alpha}} dx \le \left(\frac{\omega_{n-1}}{n}(q+1)\right)^{q+1} \|g\|_{L^{\frac{qn}{n-\alpha}}}^{\frac{qn}{n-\alpha}}.$$

(Hint: Use Young's convolution inequality.)

- (b) Show that (3) holds if μ is chosen sufficiently small. (Hint: Expand exp in power series, use (a) and Stirling's formula.)
- 11. (a) Let $n \in \mathbb{N}$, $\alpha > 0$, $p \in (\frac{n}{\alpha}, \infty)$. Show that if $\{f_n\}$ is a bounded sequence in $W^{\alpha,p}(\mathbb{R}^n)$, then there exists a subsequence that converges uniformly on compact subsets of \mathbb{R}^n . (Hint: Use Morrey's embedding and the Arzela-Ascoli theorem.)
 - (b) Let $n \in \mathbb{N}$, $1 \leq p < n$ and $1 \leq q < p^*$ where $\frac{1}{p^*} = \frac{1}{p} \frac{1}{n}$. Let Ω be a bounded subset of \mathbb{R}^n . Show that if $\{f_n\}$ is a bounded sequence in $W^{1,p}(\mathbb{R}^n)$, then there exists a subsequence that converges in $L^q(\Omega)$. This is called the Rellich compactness theorem. (Hint: By interpolation and Sobolev embedding, it suffices to prove the case q = 1. Fix $\varepsilon > 0$. We want to show that there exists $N \in \mathbb{N}$, such that

$$\|f_n - f_m\|_{L^1(\Omega)} < \varepsilon$$

whenever $m, n \geq N$. To do so, fix $\Psi \in C_c^{\infty}(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \Psi = 1$, let $\Psi_{\delta}(x) = \delta^{-n} \Psi(\delta^{-1}x)$ for $\delta > 0$, and choose δ so small so that

$$\|f_n - f_{n,\delta}\|_{L^1(\Omega)} < \varepsilon/2,$$

where $f_{n,\delta} := f_n * \Psi_{\delta}$. This is possible because

$$|f_n(x) - f_{n,\delta}(x)| \le \int_{\mathbb{R}^n} |\Psi(y)| |f(x) - f(x - \delta y)| dy \le \int_{\mathbb{R}^n} \int_0^{\delta|y|} |\Psi(y)| |\nabla f| (x - t\frac{y}{|y|}) dt dy$$

which we may integrate over $x \in \Omega$; the smallness comes from the smallness of δ . Now for this fixed δ , $\{f_{n,\delta}\}$ is a sequence of uniformly bounded and equicontinuous functions on Ω ; indeed

$$\sup_{n\in\mathbb{N}} \left(\|f_{n,\delta}\|_{L^{\infty}(\Omega)} + \|\nabla f_{n,\delta}\|_{L^{\infty}(\Omega)} \right) \le C_{\delta} \sup_{n\in\mathbb{N}} \|f_{n,\delta}\|_{L^{1}(\Omega)} \lesssim C_{\delta} \sup_{n\in\mathbb{N}} \|f_{n}\|_{W^{1,p}(\mathbb{R}^{n})}$$

One then concludes the proof using Arzela-Ascoli.)

12. Prove that if $n \in \mathbb{N}$, $1 and <math>\alpha > \frac{n}{p}$, then $W^{\alpha,p}(\mathbb{R}^n)$ is an algebra, and that

$$\|fg\|_{W^{\alpha,p}(\mathbb{R}^n)} \lesssim \|f\|_{W^{\alpha,p}(\mathbb{R}^n)} \|g\|_{W^{\alpha,p}(\mathbb{R}^n)}.$$

This is a simple version of the fractional Leibniz rule. (Hint: Let $I = \sum_{j=0}^{\infty} P_j$ be a standard Littlewood-Paley decomposition, so that if $f \in W^{\alpha,p}(\mathbb{R}^n)$, then the frequency support of P_0f is in $|\xi| \leq 2$, and the frequency support of P_jf is in $2^{j-1} \leq |\xi| \leq 2^{j+1}$ for all $j \geq 1$. Then for $j \geq 1$,

$$P_j(fg) = \sum_{k,\ell \ge 0} P_j((P_k f)(P_\ell g))$$

Many terms in the double sum are zero because of the frequency support considerations. The only ones that survive are the following cases: (i) $k \simeq j, \ell \lesssim j$ (ii) $k \lesssim j, \ell \simeq j$ (iii) $k \simeq \ell >> j$

These are known as high-low interactions, low-high interactions, and high-high interactions respectively. To treat the high-low interactions, we use

$$|P_j((P_k f)(P_\ell g))| \lesssim (|P_k f| Mg) * k_j;$$

here k_j is the absolute value of the convolution kernel of P_j . To treat the low-high interactions, we use

$$|P_j((P_k f)(P_\ell g))| \lesssim (Mf|P_\ell g|) * k_j;$$

to treat the high-high interactions, we may use any of the two inequalities above. Now we need to estimate

$$\left\| \left(\sum_{j=1}^{\infty} |2^{\alpha j} P_j(fg)|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)}.$$

Triangle inequality, Question 16 of Homework 4, together with the above considerations allows one to bound this by

$$\left\| \left(\sum_{j=1}^{\infty} \left(2^{\alpha j} \sum_{k \simeq j} |P_k f| M g \right)^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} + \left\| \left(\sum_{j=1}^{\infty} \left(2^{\alpha j} \sum_{\ell \simeq j} M f| P_\ell g| \right)^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} + \left\| \left(\sum_{j=1}^{\infty} \left(2^{\alpha j} \sum_{k >> j} |P_k f| M g \right)^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)}$$

The first two terms can be estimated by bounding Mg and Mf by their L^{∞} norms, which are in turn bounded by their $W^{\alpha,p}$ norms. The last term can be bounded by using triangle inequality:

$$\sum_{r=1}^{\infty} \left\| \left(\sum_{j=1}^{\infty} \left(2^{\alpha j} |P_{j+r}f| Mg \right)^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)}$$

which upon shifting summation and bounding Mg by L^{∞} is bounded by

$$\sum_{r=1}^{\infty} 2^{-\alpha r} \left\| \left(\sum_{j=r}^{\infty} \left(2^{\alpha j} |P_j f| \right)^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} \|g\|_{W^{\alpha,p}(\mathbb{R}^n)} \lesssim \|f\|_{W^{\alpha,p}(\mathbb{R}^n)} \|g\|_{W^{\alpha,p}(\mathbb{R}^n)}.$$

This almost finishes the proof of the desired estimate; one still needs to estimate $||P_0(fg)||_{L^p(\mathbb{R}^n)}$, but that is much easier.)