# Topics in Harmonic Analysis <br> Lecture 1: The Fourier transform 

Po-Lam Yung

The Chinese University of Hong Kong

## Outline

- Fourier series on $\mathbb{T}$ : $L^{2}$ theory
- Convolutions
- The Dirichlet and Fejer kernels
- Pointwise convergence of Fourier series
- Other modes of convergence
- Multiplier operators: a prelude
- The role played by the group of translations
- Analogue on $\mathbb{R}^{n}$
- The groups of dilations and modulations


## Fourier series on $\mathbb{T}$ : $L^{2}$ theory

- Let $\mathbb{T}=\mathbb{R} / \mathbb{Z}$ be the unit circle.
- $\{$ Functions on $\mathbb{T}\}=\{$ periodic functions on $\mathbb{R}\}$.
- The $n$-th Fourier coefficient of an $L^{1}$ function on $\mathbb{T}$ is given by

$$
\widehat{f}(n):=\int_{\mathbb{T}} f(x) e^{-2 \pi i n x} d x, \quad n \in \mathbb{Z}
$$

- A remarkable insight of J. Fourier was that perhaps 'every' function $f$ on $\mathbb{T}$ can be represented by a Fourier series:

$$
\sum_{n \in \mathbb{Z}} a_{n} e^{2 \pi i n x}
$$

- One can make this rigorous, for instance, when one restricts attention to $L^{2}$ functions on $\mathbb{T}$ (which form a Hilbert space).
- The claim is that for every $f \in L^{2}(\mathbb{T})$, the Fourier series of $f$ converges to $f$ in $L^{2}(\mathbb{T})$ norm.
- In other words, for every $f \in L^{2}(\mathbb{T})$, we have

$$
\sum_{n=-N}^{N} \widehat{f}(n) e^{2 \pi i n x} \rightarrow f(x) \quad \text { in } L^{2}(\mathbb{T}) \text { as } N \rightarrow \infty
$$

- Underlying this claim are two important concepts, namely orthogonality and completeness.
- Clearly $\left\{e^{2 \pi i n x}\right\}_{n \in \mathbb{Z}}$ is an orthonormal system on $L^{2}(\mathbb{T})$, and

$$
\widehat{f}(n)=\left\langle f(x), e^{2 \pi i n x}\right\rangle_{L^{2}(\mathbb{T})}
$$

- General principles about orthogonality then shows that for every $N \in \mathbb{N}$,

$$
S_{N} f(x):=\sum_{|n| \leq N} \widehat{f}(n) e^{2 \pi i n x}
$$

is the orthogonal projection of $f$ onto the linear subspace $V_{N}$ of $L^{2}(\mathbb{T})$ spanned by $\left\{e^{2 \pi i n x}:|n| \leq N\right\}$. In other words,

$$
f=\left(f-S_{N} f\right)+S_{N} f
$$

with $S_{N} f \in V_{N}$ and $\left(f-S_{N} f\right) \perp V_{N}$, and hence

$$
\sum_{n \in \mathbb{Z}}|\widehat{f}(n)|^{2} \leq\|f\|_{L^{2}(\mathbb{T})}^{2}
$$

(The last inequality is sometimes called Bessel's inequality.)

- The aforementioned property about orthogonal projection can be rephrased as

$$
\left\|f-S_{N} f\right\|_{L^{2}(\mathbb{T})}=\min \left\{\left\|f-p_{N}\right\|_{L^{2}(\mathbb{T})}: p_{N} \in \operatorname{span}\left\{e^{2 \pi i n x}\right\}_{|n| \leq N}\right\} .
$$

- On the other hand, one can show that the set of all finite linear combinations of $\left\{e^{2 \pi i n x}\right\}_{n \in \mathbb{Z}}$ (i.e. the set of all trigonometric polynomials) is dense in $L^{2}(\mathbb{T})$ (more to follow below).
- Thus $\left\{e^{2 \pi i n x}\right\}_{n \in \mathbb{Z}}$ form a complete orthonormal system on $L^{2}(\mathbb{T})$.
- It follows that for every $f \in L^{2}(\mathbb{T})$, we have

$$
S_{N} f \rightarrow f \quad \text { in } L^{2}(\mathbb{T}) \text { as } N \rightarrow \infty
$$

- To see this desired density, we study convolutions and multiplier operators.


