Topics in Harmonic Analysis Lecture 1: The Fourier transform

Po-Lam Yung

The Chinese University of Hong Kong

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 のへぐ

Outline

- Fourier series on \mathbb{T} : L^2 theory
- Convolutions
- The Dirichlet and Fejer kernels
- Pointwise convergence of Fourier series
- Other modes of convergence
- Multiplier operators: a prelude
- The role played by the group of translations

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQ@

- Analogue on \mathbb{R}^n
- The groups of dilations and modulations

Fourier series on \mathbb{T} : L^2 theory

- Let $\mathbb{T} = \mathbb{R}/\mathbb{Z}$ be the unit circle.
- {Functions on \mathbb{T} } = {periodic functions on \mathbb{R} }.
- The *n*-th Fourier coefficient of an L^1 function on \mathbb{T} is given by

$$\widehat{f}(n) := \int_{\mathbb{T}} f(x) e^{-2\pi i n x} dx, \quad n \in \mathbb{Z}.$$

A remarkable insight of J. Fourier was that perhaps 'every' function f on T can be represented by a Fourier series:

$$\sum_{n\in\mathbb{Z}}a_ne^{2\pi inx}.$$

 One can make this rigorous, for instance, when one restricts attention to L² functions on T (which form a Hilbert space).

- ► The claim is that for every f ∈ L²(T), the Fourier series of f converges to f in L²(T) norm.
- In other words, for every $f \in L^2(\mathbb{T})$, we have

$$\sum_{n=-N}^{N}\widehat{f}(n)e^{2\pi i n x}
ightarrow f(x) \qquad ext{in } L^2(\mathbb{T}) ext{ as } N
ightarrow \infty.$$

 Underlying this claim are two important concepts, namely orthogonality and completeness. ► Clearly $\{e^{2\pi inx}\}_{n \in \mathbb{Z}}$ is an orthonormal system on $L^2(\mathbb{T})$, and $\widehat{f}(n) = \langle f(x), e^{2\pi inx} \rangle_{L^2(\mathbb{T})}.$

 General principles about orthogonality then shows that for every N ∈ N,

$$S_N f(x) := \sum_{|n| \le N} \widehat{f}(n) e^{2\pi i n x}$$

is the orthogonal projection of f onto the linear subspace V_N of $L^2(\mathbb{T})$ spanned by $\{e^{2\pi i n x} : |n| \le N\}$. In other words,

$$f = (f - S_N f) + S_N f$$

with $S_N f \in V_N$ and $(f - S_N f) \perp V_N$, and hence

$$\sum_{n\in\mathbb{Z}}|\widehat{f}(n)|^2\leq \|f\|_{L^2(\mathbb{T})}^2.$$

(The last inequality is sometimes called Bessel's inequality.)

 The aforementioned property about orthogonal projection can be rephrased as

$$\|f - S_N f\|_{L^2(\mathbb{T})} = \min \left\{ \|f - p_N\|_{L^2(\mathbb{T})} \colon p_N \in \operatorname{span}\{e^{2\pi i n x}\}_{|n| \le N}
ight\}.$$

- On the other hand, one can show that the set of all finite linear combinations of {e^{2πinx}}_{n∈Z} (i.e. the set of all trigonometric polynomials) is *dense* in L²(T) (more to follow below).
- ► Thus $\{e^{2\pi inx}\}_{n \in \mathbb{Z}}$ form a *complete orthonormal system* on $L^2(\mathbb{T})$.
- ▶ It follows that for every $f \in L^2(\mathbb{T})$, we have

$$S_N f \to f$$
 in $L^2(\mathbb{T})$ as $N \to \infty$.

 To see this desired density, we study convolutions and multiplier operators.

Convolutions

► The convolutions of two L¹ functions on T is another L¹ function, given by

$$f * g(x) = \int_{\mathbb{T}} f(x-y)g(y)dy.$$

Convolutions are associative and commutative:

$$f * (g * h) = (f * g) * h, \qquad f * g = g * f.$$

- ▶ If $f \in L^{p}(\mathbb{T})$ for some $p \in [1, \infty]$ and $g \in L^{1}(\mathbb{T})$, then $f * g \in L^{p}(\mathbb{T})$.
- More generally, if $p, q, r \in [1, \infty]$ and

$$1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$$

then

$$\|f \ast g\|_{L^r(\mathbb{T})} \leq \|f\|_{L^p(\mathbb{T})} \|g\|_{L^q(\mathbb{T})}.$$

(Young's convolution inequality)

• For $f \in L^1(\mathbb{T})$, let

$$\widehat{f}(n) = \int_{\mathbb{T}} f(x) e^{-2\pi i n x} dx$$

as before. Then

$$\widehat{f \ast g}(n) = \widehat{f}(n)\widehat{g}(n)$$

whenever $f, g \in L^1(\mathbb{T})$.

