
MATH6081A Homework 7

1. (a) Let f be a BMO function on Rn. Suppose for every τ ∈ Rn, there exists a
constant cτ such that

f(x+ τ) = f(x) + cτ for a.e. x ∈ Rn.

Show that f is constant, and hence f is identified with 0 in the BMO space.
(Hint: First show that cτ1+τ2 = cτ1 + cτ2 for all τ1, τ2 ∈ Rn, and that cτ is
continuous as a function of τ by noting that

cτ =

 
B(0,1)

f(x+ τ)dx−
 
B(0,1)

f(x)dx

for all τ ∈ Rn. Hence cτ is a linear function of τ , which shows f(x) is equal
to an affine function of x a.e. on Rn. The only affine functions that are in
BMO are constants, by considering averages of |f(x)− fB(0,R)| over B(0, R) as
R→ +∞.)

(b) Suppose K ∈ S ′(Rn) is a tempered distribution with K̂ ∈ L∞(Rn). Suppose
also K agrees with a measurable function K0 away from the origin, for which

sup
y 6=0

ˆ
|x|≥2|y|

|K0(x− y)−K0(x)|dx <∞.

Let T : S(Rn)→ S ′(Rn) be given by Tf = f ∗K for all f ∈ S(Rn). We knew
already that T extends as a continuous linear operator from L∞(Rn) to BMO;
if g ∈ L∞(Rn), we write Tg for a globally defined BMO function on Rn with
some fixed normalization (say

´
B(0,1)

Tg(x)dx = 0).

(i) Show that T commutes with translation, in the sense that if g ∈ L∞(Rn)
and gτ (x) := g(x + τ), then for every τ ∈ Rn, there exists a constant cτ
such that

Tgτ (x) = Tg(x+ τ) + cτ for a.e. x ∈ Rn.

(ii) Show that T (1) = 0 as a function in BMO. (Hint: Apply part (a) to
f := T (1).)

2. A function a on Rn is said to be an Hardy H1 atom (associated to a ball B) if a is
measurable, supported on B, ‖a‖L2(B) ≤ |B|−1/2, and

´
B
a(x)dx = 0. A function f

on Rn is in Hardy H1, if there exists a sequence a1, a2, . . . of Hardy H1 atoms and
a complex sequence λ1, λ2, . . . with

∑∞
k=1 |λk| <∞ such that

f =
∞∑
k=1

λkak.

For f in Hardy H1, let ‖f‖H1 be the infimum of
∑∞

k=1 |λk|, over all possible decom-
positions of f into

∑∞
k=1 λkak, where a1, a2, . . . are Hardy H1 atoms.

(a) Show that Hardy H1 is a vector space.
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(b) Show that ‖f‖H1 defines a norm on HardyH1, and thatH1 embeds continuously
into L1. (Hint: If f is in Hardy H1 then f ∈ L1 with ‖f‖L1 ≤ ‖f‖H1 . Hence if
‖f‖H1 = 0 then f = 0 a.e. Now check the triangle inequality.)

(c) Show that Hardy H1 is complete. (Hint: Suppose {fk}∞k=1 is a sequence in
Hardy H1 with ‖fk‖H1 ≤ 2−k for all k ≥ 1. It suffices to show that

∑∞
k=1 fk is

in Hardy H1 (why?). But each fk admits a decomposition into sums of atoms,
hence so does

∑∞
k=1 fk. This completes the proof.)

(d) Show that the dual space of Hardy H1 on Rn is BMO(Rn). (Hint: Let H1
a be

the subspace of Hardy H1, that consists of finite linear combinations of Hardy
H1 atoms. Then H1

a is a dense subspace of Hardy H1. Given g ∈ BMO(Rn),
define

〈f, g〉 =

ˆ
Rn

f(x)g(x)dx

for all f ∈ H1
a(Rn). Then

〈f, g〉 = lim
N→∞

ˆ
Rn

f(x)gN(x)dx

for all f ∈ H1
a(Rn), where gN is the truncation of g, given by

gN(x) =


N if g(x) ≥ N

g(x) if −N ≤ g(x) ≤ N

−N if g(x) ≤ −N.

This limit exists by dominated convergence theorem, since |gN | is dominated by
|g|, which is locally L2. Now for f ∈ H1

a and ε > 0, write

f =
∑
k=1

λkak

where a1, a2, . . . are Hardy H1 atoms and

‖f‖H1 ≤
∞∑
k=1

|λk|+ ε.

