MATH6081A Homework 7

1. (a) Let f be a BMO function on \mathbb{R}^{n}. Suppose for every $\tau \in \mathbb{R}^{n}$, there exists a constant c_{τ} such that

$$
f(x+\tau)=f(x)+c_{\tau} \quad \text { for a.e. } x \in \mathbb{R}^{n} .
$$

Show that f is constant, and hence f is identified with 0 in the BMO space. (Hint: First show that $c_{\tau_{1}+\tau_{2}}=c_{\tau_{1}}+c_{\tau_{2}}$ for all $\tau_{1}, \tau_{2} \in \mathbb{R}^{n}$, and that c_{τ} is continuous as a function of τ by noting that

$$
c_{\tau}=f_{B(0,1)} f(x+\tau) d x-f_{B(0,1)} f(x) d x
$$

for all $\tau \in \mathbb{R}^{n}$. Hence c_{τ} is a linear function of τ, which shows $f(x)$ is equal to an affine function of x a.e. on \mathbb{R}^{n}. The only affine functions that are in BMO are constants, by considering averages of $\left|f(x)-f_{B(0, R)}\right|$ over $B(0, R)$ as $R \rightarrow+\infty$.)
(b) Suppose $K \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is a tempered distribution with $\widehat{K} \in L^{\infty}\left(\mathbb{R}^{n}\right)$. Suppose also K agrees with a measurable function K_{0} away from the origin, for which

$$
\sup _{y \neq 0} \int_{|x| \geq 2|y|}\left|K_{0}(x-y)-K_{0}(x)\right| d x<\infty .
$$

Let $T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ be given by $T f=f * K$ for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. We knew already that T extends as a continuous linear operator from $L^{\infty}\left(\mathbb{R}^{n}\right)$ to BMO; if $g \in L^{\infty}\left(\mathbb{R}^{n}\right)$, we write $T g$ for a globally defined BMO function on \mathbb{R}^{n} with some fixed normalization (say $\int_{B(0,1)} T g(x) d x=0$).
(i) Show that T commutes with translation, in the sense that if $g \in L^{\infty}\left(\mathbb{R}^{n}\right)$ and $g_{\tau}(x):=g(x+\tau)$, then for every $\tau \in \mathbb{R}^{n}$, there exists a constant c_{τ} such that

$$
T g_{\tau}(x)=T g(x+\tau)+c_{\tau} \quad \text { for a.e. } x \in \mathbb{R}^{n} \text {. }
$$

(ii) Show that $T(1)=0$ as a function in BMO. (Hint: Apply part (a) to $f:=T(1)$.)
2. A function a on \mathbb{R}^{n} is said to be an Hardy \mathcal{H}^{1} atom (associated to a ball B) if a is measurable, supported on $B,\|a\|_{L^{2}(B)} \leq|B|^{-1 / 2}$, and $\int_{B} a(x) d x=0$. A function f on \mathbb{R}^{n} is in Hardy \mathcal{H}^{1}, if there exists a sequence a_{1}, a_{2}, \ldots of Hardy \mathcal{H}^{1} atoms and a complex sequence $\lambda_{1}, \lambda_{2}, \ldots$ with $\sum_{k=1}^{\infty}\left|\lambda_{k}\right|<\infty$ such that