So if $K \in L^1(\mathbb{T})$, then the convolution operator

 $f\mapsto f\ast K$

can be understood via the Fourier transform of K: indeed

$$f * K(x) = \sum_{n \in \mathbb{Z}} \widehat{f}(n) \widehat{K}(n) e^{2\pi i n x}$$

whenever f is in (say) $L^2(\mathbb{T})$.

The Dirichlet and Fejer kernels

For each N ∈ N, let D_N and F_N be the Dirichlet and Fejer kernels respectively, defined by

$$\widehat{D_N}(n) = \begin{cases} 1 & \text{if } |n| \le N \\ 0 & \text{if } |n| > N \end{cases}, \qquad \widehat{F_N}(n) = \begin{cases} 1 - \frac{|n|}{N} & \text{if } |n| \le N \\ 0 & \text{if } |n| > N \end{cases}$$

٠

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

Then

$$D_N(x) = \sum_{|n| \le N} e^{2\pi i n x}$$
 $F_N(x) = \sum_{|n| \le N} \left(1 - \frac{|n|}{N}\right) e^{2\pi i n x}$

► If $f \in L^1(\mathbb{T})$, then and $S_N f = f * D_N,$ $\frac{S_0 f + S_1 f + \dots + S_{N-1} f}{N} = f * F_N.$

One has a closed formula for F_N: indeed

$$F_N(x) = \frac{1}{N} \left(\frac{\sin N\pi x}{\sin \pi x} \right)^2$$

From this we see that $F_N \ge 0$ for all N,

$$\|F_N\|_{L^1}=\widehat{F_N}(0)=1,$$

and

$$\int_{\delta \leq |y| \leq 1/2} F_N(y) dy o 0$$
 as $N o \infty$.

Thus $\{F_N\}_{N\in\mathbb{N}}$ form a family of *good kernels*.

- As a result, if f is continuous on T, then f ∗ F_N → f uniformly on T.
- ► Hence by approximating by continuous functions, we see that trigonometric polynomials are dense in L²(T).
- ► This establishes in full the elementary L² theory of the Fourier transform on T. In particular, now we have Plancherel's theorem:

$$\sum_{n\in\mathbb{Z}}|\widehat{f}(n)|^2 = \|f\|_{L^2(\mathbb{T})}^2$$

whenever $f \in L^2(\mathbb{T})$.

Pointwise convergence of Fourier series

We can now prove the Riemann-Lebesgue lemma: for f ∈ L¹(T), we have

$$\sup_{n\in\mathbb{Z}}|\widehat{f}(n)|\leq \|f\|_{L^1(\mathbb{T})}.$$

Indeed $\widehat{f}(n) \to 0$ as $n \to \pm \infty$.

This allows one to show that

$$\lim_{N\to\infty}\sum_{|n|\leq N}\widehat{f}(n)e^{2\pi i n x}=f(x)$$

whenever f is Hölder continuous of some positive order at $x \in \mathbb{T}$ (actually we only need a Dini condition at x: indeed the condition

$$\int_{|t|\leq 1/2}\frac{|f(x+t)-f(x)|}{|t|}dt<\infty$$

will suffice.)

(日)、(型)、(E)、(E)、(E)、(O)への

- On the other hand, there exists a continuous function on T whose Fourier series diverges at say 0 ∈ T. So mere continuity of f does not guarantee everywhere pointwise convergence of Fourier series!
- On the pathological side, there even exists an L¹ function on T, whose Fourier series diverges everywhere (Kolmogorov).
- ► However, a remarkable theorem of Carleson says that the Fourier series of an L² function on T converges pointwise almost everywhere (a.e.).

(Later Hunt showed the same for $L^p(\mathbb{T})$, 1 .)

We will come back to this briefly towards the end of this lecture.