## Convolutions

- The convolutions of two $L^{1}$ functions on $\mathbb{T}$ is another $L^{1}$ function, given by

$$
f * g(x)=\int_{\mathbb{T}} f(x-y) g(y) d y
$$

- Convolutions are associative and commutative:

$$
f *(g * h)=(f * g) * h, \quad f * g=g * f
$$

- If $f \in L^{p}(\mathbb{T})$ for some $p \in[1, \infty]$ and $g \in L^{1}(\mathbb{T})$, then $f * g \in L^{p}(\mathbb{T})$.
- More generally, if $p, q, r \in[1, \infty]$ and

$$
1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}
$$

then

$$
\|f * g\|_{L^{r}(\mathbb{T})} \leq\|f\|_{L^{p}(\mathbb{T})}\|g\|_{L^{q}(\mathbb{T})}
$$

(Young's convolution inequality)

- For $f \in L^{1}(\mathbb{T})$, let

$$
\widehat{f}(n)=\int_{\mathbb{T}} f(x) e^{-2 \pi i n x} d x
$$

as before. Then

$$
\widehat{f * g}(n)=\widehat{f}(n) \widehat{g}(n)
$$

whenever $f, g \in L^{1}(\mathbb{T})$.

- So if $K \in L^{1}(\mathbb{T})$, then the convolution operator

$$
f \mapsto f * K
$$

can be understood via the Fourier transform of $K$ : indeed

$$
f * K(x)=\sum_{n \in \mathbb{Z}} \widehat{f}(n) \widehat{K}(n) e^{2 \pi i n x}
$$

whenever $f$ is in (say) $L^{2}(\mathbb{T})$.

## The Dirichlet and Fejer kernels

- For each $N \in \mathbb{N}$, let $D_{N}$ and $F_{N}$ be the Dirichlet and Fejer kernels respectively, defined by

$$
\widehat{D_{N}}(n)=\left\{\begin{array}{ll}
1 & \text { if }|n| \leq N \\
0 & \text { if }|n|>N
\end{array}, \quad \widehat{F_{N}}(n)=\left\{\begin{array}{ll}
1-\frac{|n|}{N} & \text { if }|n| \leq N \\
0 & \text { if }|n|>N
\end{array} .\right.\right.
$$

Then

$$
\begin{gathered}
D_{N}(x)=\sum_{|n| \leq N} e^{2 \pi i n x} \\
F_{N}(x)=\sum_{|n| \leq N}\left(1-\frac{|n|}{N}\right) e^{2 \pi i n x}
\end{gathered}
$$

- If $f \in L^{1}(\mathbb{T})$, then

$$
S_{N} f=f * D_{N},
$$

and

$$
\frac{S_{0} f+S_{1} f+\cdots+S_{N-1} f}{N}=f * F_{N}
$$

- One has a closed formula for $F_{N}$ : indeed

$$
F_{N}(x)=\frac{1}{N}\left(\frac{\sin N \pi x}{\sin \pi x}\right)^{2}
$$

- From this we see that $F_{N} \geq 0$ for all $N$,

$$
\left\|F_{N}\right\|_{L^{1}}=\widehat{F_{N}}(0)=1
$$

and

$$
\int_{\delta \leq|y| \leq 1 / 2} F_{N}(y) d y \rightarrow 0 \quad \text { as } N \rightarrow \infty
$$

Thus $\left\{F_{N}\right\}_{N \in \mathbb{N}}$ form a family of good kernels.

- As a result, if $f$ is continuous on $\mathbb{T}$, then $f * F_{N} \rightarrow f$ uniformly on $\mathbb{T}$.
- Hence by approximating by continuous functions, we see that trigonometric polynomials are dense in $L^{2}(\mathbb{T})$.
- This establishes in full the elementary $L^{2}$ theory of the Fourier transform on $\mathbb{T}$. In particular, now we have Plancherel's theorem:

$$
\sum_{n \in \mathbb{Z}}|\widehat{f}(n)|^{2}=\|f\|_{L^{2}(\mathbb{T})}^{2}
$$

whenever $f \in L^{2}(\mathbb{T})$.

