Topics in Harmonic Analysis Lecture 2: Tempered distributions and Harmonic Functions

Po-Lam Yung

The Chinese University of Hong Kong

Introduction

- Last time we studied the Fourier transform of L^{1} and L^{2} functions.
- This time we extend this study to the more general context of tempered distributions.
- This will give us tools towards the study of some constant coefficient partial differential equations such as the Laplace equation.
- We will then be led to an introduction of many objects of interest in harmonic analysis, including the Riesz potentials, the Riesz transform and the Hilbert transform.

Outline

- Schwartz functions and tempered distributions
- The Laplace equation on \mathbb{R}^{n}
- Riesz potentials, Riesz transforms and Hilbert transform
- Harmonic functions on the upper half space
- Conjugate harmonic functions

Schwartz functions and tempered distributions

- The Schwartz space on \mathbb{R}^{n} is defined as
$\mathcal{S}\left(\mathbb{R}^{n}\right):=\left\{f \in C^{\infty}\left(\mathbb{R}^{n}\right):\|f\|_{\alpha, \beta}<\infty \quad\right.$ for all multiindices $\left.\alpha, \beta\right\}$,
where

$$
\|f\|_{\alpha, \beta}:=\sup _{x \in \mathbb{R}^{n}}\left|x^{\alpha} \partial^{\beta} f(x)\right|
$$

for any multiindices $\alpha, \beta \in(\mathbb{N} \cup\{0\})^{n}$.

- It is a topological vector space, with $f_{n} \rightarrow 0$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\left\|f_{n}\right\|_{\alpha, \beta} \rightarrow 0 \quad \text { for all multiindices } \alpha, \beta
$$

- It can be made a complete metric space, with

$$
d(f, g):=\sum_{k=0}^{\infty} 2^{-k} \frac{\|f-g\|_{k}}{1+\|f-g\|_{k}}
$$

where $\|f\|_{k}:=\sup _{|\alpha|+|\beta|=k}\|f\|_{\alpha, \beta}$.

- The space of tempered distributions, denoted $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, is the space of all continuous linear functionals on $\mathcal{S}\left(\mathbb{R}^{n}\right)$.
- Examples of tempered distributions include L^{p} functions for all $p \in[1, \infty]$, and locally integrable functions that grows at most polynomially at infinity (if u is such a function, then

$$
u(f):=\int_{\mathbb{R}^{n}} u(x) f(x) d x, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

is a tempered distribution).

- Other examples include the Dirac delta functions δ_{x} for $x \in \mathbb{R}^{n}$:

$$
\delta_{x}(f):=f(x), \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

or more generally finite Borel measures with compact supports on \mathbb{R}^{n}.

- We often write $\langle u, f\rangle$ in lieu of $u(f)$ if $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
- $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is a topological vector space with the weak* topology, i.e. $u_{n} \rightarrow 0$ in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ if and only if

$$
\left\langle u_{n}, f\right\rangle \rightarrow 0 \quad \text { for all } f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

- A nice feature of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is that one can take (distributional) derivative of any element u of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$:

$$
\left\langle\partial_{j} u, f\right\rangle:=-\left\langle u, \partial_{j} f\right\rangle, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right), \quad 1 \leq j \leq n .
$$

(Why is this an element of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$?)

- The above definition of $\partial_{j} u$ is motivated by the identity

$$
\int_{\mathbb{R}^{n}}\left(\partial_{j} u\right)(x) f(x) d x=-\int_{\mathbb{R}^{n}} u(x)\left(\partial_{j} f\right)(x) d x \quad \text { for all } u, f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

(and indeed the distributional derivative agrees with the classical derivative if $u \in C^{1}$).

