MATH6081A Homework 6

1. (a) Suppose $m \in \mathbb{R}, \gamma, \delta \in[0,1]$, and $a \in S_{\gamma, \delta}^{m}$. Show that T_{a} maps $\mathcal{S}\left(\mathbb{R}^{n}\right)$ into itself, and that the map $T_{a}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ is continuous.
(b) Suppose $m \in \mathbb{R}, \gamma \in[0,1], \delta \in[0,1)$, and $c \in C S_{\gamma, \delta}^{m}$. Show that for every $\varepsilon>0$, $T_{[c], \varepsilon}$ maps $\mathcal{S}\left(\mathbb{R}^{n}\right)$ into itself, and that $T_{[c], \varepsilon} f$ converges in the topology of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \rightarrow 0^{+}$for every $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Also show that the map $T_{[c]}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)$ is continuous.
2. Suppose $c \in C S^{m}$ for some $m \in \mathbb{R}$. Show that there exists $a \in S^{m}$ such that

$$
T_{[c]} f=T_{a} f
$$

for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Also show that

$$
\left.a(x, \xi) \sim \sum_{\gamma} \frac{(2 \pi i)^{-|\gamma|}}{\gamma!} \partial_{y}^{\gamma} \partial_{\xi}^{\gamma} c(x, y, \xi)\right|_{y=x}
$$

in the sense that

$$
a(x, \xi)-\left.\sum_{|\gamma|<N} \frac{(2 \pi i)^{-|\gamma|}}{\gamma!} \partial_{y}^{\gamma} \partial_{\xi}^{\gamma} c(x, y, \xi)\right|_{y=x} \in S^{m-N}
$$

for all $N \in \mathbb{N}$. (Hint: Let η be a fixed C^{∞} function on \mathbb{R}^{n} supported on $B(0,2)$, such that $\eta \equiv 1$ on $B(0,1)$. Then for any $\varepsilon>0$ and any $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
T_{[c]} f(x)=\lim _{\varepsilon \rightarrow 0^{+}} T_{\left[c_{\varepsilon, 1}\right]} f(x)+\lim _{\varepsilon \rightarrow 0^{+}} T_{\left[c_{\varepsilon, 2}\right]} f(x)
$$

where

$$
\begin{gathered}
c_{\varepsilon, 1}(x, y, \xi):=c(x, y, \xi) \eta(x-y) \eta(\varepsilon \xi) \\
c_{\varepsilon, 2}(x, y, \xi):=c(x, y, \xi)(1-\eta)(x-y) \eta(\varepsilon y) \eta(\varepsilon \xi)
\end{gathered}
$$

and the convergence is in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ (actually we just need pointwise convergence here). Now

$$
T_{\left[c_{\varepsilon, 1}\right]} f(x)=\int_{\mathbb{R}^{n}} a_{\varepsilon, 1}(x, \xi) \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

where

$$
\begin{aligned}
a_{\varepsilon, 1}(x, \xi) & :=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} c_{\varepsilon, 1}(x, y, \zeta) e^{2 \pi i(x-y) \cdot(\zeta-\xi)} d y d \zeta \\
& =\int_{\mathbb{R}^{n}} \widehat{c_{\varepsilon, 1}}(x, \zeta-\xi, \zeta)^{2 \pi i x \cdot(\zeta-\xi)} d \zeta \\
& =\int_{\mathbb{R}^{n}} \widehat{c_{\varepsilon, 1}}(x, \zeta, \xi+\zeta)^{2 \pi i x \cdot \zeta} d \zeta
\end{aligned}
$$

here $\widehat{c}_{\varepsilon, 1}$ is the Fourier transform of c in the middle variable. Taylor expanding, we get, for $N \geq m$, that

$$
\widehat{c_{\varepsilon, 1}}(x, \zeta, \xi+\zeta)=\sum_{|\gamma|<N} \frac{1}{\gamma!} \partial_{\xi}^{\gamma} \widehat{c_{\varepsilon, 1}}(x, \zeta, \xi) \zeta^{\gamma}+R_{N}(x, \zeta, \xi),
$$