## Pointwise convergence of Fourier series

- We can now prove the Riemann-Lebesgue lemma: for $f \in L^{1}(\mathbb{T})$, we have

$$
\sup _{n \in \mathbb{Z}}|\widehat{f}(n)| \leq\|f\|_{L^{1}(\mathbb{T})}
$$

Indeed $\widehat{f}(n) \rightarrow 0$ as $n \rightarrow \pm \infty$.

- This allows one to show that

$$
\lim _{N \rightarrow \infty} \sum_{|n| \leq N} \widehat{f}(n) e^{2 \pi i n x}=f(x)
$$

whenever $f$ is Hölder continuous of some positive order at $x \in \mathbb{T}$ (actually we only need a Dini condition at $x$ : indeed the condition

$$
\int_{|t| \leq 1 / 2} \frac{|f(x+t)-f(x)|}{|t|} d t<\infty
$$

will suffice.)

- On the other hand, there exists a continuous function on $\mathbb{T}$ whose Fourier series diverges at say $0 \in \mathbb{T}$. So mere continuity of $f$ does not guarantee everywhere pointwise convergence of Fourier series!
- On the pathological side, there even exists an $L^{1}$ function on $\mathbb{T}$, whose Fourier series diverges everywhere (Kolmogorov).
- However, a remarkable theorem of Carleson says that the Fourier series of an $L^{2}$ function on $\mathbb{T}$ converges pointwise almost everywhere (a.e.).
(Later Hunt showed the same for $L^{p}(\mathbb{T}), 1<p<\infty$.)
- We will come back to this briefly towards the end of this lecture.


## Other modes of convergence

- To sum up, we have considered $L^{2}$ norm convergence, pointwise convergence and a.e. pointwise convergence of Fourier series.
- Other modes of convergence of Fourier series also give rise to interesting questions.
- Examples include $L^{p}$ norm convergence, uniform convergence, absolute convergence, and various summability methods.
- If $f \in C^{2}(\mathbb{T})$, then clearly the Fourier series of $f$ converges absolutely and uniformly (since $|\widehat{f}(n)| \lesssim|n|^{-2}$ ).
- However, indeed the Fourier series of $f$ converges absolutely and uniformly already, as long as $f$ is Hölder continuous of some order $>1 / 2$ on $\mathbb{T}$.
- The question of $L^{p}$ norm convergence on $\mathbb{T}$, for $1<p<\infty$, is also well understood, and will be considered in Lecture 4.
- It is interesting to note that an analogous question in higher dimensions (for $\mathbb{T}^{n}, n>1$ ) is much deeper, and is related to some excellent open problems in the area.


## Multiplier operators: a prelude

- Given a bounded function $m: \mathbb{Z} \rightarrow \mathbb{C}$, the map

$$
f(x) \mapsto T_{m} f(x):=\sum_{n \in \mathbb{Z}} m(n) \widehat{f}(n) e^{2 \pi i n x}
$$

defines a bounded linear operator on $L^{2}(\mathbb{T})$.

- Examples: convolution with the Dirichlet or the Fejer kernels.
- The analysis of such operators often benefit by taking the inverse Fourier transform of $m$, as we have seen in the case of convolution with the Fejer kernel.
- We will be interested, for instance, in the boundedness of many multiplier operators on $L^{p}(\mathbb{T})$ for various $p \in[1, \infty]$.
- e.g. The uniform $L^{p}$ boundedness of convolutions with the Dirichlet kernels is crucial in the discussion of $L^{p}$ norm convergence of the Fourier series of a function in $L^{p}(\mathbb{T})$.
- We note in passing that all multiplier operators commute with translations (and so do all convolution operators).