- Similarly one can define translations, rotations and dilations of tempered distributions on \mathbb{R}^{n} :

$$
\begin{aligned}
\left\langle\tau_{h} u, f\right\rangle & :=\left\langle u, \tau_{-h} f\right\rangle, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right), \quad h \in \mathbb{R}^{n} ; \\
\langle u \circ R, f\rangle: & =\left\langle u, f \circ R^{-1}\right\rangle, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right), \quad R \in O(n) ; \\
\left\langle D_{\lambda} u, f\right\rangle: & =\lambda^{-n}\left\langle u, D_{\lambda^{-1}} f\right\rangle, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right), \quad \lambda>0 .
\end{aligned}
$$

- A tempered distribution u is said to be homogeneous of degree α on \mathbb{R}^{n} if

$$
D_{\lambda} u=\lambda^{\alpha} u \quad \text { for all } \lambda>0
$$

e.g. δ_{0} is homogeneous of degree $-n$, and $|x|^{\alpha}$ is a homogeneous tempered distribution of degree α if $\alpha>-n$.

- One can multiply a tempered distribution u by a C^{∞} function p that grows at most polynomially at infinity:

$$
\langle p u, f\rangle:=\langle u, p f\rangle, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

- In particular, one can multiply a tempered distribution by a polynomial, and modulate a tempered distribution:

$$
\left\langle\Lambda_{\xi} u, f\right\rangle:=\left\langle u, e^{2 \pi i x \cdot \xi} f\right\rangle, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right), \quad \xi \in \mathbb{R}^{n}
$$

- The Fourier transform defines a bijection on $\mathcal{S}\left(\mathbb{R}^{n}\right)$, and the Fourier inversion formula holds at every point:

$$
f(x)=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

whenever $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$; we also have the duality

$$
\int_{\mathbb{R}^{n}} g(x) \widehat{f}(x) d x=\int_{\mathbb{R}^{n}} \widehat{g}(x) f(x) d x \quad \text { for all } f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

- As a result, by duality one can define the Fourier transform of a tempered distribution u on \mathbb{R}^{n} :

$$
\langle\widehat{u}, f\rangle:=\langle u, \widehat{f}\rangle, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

- We sometimes also write $\mathcal{F} u$ for the Fourier transform of u if $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
- e.g. $\widehat{\delta_{x}}$ is a function, given by $e^{-2 \pi i x \cdot \xi}$; also

$$
\mathcal{F}\left[(2 \pi|x|)^{-\alpha}\right]=2^{\alpha} \pi^{n / 2} \frac{\Gamma(\alpha / 2)}{\Gamma((n-\alpha) / 2)}|\xi|^{-(n-\alpha)} \quad \text { for } 0<\alpha<n .
$$

- If u is a homogeneous tempered distribution of degree α, then \widehat{u} is a homogeneous tempered distribution of degree $-n-\alpha$.
- The Fourier transform defines a bijection on $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Thus one can take the inverse Fourier transform of any tempered distributions on \mathbb{R}^{n}.
- We sometimes also write $\mathcal{F}^{-1} u$ for the inverse Fourier transform of u if $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.
- If $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, we can define the convolution of g with u, by

$$
\langle u * g, f\rangle:=\langle u, \tilde{g} * f\rangle, \quad f \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

where $\tilde{g}(x):=g(-x)$. This works because $\tilde{g} * f$ is also Schwartz when both $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

- Indeed if $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, then $u * g$ agrees with a C^{∞} function on \mathbb{R}^{n}, given by

$$
(u * g)(x)=\left\langle u, \tau_{x} \tilde{g}\right\rangle, \quad x \in \mathbb{R}^{n}
$$

- Furthermore, if $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $u \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, then

$$
\widehat{u * g}=\widehat{g} \cdot \widehat{u}
$$

The Laplace equation on \mathbb{R}^{n}

- We use the above technology of tempered distribution and Fourier transform to study the equation $-\Delta u=f$, where Δ is the Laplacian on \mathbb{R}^{n} given by

$$
\Delta=\sum_{j=1}^{n} \frac{\partial^{2}}{\partial x_{j}^{2}}
$$

- The equation $-\Delta u=f$ is equivalent, via the Fourier transform, to the equation $4 \pi^{2}|\xi|^{2} \widehat{u}(\xi)=\widehat{f}(\xi)$.
- For $n \geq 2$, let m be a tempered distribution on \mathbb{R}^{n} such that

$$
\langle m, G\rangle=\int_{\mathbb{R}^{n}} \frac{G(\xi)}{(2 \pi|\xi|)^{2}} d \xi
$$

for every $G \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $G(0)=0$.