where the remainder $R_{N}(x, \zeta, \xi)$ satisfies, uniformly in ε, that

$$
\sup _{x \in \mathbb{R}^{n}} \sup _{\xi \in \mathbb{R}^{n}}\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} R_{N}(x, \zeta, \xi)\right| \lesssim_{N, \bar{N}, \alpha, \beta}|\zeta|^{N}(1+|\zeta|)^{-\bar{N}}
$$

for all $\zeta \in \mathbb{R}^{n}$ and all $\bar{N} \in \mathbb{N}$, and

$$
\sup _{x \in \mathbb{R}^{n}}\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} R_{N}(x, \zeta, \xi)\right| \lesssim_{N, \bar{N}, \alpha, \beta}|\zeta|^{N}(1+|\zeta|)^{-\bar{N}}(1+|\xi|)^{m-N-|\beta|}
$$

whenever $|\xi|>2|\zeta|$ and $\bar{N} \in \mathbb{N}$. Plugging this back into the formula for $a_{\varepsilon, 1}$, we get

$$
a_{\varepsilon, 1}(x, \xi)=\left.\sum_{|\gamma|<N} \frac{(2 \pi i)^{-|\gamma|}}{\gamma!} \partial_{y}^{\gamma} \partial_{\xi}^{\gamma} c_{\varepsilon, 1}(x, y, \xi)\right|_{y=x}+e_{\varepsilon, 1}(x, \xi)
$$

where $e_{\varepsilon, 1}(x, \xi) \in S^{m-N}$ uniformly in ε. Next,

$$
T_{\left[c_{c, 2}\right]} f(x)=\int_{\mathbb{R}^{n}} a_{\varepsilon, 2}(x, \xi) \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

where

$$
a_{\varepsilon, 2}(x, \xi):=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} c_{\varepsilon, 2}(x, y, \zeta) e^{2 \pi i(x-y) \cdot(\zeta-\xi)} d y d \zeta .
$$

But since $c_{\varepsilon, 2}(x, y, \zeta)$ is supported away from $x=y$, one can integrate by parts using

$$
e^{2 \pi i(x-y) \cdot(\zeta-\xi)}=\frac{\Delta_{\zeta} e^{2 \pi i(x-y) \cdot(\zeta-\xi)}}{-4 \pi^{2}|x-y|^{2}}
$$

to gain decay in ζ. Also, since $c_{\varepsilon, 2}(x, y, \zeta)$ is compactly supported in y, one can integrate by parts using

$$
e^{2 \pi i(x-y) \cdot(\zeta-\xi)}=\frac{\left(I-\Delta_{y}\right) e^{2 \pi i(x-y) \cdot(\zeta-\xi)}}{1+4 \pi^{2}|\xi-\zeta|^{2}}
$$

to gain decay in $|\xi-\zeta|$. This shows

$$
\left|a_{\varepsilon, 2}(x, \xi)\right| \lesssim \int_{\mathbb{R}^{n}} \int_{|y-x| \geq 1} \frac{(1+|\zeta|)^{m-N_{1}}}{|x-y|^{N_{1}}(1+|\xi-\zeta|)^{N_{2}}} d y d \zeta
$$

which is $\lesssim_{\bar{N}}(1+|\xi|)^{-\bar{N}}$ for all $\bar{N} \in \mathbb{N}$ upon dividing the domain of integration into where $|\zeta| \leq|\xi| / 2$ and $|\zeta|>|\xi| / 2$, and the estimate is uniform in ε. Similarly, $\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a_{\varepsilon, 2}(x, \xi)\right| \lesssim_{\bar{N}, \alpha, \beta}(1+|\xi|)^{-N}$ for all $\bar{N} \in \mathbb{N}$, uniformly in ε. Thus $a_{\varepsilon, 2}(x, \xi) \in$ S^{m-N} for all $N \in \mathbb{N}$, uniformly in ε. It remains to observe that

$$
\left.\lim _{\varepsilon \rightarrow 0^{+}} \partial_{y}^{\gamma} \partial_{\xi}^{\gamma} c_{\varepsilon, 1}(x, y, \xi)\right|_{y=x}=\left.\partial_{y}^{\gamma} \partial_{\xi}^{\gamma} c(x, y, \xi)\right|_{y=x}
$$

pointwisely for all $|\gamma|<N$, and that there exists a symbol $e_{N}(x, \xi) \in S^{m-N}$, such that