## The role played by the group of translations

- Let's take a step back and look at Fourier series on $L^{2}(\mathbb{T})$.
- There we expand functions in terms of complex exponentials $\left\{e^{2 \pi i n x}\right\}_{n \in \mathbb{Z}}$.
- But why complex exponentials?
- An explanation can be given in terms of the underlying group structure on $\mathbb{T}=\mathbb{R} / \mathbb{Z}$.
- Recall $\mathbb{T}$ is an abelian group under addition.
- Thus if $y \in \mathbb{T}$, then the operator $\tau_{y}: L^{2}(\mathbb{T}) \rightarrow L^{2}(\mathbb{T})$, defined by

$$
\tau_{y} f(x)=f(x+y)
$$

is a unitary operator on $L^{2}(\mathbb{T})$, and the group homomorphism

$$
y \in \mathbb{T} \mapsto \tau_{y} \in B\left(L^{2}(\mathbb{T})\right)
$$

is continuous if we endow the strong topology on $B\left(L^{2}(\mathbb{T})\right)$.

- Thus the map $y \mapsto \tau_{y}$ defines a unitary representation of the compact group $\mathbb{T}$ on the (complex) Hilbert space $L^{2}(\mathbb{T})$.
- The Peter-Weyl theorem then provides a splitting of $L^{2}(\mathbb{T})$ into an orthogonal direct sum of irreducible finite-dimensional representations.
- Since $\mathbb{T}$ is abelian, all irreducible finite-dimensional representations are 1-dimensional, by Schur's lemma.
- In other words, there exists an orthonormal family of functions $\left\{f_{n}\right\}_{n \in \mathbb{Z}}$ of $L^{2}(\mathbb{T})$, such that

$$
L^{2}(\mathbb{T})=\bigoplus_{n \in \mathbb{Z}} \mathbb{C} f_{n}
$$

and such that $f_{n}$ is an eigenfunction of $\tau_{y}$ for all $y \in \mathbb{T}$.

- For $n \in \mathbb{Z}$, let $\chi_{n}(y)$ be the eigenvalue of $\tau_{y}$ on $f_{n}$, i.e. let $\chi_{n}: \mathbb{T} \rightarrow \mathbb{C}^{\times}$be a continuous function such that

$$
\tau_{y} f_{n}=\chi_{n}(y) f_{n} \quad \text { for all } y \in \mathbb{T}
$$

- Then $\chi_{n}\left(y+y^{\prime}\right)=\chi_{n}(y) \chi_{n}\left(y^{\prime}\right)$ for all $y, y^{\prime} \in \mathbb{T}$, i.e. $\chi_{n}$ is a character on $\mathbb{T}$.
- But if $\chi: \mathbb{R} \rightarrow \mathbb{C}^{\times}$is a continuous function with

$$
\chi\left(x+x^{\prime}\right)=\chi(x) \chi\left(x^{\prime}\right)
$$

for all $x, x^{\prime} \in \mathbb{R}$, then there exists $a \in \mathbb{C}$ such that $\chi(x)=e^{a x}$ for all $x \in \mathbb{R}$ (just show that $\chi(x)=e^{a x}$ holds for $x=m x_{0} / 2^{n}$ whenever $m \in \mathbb{Z}, n \in \mathbb{N}$ and $x_{0}$ is sufficiently close to 0 , and use continuity); if in addition $\chi$ is periodic with period 1 , then the $a$ above must be in $2 \pi i \mathbb{Z}$.

- Thus without loss of generality, we may label the $f_{n}$ 's, so that $\chi_{n}(y)=e^{2 \pi i n y}$ for all $n \in \mathbb{Z}$ and all $y \in \mathbb{T}$.
- This gives

$$
f_{n}(x+y)=e^{2 \pi i n y} f_{n}(x)
$$

for all $n \in \mathbb{Z}$ and all $x, y \in \mathbb{T}$, so

$$
f_{n}^{\prime}(x)=2 \pi i n f_{n}(x)
$$

from which we conclude that $f_{n}(x)=c e^{2 \pi i n x}$ for some $|c|=1$.