$$
f=\sum_{k=1}^{\infty} \lambda_{k} a_{k} .
$$

For f in Hardy \mathcal{H}^{1}, let $\|f\|_{\mathcal{H}^{1}}$ be the infimum of $\sum_{k=1}^{\infty}\left|\lambda_{k}\right|$, over all possible decompositions of f into $\sum_{k=1}^{\infty} \lambda_{k} a_{k}$, where a_{1}, a_{2}, \ldots are Hardy \mathcal{H}^{1} atoms.
(a) Show that Hardy \mathcal{H}^{1} is a vector space.
(b) Show that $\|f\|_{\mathcal{H}^{1}}$ defines a norm on Hardy \mathcal{H}^{1}, and that \mathcal{H}^{1} embeds continuously into L^{1}. (Hint: If f is in Hardy \mathcal{H}^{1} then $f \in L^{1}$ with $\|f\|_{L^{1}} \leq\|f\|_{\mathcal{H}^{1}}$. Hence if $\|f\|_{\mathcal{H}^{1}}=0$ then $f=0$ a.e. Now check the triangle inequality.)
(c) Show that Hardy \mathcal{H}^{1} is complete. (Hint: Suppose $\left\{f_{k}\right\}_{k=1}^{\infty}$ is a sequence in Hardy \mathcal{H}^{1} with $\left\|f_{k}\right\|_{\mathcal{H}^{1}} \leq 2^{-k}$ for all $k \geq 1$. It suffices to show that $\sum_{k=1}^{\infty} f_{k}$ is in Hardy \mathcal{H}^{1} (why?). But each f_{k} admits a decomposition into sums of atoms, hence so does $\sum_{k=1}^{\infty} f_{k}$. This completes the proof.)
(d) Show that the dual space of Hardy \mathcal{H}^{1} on \mathbb{R}^{n} is $\operatorname{BMO}\left(\mathbb{R}^{n}\right)$. (Hint: Let \mathcal{H}_{a}^{1} be the subspace of Hardy \mathcal{H}^{1}, that consists of finite linear combinations of Hardy \mathcal{H}^{1} atoms. Then \mathcal{H}_{a}^{1} is a dense subspace of Hardy \mathcal{H}^{1}. Given $g \in B M O\left(\mathbb{R}^{n}\right)$, define

$$
\langle f, g\rangle=\int_{\mathbb{R}^{n}} f(x) \overline{g(x)} d x
$$

for all $f \in \mathcal{H}_{a}^{1}\left(\mathbb{R}^{n}\right)$. Then

$$
\langle f, g\rangle=\lim _{N \rightarrow \infty} \int_{\mathbb{R}^{n}} f(x) \overline{g_{N}(x)} d x
$$

for all $f \in \mathcal{H}_{a}^{1}\left(\mathbb{R}^{n}\right)$, where g_{N} is the truncation of g, given by

$$
g_{N}(x)= \begin{cases}N & \text { if } g(x) \geq N \\ g(x) & \text { if }-N \leq g(x) \leq N \\ -N & \text { if } g(x) \leq-N\end{cases}
$$

This limit exists by dominated convergence theorem, since $\left|g_{N}\right|$ is dominated by $|g|$, which is locally L^{2}. Now for $f \in \mathcal{H}_{a}^{1}$ and $\varepsilon>0$, write

$$
f=\sum_{k=1} \lambda_{k} a_{k}
$$

where a_{1}, a_{2}, \ldots are Hardy \mathcal{H}^{1} atoms and

$$
\|f\|_{\mathcal{H}^{1}} \leq \sum_{k=1}^{\infty}\left|\lambda_{k}\right|+\varepsilon
$$

Then for every $N>0$,
$\int_{\mathbb{R}^{n}} f(x) \overline{g_{N}(x)} d x=\sum_{k=1}^{\infty} \lambda_{k} \int_{\mathbb{R}^{n}} a_{k}(x) \overline{g_{N}(x)} d x=\sum_{k=1}^{\infty} \lambda_{k} \int_{\mathbb{R}^{n}} a_{k}(x)\left(\overline{g_{N}(x)-c_{k, N}}\right) d x$,
where $c_{k, N}=f_{B_{k}} g_{N}$ and B_{k} is the ball associated to a_{k}, so

$$
\begin{aligned}
\left|\int_{\mathbb{R}^{n}} f(x) \overline{g_{N}(x)} d x\right| & \leq \sum_{k=1}^{\infty}\left|\lambda_{k}\right|\left(\frac{1}{\left|B_{k}\right|} \int_{B_{k}}\left|g_{N}(x)-c_{k, N}\right|^{2} d x\right)^{1 / 2} \\
& \lesssim\left(\|f\|_{\mathcal{H}^{1}}+\varepsilon\right)\|g\|_{B M O}
\end{aligned}
$$