$$
\lim _{\varepsilon \rightarrow 0^{+}}\left(e_{\varepsilon, 1}(x, \xi)+a_{\varepsilon, 2}(x, \xi)\right)=e_{N}(x, \xi)
$$

pointwisely. By dominated convergence, this shows that if

$$
a(x, \xi):=\left.\sum_{|\gamma|<N} \frac{(2 \pi i)^{-|\gamma|}}{\gamma!} \partial_{y}^{\gamma} \partial_{\xi}^{\gamma} c(x, y, \xi)\right|_{y=x}+e_{N}(x, \xi),
$$

then

$$
T_{[c]} f(x)=\int_{\mathbb{R}^{n}} a(x, \xi) \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi=T_{a} f(x)
$$

for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$; note that $a(x, \xi)$ satisfies the desired asymptotic expansion by construction.)
3. (a) Show that if $a \in S^{m}$, then the formal adjoint of T_{a} is given by a pseudodifferential operator with symbol a^{*}, where

$$
\left.a^{*}(x, \xi) \sim \sum_{\gamma} \frac{(2 \pi i)^{-|\gamma|}}{\gamma!} \partial_{y}^{\gamma} \partial_{\xi}^{\gamma} \overline{a(y, \xi)}\right|_{y=x}
$$

(b) Show that if $a_{1} \in S^{m_{1}}$ and $a_{2} \in S^{m_{2}}$, then $T_{a_{1}} T_{a_{2}}$ is a pseudodifferential operator with symbol a, where

$$
a(x, \xi) \sim \sum_{\gamma} \frac{(2 \pi i)^{-|\gamma|}}{\gamma!} \partial_{\xi}^{\gamma} a_{1}(x, \xi) \partial_{x}^{\gamma} a_{2}(x, \xi) .
$$

(Hint: Use the previous question. Note that $T_{a_{1}} T_{a_{2}}=T_{a_{1}} T_{a_{2}^{*}}^{*}$ has compound symbol $a_{1}(x, \xi) \overline{a_{2}^{*}(y, \xi)}$, and part (a) shows that

$$
\left.a_{2}(x, \xi) \sim \sum_{\gamma} \frac{(2 \pi i)^{-|\gamma|}}{\gamma!} \partial_{y}^{\gamma} \partial_{\xi}^{\gamma} \overline{a_{2}^{*}(y, \xi)}\right|_{y=x}
$$

See also Stein's Harmonic Analysis, Chapter VI, Section 3 for a more direct proof.)
4. (a) Show that for any sequence of real numbers c_{0}, c_{1}, \ldots, there exists a C^{∞} function $f: \mathbb{R} \rightarrow \mathbb{R}$ such that $f^{(k)}(0)=c_{k}$ for all $k \geq 0$. (Hint: Consider

$$
f(x)=\sum_{k=0}^{\infty} \eta\left(\frac{x}{\varepsilon_{k}}\right) c_{k} \frac{x^{k}}{k!}
$$

where $\eta \in C_{c}^{\infty}(\mathbb{R})$ and ε_{k} is a sequence of positive numbers that tend to 0 very rapidly.)
(b) Suppose $m \in \mathbb{R}$. Given a sequence of symbols a_{0}, a_{1}, \ldots with $a_{k} \in S^{m-k}$ for all $k \geq 0$, show that there exists a symbol $a \in S^{m}$, such that for every $N \in \mathbb{N}$, there exists $e_{N} \in S^{m-N}$ with

$$
a(x, \xi)=\sum_{k=0}^{N-1} a_{k}(x, \xi)+e_{N}(x, \xi)
$$

(Hint: Mimic the proof of (a).)
5. (Hilbert-Schmidt norm) Let T be an integral operator defined by

$$
T f(x)=\int K(x, y) f(y) d y
$$

where

$$
\|K(x, y)\|_{L^{2}(d x d y)} \leq C
$$

Show that T is bounded on L^{2} with operator norm $\leq C$. (Hint: Estimate $|T f(x)|^{2}$ using Cauchy-Schwarz:

$$
|T f(x)|^{2} \leq\left(\int|K(x, y)|^{2} d y\right)\left(\int|f(y)|^{2} d y\right)
$$