Then for every N > 0,

ˆ
Rn

f(x)gN(x)dx =
∞∑
k=1

λk

ˆ
Rn

ak(x)gN(x)dx =
∞∑
k=1

λk

ˆ
Rn

ak(x)(gN(x)− ck,N)dx,

where ck,N =
ffl
Bk
gN and Bk is the ball associated to ak, so∣∣∣∣ˆ

Rn

f(x)gN(x)dx

∣∣∣∣ ≤ ∞∑
k=1

|λk|
(

1

|Bk|

ˆ
Bk

|gN(x)− ck,N |2dx
)1/2

. (‖f‖H1 + ε) ‖g‖BMO
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by the John-Nirenberg inequality and the fact that ‖gN‖BMO . ‖g‖BMO uni-
formly in N . Thus letting N →∞ and ε→ 0+, we get

|〈f, g〉| . ‖f‖H1‖g‖BMO

for all f ∈ H1
a, and by density this shows every g ∈ BMO defines a bounded

linear functional on Hardy H1.
For the converse direction, suppose L is a linear functional on Hardy H1 with
norm 1. For every ball B ⊂ Rn, let L2

0(B) be the space of L2 functions f on
B with

´
B
f(x)dx = 0, and equip L2

0(B) with the standard L2 norm ‖f‖L2(B)

so that L2
0(B) becomes a Hilbert space. Then L induces a bounded linear

functional on L2
0(B) with norm . |B|1/2, so there exists g(B) ∈ L2

0(B) with
‖g(B)‖L2(B) . |B|1/2 such that

L(f) =

ˆ
B

f(x)g(B)(x)dx

for all f ∈ L2
0(B). If B1 ∩ B2 6= ∅, then g(B1) − g(B2) is a constant on B1 ∩ B2.

Thus one can define a global function g on Rn, such that for every ball B ⊂ Rn,
there exists a constant cB such that g = g(B) + cB. Now(

sup
B

 
B

|g(x)− cB|2dx
)1/2

= sup
B
|B|−1/2‖g(B)‖L2(B) . 1.

Thus g ∈ BMO(Rn), and it is easy to check that L(f) = 〈f, g〉 for every f ∈ H1
a,

as desired.)

3. Let Tf = f ∗K be the singular integral operator as in Question 1(b).

(a) Show that T extends as a continuous linear operator from Hardy H1 to L1.
(Hint: It suffices to check this on atoms. Let a be an HardyH1 atom associated
to a ball B. Let B∗ be the ball with the same center as B but twice the radius.
Note that ‖Ta‖L1(B∗) . |B|1/2‖Ta‖L2 , which can then be estimated by using
L2 theory. On the other hand, if x /∈ B∗, then

Ta(x) =

ˆ
y/∈B∗

[K0(x− y)−K0(x− y0)]a(y)dy

where y0 is the center of B. One can then estimate ‖Ta‖L1((B∗)c) using the
estimates for the derivative of K0.)

(b) By symmetry, part (a) also shows that the formal adjoint T ∗ of T extends as
a continuous linear operator from Hardy H1 to L1. In the lecture we proved
that T extends as a continuous linear operator from L∞ into BMO. Show that
under these extensions,

ˆ
Rn

Tf(x)g(x)dx =

ˆ
Rn

f(x)T ∗g(x)dx

for all f ∈ L∞, g ∈ H1
a.
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(c) Let a be an Hardy H1 atom. We saw that T ∗a ∈ L1. Show that
ˆ
Rn

T ∗a(x)dx = 0.

This gives an alternative proof of the result in Question 1(b), namely T (1) = 0.
(Hint: Since T ∗a ∈ L1, the Fourier transform of T ∗(a) is a continuous function,

whose value at the origin is limξ→0 K̂(−ξ)â(ξ) = 0. This gives the desired
conclusion.)

4. Let T be as in the previous question. Show that T extends as a continuous linear
map from BMO(Rn) into itself, with

‖Tf‖BMO .n ‖f‖BMO

for all f ∈ BMO. (Hint: Let f ∈ BMO(Rn). By dilation and translation invari-
ance, it suffices to show that there exists a constant c, such that

ˆ
B(0,1)

|Tf − c | dx . ‖f‖BMO.

Split f = f1 + f2 + f3 where

f1 = (f − fB(0,2))χB(0,2), f2 = (f − fB(0,2))χB(0,2)c , f3 = fB(0,2),

and follow the proof that singular integrals map L∞ into BMO; in particular, use
L2 theory to bound Tf1, kernel derivative estimates to bound Tf2, and note that
Tf3 = 0.)

5. Suppose a ∈ BMO(Rn), Φ ∈ S(Rn) with
´
Rn Φ(x)dx = 0. For t > 0, let Φt(x) =

tnΦ(tx). Show that a ∗ Φt ∈ L∞(Rn) for all t > 0, with

‖a ∗ Φt‖L∞ .Φ,n ‖a‖BMO uniformly in t > 0.