by the John-Nirenberg inequality and the fact that $\left\|g_{N}\right\|_{B M O} \lesssim\|g\|_{B M O}$ uniformly in N. Thus letting $N \rightarrow \infty$ and $\varepsilon \rightarrow 0^{+}$, we get

$$
|\langle f, g\rangle| \lesssim\|f\|_{\mathcal{H}^{1}}\|g\|_{B M O}
$$

for all $f \in \mathcal{H}_{a}^{1}$, and by density this shows every $g \in B M O$ defines a bounded linear functional on Hardy \mathcal{H}^{1}.
For the converse direction, suppose L is a linear functional on Hardy \mathcal{H}^{1} with norm 1 . For every ball $B \subset \mathbb{R}^{n}$, let $L_{0}^{2}(B)$ be the space of L^{2} functions f on B with $\int_{B} f(x) d x=0$, and equip $L_{0}^{2}(B)$ with the standard L^{2} norm $\|f\|_{L^{2}(B)}$ so that $L_{0}^{2}(B)$ becomes a Hilbert space. Then L induces a bounded linear functional on $L_{0}^{2}(B)$ with norm $\lesssim|B|^{1 / 2}$, so there exists $g^{(B)} \in L_{0}^{2}(B)$ with $\left\|g^{(B)}\right\|_{L^{2}(B)} \lesssim|B|^{1 / 2}$ such that

$$
L(f)=\int_{B} f(x) \overline{g^{(B)}(x)} d x
$$

for all $f \in L_{0}^{2}(B)$. If $B_{1} \cap B_{2} \neq \emptyset$, then $g^{\left(B_{1}\right)}-g^{\left(B_{2}\right)}$ is a constant on $B_{1} \cap B_{2}$. Thus one can define a global function g on \mathbb{R}^{n}, such that for every ball $B \subset \mathbb{R}^{n}$, there exists a constant c_{B} such that $g=g^{(B)}+c_{B}$. Now

$$
\left(\sup _{B} f_{B}\left|g(x)-c_{B}\right|^{2} d x\right)^{1 / 2}=\sup _{B}|B|^{-1 / 2}\left\|g^{(B)}\right\|_{L^{2}(B)} \lesssim 1
$$

Thus $g \in B M O\left(\mathbb{R}^{n}\right)$, and it is easy to check that $L(f)=\langle f, g\rangle$ for every $f \in \mathcal{H}_{a}^{1}$, as desired.)
3. Let $T f=f * K$ be the singular integral operator as in Question 1(b).
(a) Show that T extends as a continuous linear operator from Hardy \mathcal{H}^{1} to L^{1}. (Hint: It suffices to check this on atoms. Let a be an Hardy \mathcal{H}^{1} atom associated to a ball B. Let B^{*} be the ball with the same center as B but twice the radius. Note that $\|T a\|_{L^{1}\left(B^{*}\right)} \lesssim|B|^{1 / 2}\|T a\|_{L^{2}}$, which can then be estimated by using L^{2} theory. On the other hand, if $x \notin B^{*}$, then

$$
T a(x)=\int_{y \notin B^{*}}\left[K_{0}(x-y)-K_{0}\left(x-y_{0}\right)\right] a(y) d y
$$

where y_{0} is the center of B. One can then estimate $\|T a\|_{L^{1}\left(\left(B^{*}\right)^{c}\right)}$ using the estimates for the derivative of K_{0}.)
(b) By symmetry, part (a) also shows that the formal adjoint T^{*} of T extends as a continuous linear operator from Hardy \mathcal{H}^{1} to L^{1}. In the lecture we proved that T extends as a continuous linear operator from L^{∞} into BMO. Show that under these extensions,

$$
\int_{\mathbb{R}^{n}} T f(x) \overline{g(x)} d x=\int_{\mathbb{R}^{n}} f(x) \overline{T^{*} g(x)} d x
$$