Then integrate in x.) Can you interpret this as a bound for the operator norms of matrices in linear algebra?
6. (Schur's test) Let T be an integral operator defined by

$$
T f(x)=\int K(x, y) f(y) d y
$$

where

$$
\sup _{x}\|K(x, y)\|_{L^{1}(d y)} \leq A \quad \text { and } \quad \sup _{y}\|K(x, y)\|_{L^{1}(d x)} \leq B .
$$

Show that T is bounded on L^{2} with operator norm $\leq \sqrt{A B}$. (Hint: Estimate $|T f(x)|^{2}$ using Cauchy-Schwarz:

$$
|T f(x)|^{2} \leq A^{2} \int|K(x, y)||f(y)|^{2} d y
$$

Then integrate in x. Alternatively, use duality: Assume $\|f\|_{L^{2}}=\|g\|_{L^{2}}=1$. Then

$$
\begin{aligned}
\int T f(x) g(x) d x & \leq \iint|K(x, y)||f(y) \| g(x)| d y d x \\
& \leq \frac{\sqrt{A}}{2 \sqrt{B}} \iint|K(x, y) \| f(y)|^{2} d y d x+\frac{\sqrt{B}}{2 \sqrt{A}} \iint|K(x, y)||g(x)|^{2} d y d x
\end{aligned}
$$

where we used AM-GM in the last inequality. Yet another way is to interpolate between $T: L^{1} \rightarrow L^{1}$ and $T: L^{\infty} \rightarrow L^{\infty}$.) Can you interpret this as a bound for the operator norms of matrices?
7. Let $\left\{\gamma_{j}\right\}_{j \in \mathbb{Z}}$ be an ℓ^{1} sequence of non-negative real numbers, with $A:=\sum_{j \in \mathbb{Z}} \gamma_{j}$.
(a) Prove that if $\left\{t_{j}\right\}_{j=1}^{J}$ is a finite sequence of real numbers with $\left|t_{i} t_{j}\right| \leq \gamma_{i-j}^{2}$ for all $i, j=1, \ldots, J$, then $\sum_{j=1}^{J}\left|t_{j}\right| \leq A$. (Hint: Let j_{0} be the index where $\left|t_{j_{0}}\right|=\max _{j}\left|t_{j}\right|$. Then

$$
\sum_{j=1}^{J}\left|t_{j}\right| \leq\left|t_{j_{0}}\right|^{1 / 2} \sum_{j=1}^{J}\left|t_{j}\right|^{1 / 2} \leq\left|t_{j_{0}}\right|^{1 / 2} \sum_{j=1}^{J}\left|t_{j_{0}}\right|^{-1 / 2} \gamma_{j-j_{0}}
$$

which is bounded by A.)
(b) Prove the original version of Cotlar's lemma: If $\left\{T_{j}\right\}_{j=1}^{J}$ is a finite sequence of commuting self-adjoint operators on a Hilbert space H, with

$$
\left\|T_{i} T_{j}\right\|_{H \rightarrow H} \leq \gamma_{i-j}^{2}
$$

for all $i, j=1, \ldots, J$, then for $T=\sum_{j=1}^{J} T_{j}$, we have $\|T\|_{H \rightarrow H} \leq A$. (Hint: Simultaneously diagonalize the T_{j} 's, and use part (a).)
8. Let $\left\{f_{j}\right\}$ be a sequence in a Hilbert space H, and $A \in \mathbb{R}$. Suppose for any sequence $\left\{\varepsilon_{j}\right\}$ that satisfies $\varepsilon_{j} \in\{-1,0,1\}$ for all j and has only finitely many non-zero terms, we have

$$
\left\|\sum_{j} \varepsilon_{j} f_{j}\right\| \leq A
$$

Show that $\sum_{j} f_{j}$ converges in H. (Hint: Suppose not, then there exists some $\delta>0$, and some sequences $\left\{M_{k}\right\},\left\{N_{k}\right\}$ with $M_{k}<N_{k}<M_{k+1}$ for all $k \in \mathbb{N}$, such that if

$$
F_{k}=\sum_{M_{k} \leq|j| \leq N_{k}} f_{j}
$$

then $\left\|F_{k}\right\| \geq \delta$. As a result, $\sum_{k=1}^{K}\left\|F_{k}\right\|^{2}>A^{2}$ if K is sufficiently large. But our assumptions imply that