- In other words, for each $n \in \mathbb{Z}$, the function $e^{2 \pi i n x}$ is an eigenvector of $\tau_{y}$ for all $y \in \mathbb{T}$, with eigenvalue $e^{2 \pi \text { iny }}$.
- To recap: we have a family $\left\{\tau_{y}\right\}_{y \in \mathbb{T}}$ of commuting unitary operators on $L^{2}(\mathbb{T})$, and the complex exponentials $\left\{e^{2 \pi i n x}\right\}_{n \in \mathbb{Z}}$ provide a simultaneous diagonalization of these operators:

$$
\tau_{y} e^{2 \pi i n x}=e^{2 \pi i n y} e^{2 \pi i n x}
$$

for all $n \in \mathbb{Z}$, and all $y \in \mathbb{T}$.

- Note that the orthogonality of the complex exponentials follows from the Peter-Weyl theorem!
- Also, the equation

$$
\tau_{y} e^{2 \pi i n x}=e^{2 \pi i n y} e^{2 \pi i n x}
$$

implies that $e^{2 \pi i n x}$ are eigenfunctions of the derivative operator:

$$
\frac{d}{d x} e^{2 \pi i n x}=2 \pi i n e^{2 \pi i n x}
$$

This is not too surprising since derivatives are infinitesimal translations!

- Another way of saying the same thing is that

$$
\widehat{\tau_{y} f}(n)=e^{2 \pi i n y} \widehat{f}(n)
$$

for all $y \in \mathbb{T}$ and $n \in \mathbb{Z}$; hence differentiation and multiplication are interwined by the Fourier transform:

$$
\widehat{f}^{\prime}(n)=2 \pi i n \widehat{f}(n) \quad \text { if } f \in C^{1}(\mathbb{T})
$$

- The fact that the Fourier series constitutes a spectral decomposition of the derivative operator is what makes it so powerful in the study of differential equations.


## Analogue on $\mathbb{R}^{n}$

- The Fourier transform of an $L^{1}$ function on $\mathbb{R}^{n}$ is defined by

$$
\widehat{f}(\xi)=\int_{\mathbb{R}^{n}} f(x) e^{-2 \pi i x \cdot \xi} d x, \quad \xi \in \mathbb{R}^{n}
$$

- We have

$$
\|\widehat{f}\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

indeed the Fourier transform of an $L^{1}$ function is continuous on $\mathbb{R}^{n}$.

- If $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$, their convolution is defined by

$$
f * g(x)=\int_{\mathbb{R}^{n}} f(x-y) g(y) d y
$$

- We have $f * g=g * f$ and

$$
\widehat{f * g}(\xi)=\widehat{f}(\xi) \widehat{g}(\xi)
$$

if $f, g \in L^{1}\left(\mathbb{R}^{n}\right)$.

- The space of Schwartz functions on $\mathbb{R}^{n}$ is defined as the space of all smooth functions, whose derivatives of all orders are rapidly decreasing at infinity. It is denoted $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
- One can restrict the Fourier transform on $\mathcal{S}\left(\mathbb{R}^{n}\right)$; indeed the Fourier transform maps $\mathcal{S}\left(\mathbb{R}^{n}\right)$ into itself.
- If $f, g$ are Schwartz functions on $\mathbb{R}^{n}$, then Fubini's theorem gives

$$
\int_{\mathbb{R}^{n}} f(y) \widehat{g}(y) d y=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) g(\xi) d \xi
$$

Replacing $g(\xi)$ by $\bar{g}(\xi) e^{2 \pi i x \cdot \xi}$, it follows that

$$
f * \overline{\widehat{g}}(x)=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) \bar{g}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

for all $x \in \mathbb{R}^{n}$.

$$
f * \overline{\widehat{g}}(x)=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) \bar{g}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

- Applying this with $g(\xi)=e^{-\pi t|\xi|^{2}}$ (the heat kernel) and letting $t \rightarrow 0$, one can show that the Fourier inversion formula holds for Schwartz functions:

$$
f(x)=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

for every $x \in \mathbb{R}^{n}$, whenever $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

- Hence the Fourier transform defines a bijection on Schwartz functions on $\mathbb{R}^{n}$, and we have

$$
f * g(x)=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) \widehat{g}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

whenever $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

- We now also have

$$
\int_{\mathbb{R}^{n}} f(x) \overline{g(x)} d x=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) \overline{\hat{g}(\xi)} d \xi
$$

whenever $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

- This allows one to show that the Fourier transform, initially defined on $\mathcal{S}\left(\mathbb{R}^{n}\right)$, extends as a unitary operator on $L^{2}\left(\mathbb{R}^{n}\right)$, and the Plancherel formula holds:

$$
\|\widehat{f}\|_{L^{2}\left(\mathbb{R}^{n}\right)}=\|f\|_{L^{2}\left(\mathbb{R}^{n}\right)}
$$

whenever $f \in L^{2}\left(\mathbb{R}^{n}\right)$.