for all $f \in L^{\infty}, g \in \mathcal{H}_{a}^{1}$.
(c) Let a be an Hardy \mathcal{H}^{1} atom. We saw that $T^{*} a \in L^{1}$. Show that

$$
\int_{\mathbb{R}^{n}} T^{*} a(x) d x=0 .
$$

This gives an alternative proof of the result in Question $1(\mathrm{~b})$, namely $T(1)=0$. (Hint: Since $T^{*} a \in L^{1}$, the Fourier transform of $T^{*}(a)$ is a continuous function, whose value at the origin is $\lim _{\xi \rightarrow 0} \widehat{K}(-\xi) \widehat{a}(\xi)=0$. This gives the desired conclusion.)
4. Let T be as in the previous question. Show that T extends as a continuous linear map from $B M O\left(\mathbb{R}^{n}\right)$ into itself, with

$$
\|T f\|_{B M O} \lesssim_{n}\|f\|_{B M O}
$$

for all $f \in B M O$. (Hint: Let $f \in B M O\left(\mathbb{R}^{n}\right)$. By dilation and translation invariance, it suffices to show that there exists a constant c, such that

$$
\int_{B(0,1)}|T f-c| d x \lesssim\|f\|_{B M O}
$$

Split $f=f_{1}+f_{2}+f_{3}$ where

$$
f_{1}=\left(f-f_{B(0,2)}\right) \chi_{B(0,2)}, \quad f_{2}=\left(f-f_{B(0,2)}\right) \chi_{B(0,2)^{c}}, \quad f_{3}=f_{B(0,2)}
$$

and follow the proof that singular integrals map L^{∞} into BMO; in particular, use L^{2} theory to bound $T f_{1}$, kernel derivative estimates to bound $T f_{2}$, and note that $T f_{3}=0$.)
5. Suppose $a \in B M O\left(\mathbb{R}^{n}\right), \Phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}} \Phi(x) d x=0$. For $t>0$, let $\Phi_{t}(x)=$ $t^{n} \Phi(t x)$. Show that $a * \Phi_{t} \in L^{\infty}\left(\mathbb{R}^{n}\right)$ for all $t>0$, with

$$
\left\|a * \Phi_{t}\right\|_{L^{\infty}} \lesssim_{\Phi, n}\|a\|_{B M O} \quad \text { uniformly in } t>0
$$

(Hint: Let $\|a\|_{B M O}=1$. By dilation and translation invariance, it suffices to bound $|a * \Phi(0)|$ by a constant that depends only on Φ and n. But this follows since

$$
|a * \Phi(0)|=\left|\int_{\mathbb{R}^{n}}\left(a(x)-a_{B(0,1)}\right) \Phi(x) d x\right| \lesssim_{\Phi, n} \int_{\mathbb{R}^{n}} \frac{\left|a(x)-a_{B(0,1)}\right|}{(1+|x|)^{n+1}} d x
$$

at which point we may invoke Question 8(d) from Homework 5.)
6. Let $K_{0}(x, y)$ be a measurable function on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ that satisfies

$$
\left|K_{0}(x, y)\right| \lesssim|x-y|^{-n} \quad \text { for all } x, y \in \mathbb{R}^{n}
$$

Suppose

$$
K_{0}(x, y)=-K_{0}(y, x) \quad \text { for all } x, y \in \mathbb{R}^{n} .
$$

For $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, define

$$
\langle T f, g\rangle=\lim _{\varepsilon \rightarrow 0} \iint_{|x-y|>\varepsilon} K_{0}(x, y) f(y) g(x) d y d x
$$

(a) Show that for $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
\langle T f, g\rangle=\frac{1}{2} \iint K_{0}(x, y)[f(y) g(x)-g(y) f(x)] d y d x
$$