$$
\sum_{k=1}^{K}\left\|F_{k}\right\|^{2} \leq A^{2}
$$

for all $K \in \mathbb{N}$. Hence the desired contradition.)
9. Suppose $\left\{T_{j}\right\}_{j \in \mathbb{Z}}$ is a family of bounded linear operators on a Hilbert space H, for which there exists a non-negative ℓ^{1} sequence $\left\{\gamma_{j}\right\}_{j \in \mathbb{Z}}$ with $\sum_{j} \gamma_{j}=A<\infty$ such that

$$
\begin{gathered}
\left\|T_{j}\right\|_{H \rightarrow H} \leq A \text { for all } j \in \mathbb{Z} \\
\left\|T_{k}^{*} T_{j}\right\|_{H \rightarrow H} \leq \gamma_{j} \gamma_{k} \text { for all } j \neq k \\
T_{j} T_{k}^{*}=0 \quad \text { for all } j \neq k
\end{gathered}
$$

Show that $\sum_{j \in \mathbb{Z}} T_{j}$ converges strongly to a bounded linear operator T on H, with

$$
\|T\|_{H \rightarrow H} \leq \sqrt{2} A
$$

This is a cruder version of Cotlar-Stein, which can sometimes be used as a substitute in applications and admits a much more direct proof. (Hint: The ranges of T_{j}^{*} 's are orthogonal, so there exists mutually orthogonal projections E_{j} 's such that $T_{j}^{*}=$ $E_{j} T_{j}^{*}$ for all $j \in \mathbb{Z}$. This shows $T_{j}=T_{j} E_{j}$ for all $j \in \mathbb{Z}$, so

$$
\begin{aligned}
\left\|\sum_{|j| \leq N} T_{j} f\right\|^{2} & =\sum_{|j| \leq N}\left\|T_{j} f\right\|^{2}+\sum_{\substack{|j|,|k| \leq N \\
j \neq k}}\left\langle T_{k}^{*} T_{j} f, f\right\rangle \\
& \leq \sum_{|j| \leq N} A^{2}\left\|E_{j} f\right\|^{2}+\sum_{\substack{|j|,|k| \leq N \\
j \neq k}} \gamma_{j} \gamma_{k}\|f\|^{2} \leq 2 A^{2}\|f\|^{2}
\end{aligned}
$$

uniformly for $N \in \mathbb{N}$. This also holds with $T_{j} f$ replaced by $\pm T_{j} f$. One can thus let $N \rightarrow \infty$ by invoking the result in the previous question.)
10. Let H be the Hilbert transform on \mathbb{R}, defined as convolution with the tempered distribution given by the principal value of $\frac{1}{\pi x}$. The goal of this question is to prove the L^{2} boundedness of H by appealing to Cotlar-Stein.

Let $\psi(x)$ be a smooth even function on \mathbb{R}, for which $\psi(x)=1$ if $|x| \leq 1$, and $\psi(x)=0$ if $|x| \geq 2$. Let $\varphi(x)=\psi(x)-\psi(2 x)$ so that φ is supported on $\{1 / 2 \leq|x| \leq 2\}$, and $\sum_{j \in \mathbb{Z}} \varphi\left(2^{j} x\right)=1$ for all $x \neq 0$. For each $j \in \mathbb{Z}$, let

$$
k_{j}(x)=\frac{1}{\pi} \frac{\varphi\left(2^{j} x\right)}{x} .
$$

Also let

$$
T_{j} f(x)=f * k_{j}(x) \quad \text { for } f \in \mathcal{S}(\mathbb{R})
$$

(a) Show that $\sum_{|j| \leq N} k_{j}$ converges to the principal value of $\frac{1}{\pi x}$ in the topology of $\mathcal{S}^{\prime}(\mathbb{R})$ when $N \rightarrow+\infty$. Hence for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have pointwise convergence of $\sum_{|j| \leq N} T_{j} f(x)$ to $H f(x)$ as $N \rightarrow \infty$.
(b) Show that

$$
\left|k_{j}(x)\right| \lesssim \frac{2^{j}}{\left(1+2^{j}|x|\right)^{2}}
$$

and more generally

$$
\left|\partial_{x}^{\alpha} k_{j}(x)\right| \lesssim \frac{2^{j(1+|\alpha|)}}{\left(1+2^{j}|x|\right)^{2}}
$$