Other modes of convergence

- To sum up, we have considered L² norm convergence, pointwise convergence and a.e. pointwise convergence of Fourier series.
- Other modes of convergence of Fourier series also give rise to interesting questions.
- Examples include L^p norm convergence, uniform convergence, absolute convergence, and various summability methods.
- If f ∈ C²(T), then clearly the Fourier series of f converges absolutely and uniformly (since |f(n)| ≤ |n|⁻²).
- ► However, indeed the Fourier series of f converges absolutely and uniformly already, as long as f is Hölder continuous of some order > 1/2 on T.
- ► The question of L^p norm convergence on T, for 1 also well understood, and will be considered in Lecture 4.
- It is interesting to note that an analogous question in higher dimensions (for Tⁿ, n > 1) is much deeper, and is related to some excellent open problems in the area.

Multiplier operators: a prelude

• Given a bounded function $m \colon \mathbb{Z} \to \mathbb{C}$, the map

$$f(x) \mapsto T_m f(x) := \sum_{n \in \mathbb{Z}} m(n) \widehat{f}(n) e^{2\pi i n x}$$

defines a bounded linear operator on $L^2(\mathbb{T})$.

- Examples: convolution with the Dirichlet or the Fejer kernels.
- ▶ The analysis of such operators often benefit by taking the inverse Fourier transform of *m*, as we have seen in the case of convolution with the Fejer kernel.
- We will be interested, for instance, in the boundedness of many multiplier operators on L^p(T) for various p ∈ [1,∞].
- ► e.g. The uniform L^p boundedness of convolutions with the Dirichlet kernels is crucial in the discussion of L^p norm convergence of the Fourier series of a function in L^p(T).
- We note in passing that all multiplier operators commute with translations (and so do all convolution operators).

The role played by the group of translations

- ▶ Let's take a step back and look at Fourier series on L²(T).
- There we expand functions in terms of complex exponentials {e^{2πinx}}_{n∈ℤ}.
- But why complex exponentials?
- ▶ An explanation can be given in terms of the underlying group structure on $\mathbb{T} = \mathbb{R}/\mathbb{Z}$.
- Recall \mathbb{T} is an abelian group under addition.
- ► Thus if y ∈ T, then the operator \(\tau_y: L^2(T) → L^2(T)\), defined by

$$\tau_y f(x) = f(x+y),$$

is a unitary operator on $L^2(\mathbb{T})$, and the group homomorphism

$$y \in \mathbb{T} \mapsto \tau_y \in B(L^2(\mathbb{T}))$$

is continuous if we endow the strong topology on $B(L^2(\mathbb{T}))$.

- Thus the map y → τ_y defines a unitary representation of the compact group T on the (complex) Hilbert space L²(T).
- ► The Peter-Weyl theorem then provides a splitting of L²(T) into an orthogonal direct sum of irreducible finite-dimensional representations.
- Since T is abelian, all irreducible finite-dimensional representations are 1-dimensional, by Schur's lemma.
- ▶ In other words, there exists an orthonormal family of functions $\{f_n\}_{n \in \mathbb{Z}}$ of $L^2(\mathbb{T})$, such that

$$L^2(\mathbb{T}) = \bigoplus_{n \in \mathbb{Z}} \mathbb{C}f_n,$$

and such that f_n is an eigenfunction of τ_y for all $y \in \mathbb{T}$.

For n ∈ Z, let χ_n(y) be the eigenvalue of τ_y on f_n, i.e. let χ_n: T → C[×] be a continuous function such that

$$au_y f_n = \chi_n(y) f_n$$
 for all $y \in \mathbb{T}$.

- Then χ_n(y + y') = χ_n(y)χ_n(y') for all y, y' ∈ T, i.e. χ_n is a character on T.
- But if $\chi \colon \mathbb{R} \to \mathbb{C}^{\times}$ is a continuous function with

$$\chi(x+x')=\chi(x)\chi(x')$$

for all $x, x' \in \mathbb{R}$, then there exists $a \in \mathbb{C}$ such that $\chi(x) = e^{ax}$ for all $x \in \mathbb{R}$ (just show that $\chi(x) = e^{ax}$ holds for $x = mx_0/2^n$ whenever $m \in \mathbb{Z}$, $n \in \mathbb{N}$ and x_0 is sufficiently close to 0, and use continuity); if in addition χ is periodic with period 1, then the *a* above must be in $2\pi i\mathbb{Z}$.