(Hint: Let ‖a‖BMO = 1. By dilation and translation invariance, it suffices to bound
|a ∗ Φ(0)| by a constant that depends only on Φ and n. But this follows since

|a ∗ Φ(0)| =
∣∣∣∣ˆ

Rn

(a(x)− aB(0,1))Φ(x)dx

∣∣∣∣ .Φ,n

ˆ
Rn

|a(x)− aB(0,1)|
(1 + |x|)n+1

dx

at which point we may invoke Question 8(d) from Homework 5.)

6. Let K0(x, y) be a measurable function on Rn × Rn that satisfies

|K0(x, y)| . |x− y|−n for all x, y ∈ Rn.

Suppose
K0(x, y) = −K0(y, x) for all x, y ∈ Rn.

For f, g ∈ S(Rn), define

〈Tf, g〉 = lim
ε→0

ˆ ˆ
|x−y|>ε

K0(x, y)f(y)g(x)dydx.
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(a) Show that for f, g ∈ S(Rn), we have

〈Tf, g〉 =
1

2

ˆ ˆ
K0(x, y)[f(y)g(x)− g(y)f(x)]dydx.

(b) Hence show that T defines a continuous linear map T : S(Rn) → S ′(Rn), and
that T is weakly bounded. (Hint: If f ∈ S(Rn) and gn → 0 in S(Rn), evaluate
〈Tf, gn〉 using (a), and estimate that by splitting the integral into two parts,
one where |x − y| ≤ 1, the other where |x − y| ≥ 1. On the part where
|x− y| ≤ 1, write

f(y)gn(x)− gn(y)f(x) = [f(y)− f(x)]gn(y) + f(x)[gn(y)− gn(x)]

and use that ‖∇f‖L∞‖gn‖L1 + ‖∇gn‖L∞‖f‖L1 → 0 as n → ∞. On the
part of the integral where |x − y| ≥ 1, bound |K0(x, y)| . 1, and note
that ‖fn‖L1‖g‖L1 → 0 as n → ∞. This shows that T maps S(Rn) into
S ′(Rn). Reversing the role of f and g in the above argument, we see that
T : S(Rn)→ S ′(Rn) is continuous. Finally, the argument we used to treat the
integral where |x − y| ≤ 1 can be easily modified to show that T is weakly
bounded.)

7. Let p1 ∈ (1,∞), p2 ∈ (1,∞], p ∈ (1,∞), and

1

p
=

1

p1

+
1

p2

.

Suppose f ∈ Lp1(Rn), g ∈ Lp2(Rn). For j ∈ Z, let

∆jf = F−1[ϕ(2−jξ)f̂(ξ)] and Sjf = F−1[ψ(2−jξ)f̂(ξ)]

where ϕ is smooth with compact support on the annulus {1/2 ≤ |ξ| ≤ 2} and ψ is
smooth with compact support on the ball {|ξ| ≤ 2}. Show that the paraproduct∑∞

j=−∞∆jf · Sj−3g converges in Lp(Rn), with∥∥∥∥∥
∞∑

j=−∞

∆jf · Sj−3g

∥∥∥∥∥
Lp

. ‖f‖Lp1‖g‖Lp2 .

(Hint: Since
∑
|j|≤N ∆jf → f in Lp1 , it suffices to prove that∥∥∥∥∥∥

∑
|j|≤N

∆jf · Sj−3g

∥∥∥∥∥∥
Lp

. ‖f‖Lp1‖g‖Lp2

uniformly in N . Note that the function on the left hand side is a priori in Lp(Rn).
By Littlewood-Paley inequality and the fact that ∆jf ·Sj−3g has frequency support
on an annulus {2j−2 ≤ |ξ| ≤ 2j+2}, it suffices to estimate∥∥∥∥∥∥∥

 ∑
|k|≤N+3

∣∣∣∣∣∣∆k

∑
|j−k|≤3

∆jf · Sj−3g

∣∣∣∣∣∣
21/2

∥∥∥∥∥∥∥
Lp

.
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But one can take the finite sum out of the Lp`2 norm, drop the ∆k, and then
estimate |Sj−3g| by Mg, the Hardy-Littlewood maximal function of g. Thus the
above is bounded by ∥∥∥∥∥∥∥

 ∑
|k|≤N+3

|∆jf |2
1/2

Mg

∥∥∥∥∥∥∥
Lp

,

which by Hölder’s inequality, the boundedness of M on Lp2 , and the Littlewood-
Paley inequality is bounded by ‖f‖Lp1‖g‖Lp2 .)