- An explicit such m is given by

$$
\langle m, G\rangle:= \begin{cases}\int_{\mathbb{R}^{n}} \frac{G(\xi)}{(2 \pi|\xi|)^{2}} d \xi & \text { if } n \geq 3, \\ \int_{|\xi| \geq 1} \frac{G(\xi)}{(2 \pi|\xi|)^{2}} d \xi+\int_{|\xi| \leq 1} \frac{G(\xi)-G(0)}{(2 \pi|\xi|)^{2}} d \xi & \text { if } n=2 .\end{cases}
$$

- Such m is not unique; one can for instance always add a multiple of the δ function at 0 .
- We fix any such m in the next slide.
- If $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $n \geq 2$, then

$$
u:=\mathcal{F}^{-1}(m \widehat{f}) \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

solves $-\Delta u=f$ in the sense of tempered distributions.

- This is because then for any $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{aligned}
\left.\left.\left\langle 4 \pi^{2}\right| \xi\right|^{2} \widehat{u}, g\right\rangle & =\left\langle\widehat{u},(2 \pi|\xi|)^{2} g\right\rangle \\
& =\left\langle m,(2 \pi|\xi|)^{2} \widehat{f}(\xi) g(\xi)\right\rangle \\
& =\int_{\mathbb{R}^{n}} \frac{(2 \pi|\xi|)^{2} \widehat{f}(\xi) g(\xi)}{(2 \pi|\xi|)^{2}} d \xi \\
& =\langle\widehat{f}, g\rangle
\end{aligned}
$$

(the second-to-last equality uses $(2 \pi|\xi|)^{2} \widehat{f}(\xi) g(\xi) \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and vanishes at 0), which shows that

$$
4 \pi^{2}|\xi|^{2} \widehat{u}=\widehat{f}
$$

- This shows that if $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $n \geq 2$, then

$$
u:=f *\left(\mathcal{F}^{-1} m\right) \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

solves $-\Delta u=f$ in the sense of tempered distributions.

- The above worked for a class of multipliers m; we may choose m suitably so that we have

$$
\mathcal{F}^{-1} m= \begin{cases}-\frac{1}{2 \pi} \log |x| & \text { if } n=2 \\ \frac{\Gamma((n-2) / 2)}{4 \pi^{n / 2}}|x|^{-(n-2)} & \text { if } n \geq 3\end{cases}
$$

(Actually just take m as explicitly displayed two slides ago, and add a suitable multiple of δ_{0} when $n=2$.) These are called the fundamental solution to $-\Delta$ on \mathbb{R}^{n}.

- Thus we obtain a formula for a solution to $-\Delta u=f$ in the sense of tempered distributions if $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $n \geq 2$.
- On the other hand, note that the solution to $-\Delta u=f$ is not unique in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$: if u is a solution, then so is $u+P$ for any harmonic polynomial P on \mathbb{R}^{n} (of which there are plenty).

Riesz potentials, Riesz transforms and Hilbert transform

- Motivated by the previous computation, given a tempered distribution $m \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, we consider operators of the form

$$
f \in \mathcal{S}\left(\mathbb{R}^{n}\right) \mapsto \mathcal{F}^{-1}(m \widehat{f}) \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)
$$

This is called the multiplier operator associated to m.

- We specialize to the case when $m(\xi)$ agrees with the locally integrable function $(2 \pi|\xi|)^{-\alpha}$ on \mathbb{R}^{n} where $\alpha \in(0, n)$.
- We define the Riesz potential of order α on \mathbb{R}^{n} by

$$
\mathcal{I}_{\alpha} f=\mathcal{F}^{-1}\left((2 \pi|\xi|)^{-\alpha} \widehat{f}(\xi)\right)
$$

if $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $\alpha \in(0, n)$. \mathcal{I}_{α} is also sometimes written suggestively as $(-\Delta)^{-\alpha / 2}$.