▶ Thus without loss of generality, we may label the f_n 's, so that $\chi_n(y) = e^{2\pi i n y}$ for all $n \in \mathbb{Z}$ and all $y \in \mathbb{T}$.

This gives

$$f_n(x+y)=e^{2\pi iny}f_n(x)$$

for all $n \in \mathbb{Z}$ and all $x, y \in \mathbb{T}$, so

$$f_n'(x) = 2\pi i n f_n(x),$$

from which we conclude that $f_n(x) = ce^{2\pi i nx}$ for some |c| = 1.

- In other words, for each n ∈ Z, the function e^{2πinx} is an eigenvector of τ_y for all y ∈ T, with eigenvalue e^{2πiny}.
- ► To recap: we have a family {\(\tau_y\)}\)_{y∈T} of commuting unitary operators on L²(T), and the complex exponentials {\(e^{2\pi inx}\)}\)_{n∈Z} provide a simultaneous diagonalization of these operators:

$$\tau_y e^{2\pi i n x} = e^{2\pi i n y} e^{2\pi i n x}$$

for all $n \in \mathbb{Z}$, and all $y \in \mathbb{T}$.

Note that the orthogonality of the complex exponentials follows from the Peter-Weyl theorem! Also, the equation

$$\tau_y e^{2\pi i n x} = e^{2\pi i n y} e^{2\pi i n x}$$

implies that $e^{2\pi inx}$ are eigenfunctions of the derivative operator:

$$\frac{d}{dx}e^{2\pi inx} = 2\pi ine^{2\pi inx}$$

This is not too surprising since derivatives are infinitesimal translations!

Another way of saying the same thing is that

$$\widehat{\tau_y f}(n) = e^{2\pi i n y} \widehat{f}(n)$$

for all $y \in \mathbb{T}$ and $n \in \mathbb{Z}$; hence differentiation and multiplication are interwined by the Fourier transform:

$$\widehat{f'}(n) = 2\pi i n \widehat{f}(n)$$
 if $f \in C^1(\mathbb{T})$.

The fact that the Fourier series constitutes a spectral decomposition of the derivative operator is what makes it so powerful in the study of differential equations.

Analogue on \mathbb{R}^n

• The Fourier transform of an L^1 function on \mathbb{R}^n is defined by

$$\widehat{f}(\xi) = \int_{\mathbb{R}^n} f(x) e^{-2\pi i x \cdot \xi} dx, \quad \xi \in \mathbb{R}^n.$$

We have

$$\|\widehat{f}\|_{L^{\infty}(\mathbb{R}^n)} \leq \|f\|_{L^1(\mathbb{R}^n)};$$

indeed the Fourier transform of an L^1 function is continuous on \mathbb{R}^n .

• If $f,g \in L^1(\mathbb{R}^n)$, their convolution is defined by

$$f * g(x) = \int_{\mathbb{R}^n} f(x-y)g(y)dy.$$

• We have f * g = g * f and

$$\widehat{f \ast g}(\xi) = \widehat{f}(\xi)\widehat{g}(\xi)$$

if $f, g \in L^1(\mathbb{R}^n)$.

- ► The space of Schwartz functions on ℝⁿ is defined as the space of all smooth functions, whose derivatives of all orders are rapidly decreasing at infinity. It is denoted S(ℝⁿ).
- ► One can restrict the Fourier transform on S(ℝⁿ); indeed the Fourier transform maps S(ℝⁿ) into itself.
- If f, g are Schwartz functions on ℝⁿ, then Fubini's theorem gives

$$\int_{\mathbb{R}^n} f(y)\widehat{g}(y)dy = \int_{\mathbb{R}^n} \widehat{f}(\xi)g(\xi)d\xi.$$

Replacing $g(\xi)$ by $\overline{g}(\xi)e^{2\pi i x \cdot \xi}$, it follows that

$$f * \overline{\widehat{g}}(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi) \overline{g}(\xi) e^{2\pi i x \cdot \xi} d\xi$$

for all $x \in \mathbb{R}^n$.

$$f * \overline{\widehat{g}}(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi) \overline{g}(\xi) e^{2\pi i x \cdot \xi} d\xi$$

Applying this with g(ξ) = e^{-πt|ξ|²} (the heat kernel) and letting t → 0, one can show that the Fourier inversion formula holds for Schwartz functions:

$$f(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi) e^{2\pi i x \cdot \xi} d\xi$$

for every $x \in \mathbb{R}^n$, whenever $f \in \mathcal{S}(\mathbb{R}^n)$.