Also show that

$$
\int_{\mathbb{R}^{n}} k_{j}(x) d x=0
$$

(c) Using Cotlar-Stein, show that $\sum_{|j| \leq N} T_{j}$ converges strongly to H in L^{2}, and conclude that H is bounded on $L^{2}(\mathbb{R})$.
11. (a) (Calderón-Vaillancourt theorem) Let $a \in S_{0,0}^{0}$. Show that the pseudodifferential operator T_{a}, initially defined on $\mathcal{S}\left(\mathbb{R}^{n}\right)$, extends to a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$. (Hint: Let $S=T_{a} \mathcal{F}^{-1}$ where \mathcal{F}^{-1} is the inverse Fourier transform on \mathbb{R}^{n}. Then by Plancherel, it suffices to show that S extends to a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$. Let $\sum_{j_{1} \in \mathbb{Z}^{n}} \phi\left(x-j_{1}\right)=1$ be a smooth partition of unity on \mathbb{R}^{n}, where ϕ is a non-negative smooth function with compact support on $B(0,1)$. Similarly, $\sum_{j_{2} \in \mathbb{Z}^{n}} \phi\left(\xi-j_{2}\right)=1$ is a smooth partition of unity on the ξ space. For $j=\left(j_{1}, j_{2}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}^{n}$, let

$$
S_{j} f(x)=\int_{\mathbb{R}^{n}} \phi\left(x-j_{1}\right) a(x, \xi) \phi\left(\xi-j_{2}\right) f(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, so that $S f=\sum_{j \in \mathbb{Z}^{2 n}} S_{j} f$ for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with convergence in $\mathcal{S}\left(\mathbb{R}^{n}\right)$. Now for all $j, k \in \mathbb{Z}^{2 n}$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
S_{j} S_{k}^{*} f(x)=\int_{\mathbb{R}^{n}} K_{j, k}(x, y) f(y) d y
$$

where

$$
K_{j, k}(x, y):=\int_{\mathbb{R}^{n}} \phi\left(x-j_{1}\right) a(x, \xi) \phi\left(\xi-j_{2}\right) \phi\left(\xi-k_{2}\right) \overline{a(y, \xi)} \phi\left(y-k_{1}\right) e^{2 \pi i(x-y) \cdot \xi} d \xi
$$

But $K_{j, k}(x, y)=0$ if $\left|j_{2}-k_{2}\right| \geq 2$,

$$
\left|K_{j, k}(x, y)\right| \lesssim \phi\left(x-j_{1}\right) \phi\left(y-k_{1}\right),
$$

and if one integrates by parts using

$$
e^{2 \pi i(x-y) \cdot \xi}=\frac{\Delta_{\xi} e^{2 \pi i(x-y) \cdot \xi}}{-4 \pi^{2}|x-y|^{2}},
$$

one gets

$$
\left|K_{j, k}(x, y)\right| \lesssim_{N} \frac{1}{\left|j_{1}-k_{1}\right|^{N}} \phi\left(x-j_{1}\right) \phi\left(y-k_{1}\right)
$$

for any $N \in \mathbb{N}$, if $\left|j_{1}-k_{1}\right| \geq 3$. Thus

$$
\left\|S_{j} S_{k}^{*}\right\|_{L^{2} \rightarrow L^{2}} \lesssim \frac{1}{(1+|j-k|)^{N}}
$$

By symmetry, the same is true for $\left\|S_{k}^{*} S_{j}\right\|_{L^{2} \rightarrow L^{2}}$. One can then apply CotlarStein. Note that this gives another proof that $T_{a}: L^{2} \rightarrow L^{2}$ if $a \in S^{0}=S_{1,0}^{0}$.)
(b) More generally, let $a \in S_{\gamma, \gamma}^{0}$ for some $\gamma \in[0,1)$. Show that the pseudodifferential operator T_{a}, initially defined on $\mathcal{S}\left(\mathbb{R}^{n}\right)$, extends to a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$. (Hint: Let $a \in S_{\gamma, \gamma}^{0}$ with $\gamma \in[0,1)$. By replacing $a(x, \xi)$ by $a_{\varepsilon}(x, \xi):=$ $a(x, \xi) \eta(\varepsilon x) \eta(\varepsilon \xi)$ for some $\eta \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\eta(0)=1$, we may assume that $a(x, \xi)$ has compact support in both x and ξ; this works because $a_{\varepsilon}(x, \xi) \in S_{\gamma, \gamma}^{0}$ uniformly in ε, and $T_{a_{\varepsilon}} f \rightarrow T_{a} f$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \rightarrow 0^{+}$. Define Littlewood-Paley decomposition $I=P_{0}+\sum_{j=1}^{\infty} \Delta_{j}$ by letting