- The distributional solution to $-\Delta u=f$ we constructed on \mathbb{R}^{n} in the last section is then just $\mathcal{I}_{2} f=(-\Delta)^{-1} f$ if $n \geq 3$.
- By taking the inverse Fourier transform of $(2 \pi|\xi|)^{-\alpha}$ on \mathbb{R}^{n} when $\alpha \in(0, n)$, we see that

$$
\mathcal{I}_{\alpha} f=f * \frac{\Gamma((n-\alpha) / 2)}{2^{\alpha} \pi^{n / 2} \Gamma(\alpha / 2)} \frac{1}{|x|^{n-\alpha}}
$$

for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

- The mapping properties of \mathcal{I}_{α} on \mathbb{R}^{n}, for $\alpha \in(0, n)$, will be studied in the next lecture.
- Now we move on to the Riesz transforms on \mathbb{R}^{n}.
- Let $n \geq 2$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
- Recall the distributional solution to $-\Delta u=f$ given by the fundamental solution of $-\Delta$.
- If $1 \leq j, k \leq n$, then

$$
\widehat{\partial_{x_{j}} \partial_{x_{k}} u}=-\frac{\xi_{j}}{|\xi|} \frac{\xi_{k}}{|\xi|} \widehat{f} .
$$

- This motivates us to study on \mathbb{R}^{n} the multiplier operators with multiplier $-i \frac{\xi_{j}}{|\xi|}$, for $1 \leq j \leq n$.
- Such are called the Riesz transforms on \mathbb{R}^{n} : the j-th Riesz transform on \mathbb{R}^{n} is given by

$$
\widehat{R_{j} f}(\xi)=-i \frac{\xi_{j}}{|\xi|} \widehat{f}(\xi)
$$

for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $1 \leq j \leq n$, if $n \geq 2$. Equivalently,

$$
R_{j} f=f * \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \text { p.v. } \frac{x_{j}}{|x|^{n+1}} .
$$

- Thus if $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and u is the distributional solution to $-\Delta u=f$ given by the fundamental solution of $-\Delta$, then

$$
\partial_{x_{j}} \partial_{x_{k}} u=R_{j} R_{k} f .
$$

- The study of Riesz transforms on \mathbb{R}^{n} is reduced to the study of the multiplier $\operatorname{isgn}(\xi)$ on \mathbb{R} if $n=1$.
- This is called the Hilbert transform H on \mathbb{R}. More concretely,

$$
\widehat{H f}(\xi)=-i \operatorname{sgn}(\xi) \widehat{f}
$$

if $f \in \mathcal{S}(\mathbb{R})$, or equivalently

$$
H f=f * \frac{1}{\pi} \text { p.v. } \frac{1}{x} .
$$

- The multiplier $-i \operatorname{sgn}(\xi)$ is, up to scalar multiplication, the unique homogeneous tempered distribution of degree 0 that is odd (i.e. that satisfies $m \circ R=-m$ where R is the reflection about the origin, given by $R x=-x$).
- One can then give a characterization of the Hilbert transform along this line, using invariance properties.
- Beginning the next slide, we will see how the Hilbert transform also arises naturally from the study of conjugate harmonic functions on the upper half space \mathbb{R}_{+}^{2}.
- A similar discussion will be given for the Riesz transforms on $\mathbb{R}^{n}, n \geq 2$.
- The mapping properties of the Hilbert transform (on \mathbb{R}) and the Riesz transforms (on \mathbb{R}^{n}) will be deferred to Lecture 4.