► Hence the Fourier transform defines a *bijection* on Schwartz functions on ℝⁿ, and we have

$$f * g(x) = \int_{\mathbb{R}^n} \widehat{f}(\xi) \widehat{g}(\xi) e^{2\pi i x \cdot \xi} d\xi$$

whenever $f, g \in \mathcal{S}(\mathbb{R}^n)$.

We now also have

$$\int_{\mathbb{R}^n} f(x)\overline{g(x)}dx = \int_{\mathbb{R}^n} \widehat{f}(\xi)\overline{\widehat{g}(\xi)}d\xi$$

whenever $f, g \in \mathcal{S}(\mathbb{R}^n)$.

► This allows one to show that the Fourier transform, initially defined on S(ℝⁿ), extends as a unitary operator on L²(ℝⁿ), and the Plancherel formula holds:

$$\|\widehat{f}\|_{L^2(\mathbb{R}^n)} = \|f\|_{L^2(\mathbb{R}^n)}$$

whenever $f \in L^2(\mathbb{R}^n)$.

- A multiplier operator on ℝⁿ is of the form f → (mf)^{*} where m is a bounded measurable function on ℝⁿ.
- We will come across examples of such in Lecture 2.
- ► These are automatically bounded on L²(ℝⁿ). We will study their mapping properties on L^p(ℝⁿ) in Lecture 4.

The groups of modulations and dilations

- \mathbb{R}^n is an abelian group under addition.
- It acts on (say, L²) functions on ℝⁿ by translation (as in the case of the unit circle T):

$$au_y f(x) := f(x+y), \quad y \in \mathbb{R}^n$$

• But it also acts on functions on \mathbb{R}^n by modulation:

$$\Lambda_{\xi}f(x) := e^{2\pi i x \cdot \xi} f(x), \quad \xi \in \mathbb{R}^n.$$

▶ The actions are interwined by the Fourier transform *F*:

$$\mathcal{F}\tau_y = \Lambda_y \mathcal{F}$$
 for all $y \in \mathbb{R}^n$.

▶ In particular, at least for Schwartz functions f on \mathbb{R}^n , we have

$$\widehat{\partial_j f}(\xi) = 2\pi i \xi_j \widehat{f}(\xi), \quad \text{for } 1 \leq j \leq n.$$

► The multiplicative group R⁺ = (0,∞) also acts on functions on Rⁿ by dilations:

$$D_t f(x) := f(tx), \quad t \in \mathbb{R}^+.$$

It interacts with the Fourier transform as follows:

$$\mathcal{F}D_t = t^{-n}D_{1/t}\mathcal{F}$$
 for all $t > 0$.

- In harmonic analysis we often study operators that commutes with translations.
- Examples include derivative operators (such as f → Δf), and convolution operators (such as f → f * |x|⁻⁽ⁿ⁻²⁾).
- Such operators often come with some invariance under dilations: e.g.

$$\Delta D_t f = t^2 D_t \Delta f,$$

(D_t f) * |x|⁻⁽ⁿ⁻²⁾ = t⁻² D_t (f * |x|⁻⁽ⁿ⁻²⁾).

- Operators that exhibit modulation invariance (on top of translation and dilation invariances) are harder to analyze; they typically require rather refined *time-frequency analysis*.
- An example of such an operator is the Carleson operator, studied in connection with pointwise a.e. convergence of Fourier series of a function on L²(T):

$$\mathcal{C}f(x) = \sup_{N \in \mathbb{Z}} \left| \sum_{n \geq N} \widehat{f}(n) e^{2\pi i n x} \right|, \quad x \in \mathbb{T};$$

note that $\ensuremath{\mathcal{C}}$ commutes with both translations and modulations, i.e.

$$\mathcal{C} au_y = au_y \mathcal{C}$$
 for all $y \in \mathbb{T}$, and

$$\mathcal{C}\Lambda_k = \Lambda_k \mathcal{C}$$
 for all $k \in \mathbb{Z}$.

Most of the operators we will encounter in this course will not be modulation invariant.