(b) Hence show that T defines a continuous linear map $T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, and that T is weakly bounded. (Hint: If $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $g_{n} \rightarrow 0$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$, evaluate $\left\langle T f, g_{n}\right\rangle$ using (a), and estimate that by splitting the integral into two parts, one where $|x-y| \leq 1$, the other where $|x-y| \geq 1$. On the part where $|x-y| \leq 1$, write

$$
f(y) g_{n}(x)-g_{n}(y) f(x)=[f(y)-f(x)] g_{n}(y)+f(x)\left[g_{n}(y)-g_{n}(x)\right]
$$

and use that $\|\nabla f\|_{L^{\infty}}\left\|g_{n}\right\|_{L^{1}}+\left\|\nabla g_{n}\right\|_{L^{\infty}}\|f\|_{L^{1}} \rightarrow 0$ as $n \rightarrow \infty$. On the part of the integral where $|x-y| \geq 1$, bound $\left|K_{0}(x, y)\right| \lesssim 1$, and note that $\left\|f_{n}\right\|_{L^{1}}\|g\|_{L^{1}} \rightarrow 0$ as $n \rightarrow \infty$. This shows that T maps $\mathcal{S}\left(\mathbb{R}^{n}\right)$ into $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Reversing the role of f and g in the above argument, we see that $T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is continuous. Finally, the argument we used to treat the integral where $|x-y| \leq 1$ can be easily modified to show that T is weakly bounded.)
7. Let $p_{1} \in(1, \infty), p_{2} \in(1, \infty], p \in(1, \infty)$, and

$$
\frac{1}{p}=\frac{1}{p_{1}}+\frac{1}{p_{2}} .
$$

Suppose $f \in L^{p_{1}}\left(\mathbb{R}^{n}\right), g \in L^{p_{2}}\left(\mathbb{R}^{n}\right)$. For $j \in \mathbb{Z}$, let

$$
\Delta_{j} f=\mathcal{F}^{-1}\left[\varphi\left(2^{-j} \xi\right) \widehat{f}(\xi)\right] \quad \text { and } \quad S_{j} f=\mathcal{F}^{-1}\left[\psi\left(2^{-j} \xi\right) \widehat{f}(\xi)\right]
$$

where φ is smooth with compact support on the annulus $\{1 / 2 \leq|\xi| \leq 2\}$ and ψ is smooth with compact support on the ball $\{|\xi| \leq 2\}$. Show that the paraproduct $\sum_{j=-\infty}^{\infty} \Delta_{j} f \cdot S_{j-3} g$ converges in $L^{p}\left(\mathbb{R}^{n}\right)$, with

$$
\left\|\sum_{j=-\infty}^{\infty} \Delta_{j} f \cdot S_{j-3} g\right\|_{L^{p}} \lesssim\|f\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}
$$

(Hint: Since $\sum_{|j| \leq N} \Delta_{j} f \rightarrow f$ in $L^{p_{1}}$, it suffices to prove that

$$
\left\|\sum_{|j| \leq N} \Delta_{j} f \cdot S_{j-3} g\right\|_{L^{p}} \lesssim\|f\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}
$$

uniformly in N. Note that the function on the left hand side is a priori in $L^{p}\left(\mathbb{R}^{n}\right)$. By Littlewood-Paley inequality and the fact that $\Delta_{j} f \cdot S_{j-3} g$ has frequency support on an annulus $\left\{2^{j-2} \leq|\xi| \leq 2^{j+2}\right\}$, it suffices to estimate

$$
\left\|\left(\sum_{|k| \leq N+3}\left|\Delta_{k} \sum_{|j-k| \leq 3} \Delta_{j} f \cdot S_{j-3} g\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}
$$

But one can take the finite sum out of the $L^{p} \ell^{2}$ norm, drop the Δ_{k}, and then estimate $\left|S_{j-3} g\right|$ by $M g$, the Hardy-Littlewood maximal function of g. Thus the above is bounded by

$$
\left\|\left(\sum_{|k| \leq N+3}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2} M g\right\|_{L^{p}},
$$

which by Hölder's inequality, the boundedness of M on $L^{p_{2}}$, and the LittlewoodPaley inequality is bounded by $\left.\|f\|_{L^{p_{1}}}\|g\|_{L^{p_{2}}}.\right)$