$$
\begin{gathered}
P_{0} f=\mathcal{F}^{-1}[\psi(\xi) \widehat{f}(\xi)] \\
\Delta_{j} f=\mathcal{F}^{-1}\left[\varphi\left(2^{-j} \xi\right) \widehat{f}(\xi)\right] \quad \text { for } j \geq 1
\end{gathered}
$$

where $\psi(\xi)$ is a real-valued smooth function with compact support on the unit ball $B(0,2)$, with $\psi(\xi) \equiv 1$ on $B(0,1)$, and $\varphi(\xi)=\psi(\xi)-\psi(2 \xi)$ so that φ is supported on the annulus $\{1 / 2 \leq|\xi| \leq 2\}$. Write

$$
T_{a}=T_{a} P_{0}+\sum_{j=1}^{\infty} T_{a} \Delta_{j} .
$$

$T_{a} P_{0}$ clearly extends to a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$, since its symbol is in $S_{1,0}^{0}$. We claim that $\sum_{j \text { odd }} T_{a} \Delta_{j}$ extends to a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$: indeed if j, k are odd and distinct, then $T_{a} \Delta_{j}\left(T_{a} \Delta_{k}\right)^{*}=0$, and

$$
\left(T_{a} \Delta_{k}\right)^{*}\left(T_{a} \Delta_{j}\right) f(x)=\int_{\mathbb{R}^{n}} K_{j, k}(x, y) f(y) d y
$$

for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, where

$$
K_{j, k}(x, y):=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \overline{a(z, \eta)} \varphi\left(2^{-k} \eta\right) a(z, \eta) \varphi\left(2^{-k} \xi\right) e^{2 \pi i((z-y) \cdot \xi+(x-z) \cdot \eta)} d z d \eta d \xi
$$

satisfies

$$
\left|K_{j, k}(x, y)\right| \lesssim_{N} 2^{\max \{j, k\}(\gamma-1) N} \int_{\mathbb{R}^{n}}(1+|x-z|)^{-N}(1+|z-y|)^{-N} d z .
$$

(The interchange of order of integration is justified by Fubini, since $a(x, \xi)$ has compact x and ξ supports.) If $N>n$, then Schur's test shows that $\left\|\left(T_{a} \Delta_{k}\right)^{*}\left(T_{a} \Delta_{j}\right)\right\|_{L^{2} \rightarrow L^{2}} \lesssim_{N} 2^{\max \{j, k\}(\gamma-1) N}$, so by Cotlar-Stein (or the result of Question 9), to show that $\sum_{j \text { odd }} T_{a} \Delta_{j}$ extends to a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$, it remains to show that $\left\|T_{a} \Delta_{j}\right\|_{L^{2} \rightarrow L^{2}}$ are uniformly bounded in j. This follows from part (a), since if D_{j} is the L^{2}-norm-preserving dilation given by

$$
D_{j} f(x):=2^{j \gamma n / 2} f\left(2^{j \gamma} x\right),
$$

then

$$
\left\|T_{a} \Delta_{j}\right\|_{L^{2} \rightarrow L^{2}}=\left\|D_{j}^{-1} T_{a} \Delta_{j} D_{j}\right\|_{L^{2} \rightarrow L^{2}}
$$

whereas $D_{j}^{-1} T_{a} \Delta_{j} D_{j}$ is a pseudodifferential operator with symbol

$$
a\left(2^{-j \gamma} x, 2^{j \gamma} \xi\right) \varphi\left(2^{-j} 2^{j \gamma} \xi\right)
$$

which is in $S_{0,0}^{0}$ uniformly in j since $a \in S_{\gamma, \gamma}^{0}$. Similarly $\sum_{j \text { even }} T_{a} \Delta_{j}$ extends to a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$.)