- A multiplier operator on $\mathbb{R}^{n}$ is of the form $f \mapsto(m \widehat{f})^{\vee}$ where $m$ is a bounded measurable function on $\mathbb{R}^{n}$.
- We will come across examples of such in Lecture 2.
- These are automatically bounded on $L^{2}\left(\mathbb{R}^{n}\right)$. We will study their mapping properties on $L^{p}\left(\mathbb{R}^{n}\right)$ in Lecture 4.


## The groups of modulations and dilations

- $\mathbb{R}^{n}$ is an abelian group under addition.
- It acts on (say, $L^{2}$ ) functions on $\mathbb{R}^{n}$ by translation (as in the case of the unit circle $\mathbb{T}$ ):

$$
\tau_{y} f(x):=f(x+y), \quad y \in \mathbb{R}^{n}
$$

- But it also acts on functions on $\mathbb{R}^{n}$ by modulation:

$$
\Lambda_{\xi} f(x):=e^{2 \pi i x \cdot \xi} f(x), \quad \xi \in \mathbb{R}^{n}
$$

- The actions are interwined by the Fourier transform $\mathcal{F}$ :

$$
\mathcal{F} \tau_{y}=\Lambda_{y} \mathcal{F} \quad \text { for all } y \in \mathbb{R}^{n} .
$$

- In particular, at least for Schwartz functions $f$ on $\mathbb{R}^{n}$, we have

$$
\widehat{\partial_{j} f}(\xi)=2 \pi i \xi_{j} \widehat{f}(\xi), \quad \text { for } 1 \leq j \leq n
$$

- The multiplicative group $\mathbb{R}^{+}=(0, \infty)$ also acts on functions on $\mathbb{R}^{n}$ by dilations:

$$
D_{t} f(x):=f(t x), \quad t \in \mathbb{R}^{+} .
$$

- It interacts with the Fourier transform as follows:

$$
\mathcal{F} D_{t}=t^{-n} D_{1 / t} \mathcal{F} \quad \text { for all } t>0
$$

- In harmonic analysis we often study operators that commutes with translations.
- Examples include derivative operators (such as $f \mapsto \Delta f$ ), and convolution operators (such as $f \mapsto f *|x|^{-(n-2)}$ ).
- Such operators often come with some invariance under dilations: e.g.

$$
\begin{gathered}
\Delta D_{t} f=t^{2} D_{t} \Delta f \\
\left(D_{t} f\right) *|x|^{-(n-2)}=t^{-2} D_{t}\left(f *|x|^{-(n-2)}\right)
\end{gathered}
$$

- Operators that exhibit modulation invariance (on top of translation and dilation invariances) are harder to analyze; they typically require rather refined time-frequency analysis.
- An example of such an operator is the Carleson operator, studied in connection with pointwise a.e. convergence of Fourier series of a function on $L^{2}(\mathbb{T})$ :

$$
\mathcal{C} f(x)=\sup _{N \in \mathbb{Z}}\left|\sum_{n \geq N} \widehat{f}(n) e^{2 \pi i n x}\right|, \quad x \in \mathbb{T} ;
$$

note that $\mathcal{C}$ commutes with both translations and modulations, i.e.

$$
\begin{gathered}
\mathcal{C} \tau_{y}=\tau_{y} \mathcal{C} \quad \text { for all } y \in \mathbb{T}, \text { and } \\
\mathcal{C} \Lambda_{k}=\Lambda_{k} \mathcal{C} \quad \text { for all } k \in \mathbb{Z}
\end{gathered}
$$

- Most of the operators we will encounter in this course will not be modulation invariant.