Harmonic functions on the upper half space

- \mathbb{R} arises as the boundary of the upper half space

$$
\mathbb{R}_{+}^{2}:=\left\{(x, y) \in \mathbb{R}^{2}: y>0\right\}
$$

- Given $f \in \mathcal{S}(\mathbb{R})$, one may try to find a harmonic extension u of f into the upper half space \mathbb{R}_{+}^{2}, namely a continuous function u on the closure \mathbb{R}_{+}^{2} that solves the Dirichlet problem

$$
\begin{cases}\Delta u=0 & \text { on } \mathbb{R}_{+}^{2} \\ u=f & \text { on } \mathbb{R}\end{cases}
$$

- By taking partial Fourier transform in x and solving an ordinary differential equation in y, we are led to one candidate for such a function u, namely

$$
u(x, y)=\int_{\mathbb{R}} \widehat{f}(\xi) e^{-2 \pi y|\xi|} e^{2 \pi i x \xi} d \xi
$$

- One easily verifies that then u is the Poisson integral of f, given by

$$
u(x, y)=f * P_{y}(x), \quad y>0
$$

where

$$
P_{y}(x)=\frac{1}{\pi} \frac{y}{x^{2}+y^{2}}
$$

is the Poisson kernel on \mathbb{R}.

- Hence one also sees that then u solves the Dirichlet problem on the last slide (since $P_{y}(x)$ forms an approximate identity).
- In addition, such $u(x, y)$ is bounded on \mathbb{R}_{+}^{2}, and is the unique bounded solution of the aforementioned Dirichlet problem.
- We now determine a suitable conjugate harmonic function v to u on \mathbb{R}_{+}^{2}, and consider its boundary value as $y \rightarrow 0^{+}$.

Conjugate harmonic functions

- Let $f \in \mathcal{S}(\mathbb{R})$ and

$$
u(x, y)=\int_{\mathbb{R}} \widehat{f}(\xi) e^{-2 \pi y|\xi|} e^{2 \pi i x \xi} d \xi
$$

be the Poisson integral of f.

- We seek a harmonic conjugate of v, i.e. a harmonic function $v(x, y)$ on the upper half space \mathbb{R}_{+}^{2} that satisfies

$$
\partial_{x} v=\partial_{y} u, \quad \partial_{y} v=-\partial_{x} u
$$

- Taking partial Fourier transform in x, we see that one such v is given by

$$
v(x, y)=-i \int_{\mathbb{R}} \operatorname{sgn}(\xi) \widehat{f}(\xi) e^{-2 \pi y|\xi|} e^{2 \pi i x \xi} d \xi
$$

this is indeed the unique such v that is bounded on \mathbb{R}_{+}^{2}.

$$
v(x, y)=-i \int_{\mathbb{R}} \operatorname{sgn}(\xi) \widehat{f}(\xi) e^{-2 \pi y|\xi|} e^{2 \pi i x \xi} d \xi
$$

- $v(x, y)$ can also be written as $v(x, y)=f * \tilde{P}_{y}(x)$ where

$$
\tilde{P}_{y}(x)=\frac{1}{\pi} \frac{x}{x^{2}+y^{2}}
$$

is the conjugate Poisson kernel.

- We study the boundary behaviour of $v(x, y)$ as $y \rightarrow 0^{+}$.
- Since $f \in \mathcal{S}(\mathbb{R})$, the dominated convergence theorem shows that

$$
\lim _{y \rightarrow 0^{+}} v(x, y)=-i \int_{\mathbb{R}} \operatorname{sgn}(\xi) \widehat{f}(\xi) e^{2 \pi i x \xi} d \xi
$$

for every $x \in \mathbb{R}$.

- The right hand side is precisely the Hilbert transform of f.
- Alternatively, for $f \in \mathcal{S}(\mathbb{R})$, we also have

$$
\lim _{y \rightarrow 0^{+}} v(x, y)=f * \frac{1}{\pi} \text { p.v. } \frac{1}{x}
$$

since

$$
\tilde{P}_{y}(x) \rightarrow \frac{1}{\pi} \text { p.v. } \frac{1}{x}
$$

in $\mathcal{S}^{\prime}(\mathbb{R})$ as $y \rightarrow 0^{+}$. Again we recognize the Hilbert transform of f in the limit.

- Hence if $f \in \mathcal{S}(\mathbb{R})$, then the Hilbert transform of f is the boundary value of a harmonic conjugate of the Poisson integral of f.
- A similar characterization can be given for the Riesz transforms in higher dimensions.
- Let $\mathbb{R}_{+}^{n+1}=\left\{\left(x_{0}, x_{1}, \ldots, x_{n}\right): x_{0}>0\right\}$.
- For $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, the Poisson integral of f is given by

$$
\int_{\mathbb{R}^{n}} \widehat{f}(\xi) e^{-2 \pi x_{0}|\xi|} e^{2 \pi i x \cdot \xi} d \xi=f * P_{x_{0}}(x)
$$

where $P_{x_{0}}(x)$ is the Poisson kernel on \mathbb{R}_{+}^{n+1} given by

$$
P_{x_{0}}(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \frac{x_{0}}{\left(x_{0}^{2}+|x|^{2}\right)^{(n+1) / 2}} .
$$

This Poisson integral is the unique bounded solution of the Dirichlet problem on the upper half space \mathbb{R}_{+}^{n+1} :

$$
\begin{cases}\Delta u=0 & \text { on } \mathbb{R}_{+}^{n+1} \\ u=f & \text { on } \mathbb{R}^{n}\end{cases}
$$

- A vector-valued function $\left(U_{0}, \ldots, U_{n}\right)$ defined on \mathbb{R}_{+}^{n+1} is said to be a system of conjugate harmonic functions, if

$$
\left\{\begin{array}{l}
\partial_{x_{j}} U_{k}=\partial_{x_{k}} U_{j} \quad \text { for all } 0 \leq j<k \leq n \\
\sum_{j=0}^{n} \partial_{x_{j}} U_{j}=0 .
\end{array}\right.
$$

(If we let U be the differential 1-form on \mathbb{R}_{+}^{n+1} given by $U=\sum_{j=0}^{n} U_{j} d x^{j}$, then the above system is equivalent to saying that U is a harmonic form on \mathbb{R}_{+}^{n+1}, i.e.

$$
d U=0 \quad \text { and } \quad d^{*} U=0
$$

where d and d^{*} are the divergence and curl operators respectively. Note that when $n=1$ the above system is just the Cauchy-Riemann equations.)

- Now let $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and U_{0} be the Poisson integral of f defined on \mathbb{R}_{+}^{n+1}.
- We then observe that $\left(U_{0}, \ldots, U_{n}\right)$ form a system of conjugate harmonic functions on \mathbb{R}_{+}^{n+1} if

$$
U_{j}\left(x_{0}, x\right)=-i \int_{\mathbb{R}^{n}} \frac{\xi_{j}}{|\xi|} \widehat{f}(\xi) e^{-2 \pi x_{0}|\xi|} e^{2 \pi i x \cdot \xi} d \xi
$$

for $1 \leq j \leq n$.

- The boundary values of such are given by

$$
\lim _{x_{0} \rightarrow 0^{+}} U_{j}\left(x_{0}, x\right)=-i \int_{\mathbb{R}^{n}} \frac{\xi_{j}}{|\xi|} \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

which we recognize to be the j-th Riesz transform $R_{j} f$ of f.

- Alternatively, the U_{j} on the previous slide can be written as $U_{j}(x)=f * \tilde{P}_{x_{0}}^{(j)}(x)$ where

$$
\tilde{P}_{x_{0}}^{(j)}(x)=\frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \frac{x_{j}}{\left(x_{0}^{2}+|x|^{2}\right)^{(n+1) / 2}}
$$

is the j-th conjugate Poisson kernel for $1 \leq j \leq n$.

- The boundary values of such are given by

$$
\lim _{x_{0} \rightarrow 0^{+}} U_{j}\left(x_{0}, x\right)=f * \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \text { p.v. } \frac{x_{j}}{|x|^{n+1}},
$$

which we recognize again to be the j-th Riesz transform $R_{j} f$ of f, since

$$
\tilde{P}_{x_{0}}^{(j)}(x) \rightarrow \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \text { p.v. } \frac{x_{j}}{|x|^{n+1}}
$$

in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ as $x_{0} \rightarrow 0^{+}$.

