Topics in Harmonic Analysis Lecture 3: Maximal functions and Riesz potentials

Po-Lam Yung

The Chinese University of Hong Kong

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

Introduction

- Last time we saw some operators of interest in harmonic analysis, such as the Riesz potentials.
- We will study the Riesz potentials in more detail this time.
- Before that, we detour into a study of the Hardy-Littlewood maximal operator, whose study was motivated by another important question. We briefly describe this question next.
- The fundamental theorem of calculus says that if f is continuous at x, then

$$\frac{d}{dx}\int_0^x f(t)dt = f(x).$$

In particular, if f is continuous at x, then

$$\lim_{r\to 0^+} \frac{1}{2r} \int_{(x-r,x+r)} f(t) dt = f(x).$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

$$\lim_{r\to 0^+}\frac{1}{2r}\int_{(x-r,x+r)}f(t)dt=f(x).$$

- We seek a variant of this, where we do not assume continuity of f at x.
- This variant will also extend to higher dimensions.
- ► The key issue here is the behaviour of averages of a locally integrable function *f* over balls of varying radii.
- For this reason we will study the Hardy-Littlewood maximal operator; what we gather will also ultimately enable us to come back and study some mapping properties of the Riesz potentials.

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Outline

- L^p and weak-L^p spaces
- The Hardy-Littlewood maximal function
- Lebesgue differentiation theorem
- Boundary behaviour of Poisson integral
- Mapping properties of the Riesz potentials

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

L^p and weak L^p spaces

The L^p space on ℝⁿ is the space of measurable functions on ℝⁿ for which ||f||_{L^p} < ∞, where</p>

$$\|f\|_{L^p}:=\left(\int_{\mathbb{R}^n}|f(x)|^pdx
ight)^{1/p}$$
 when $1\leq p<\infty$, and

 $\|f\|_{L^{\infty}} := \inf\{M > 0 \colon |f(x)| \le M \text{ for a.e. } x \in \mathbb{R}^n\}.$

By Fubini's theorem, we have

$$\|f\|_{L^p} = \left(\int_0^\infty p\alpha^{p-1} |\{x \in \mathbb{R}^n \colon |f(x)| > \alpha\} |d\alpha\right)^{1/p}$$

for $1 \leq p < \infty$.

- The function α → |{x ∈ ℝⁿ: |f(x)| > α}| is sometimes called the distribution function of f.
- The Chebyshev's inequality says that if $f \in L^p$, then

$$|\{x \in \mathbb{R}^n \colon |f(x)| > \alpha\}| \le \frac{1}{\alpha^p} ||f||_{L^p}^p \text{ for all } \alpha > 0.$$

For 1 ≤ p < ∞, the weak L^p space on ℝⁿ (denoted L^{p,∞}) is the space of measurable functions f on ℝⁿ for which there exists a constant C such that

$$|\{x \in \mathbb{R}^n \colon |f(x)| > \alpha\}| \le \frac{C^p}{\alpha^p} \quad \text{for all } \alpha > 0.$$

The smallest constant C for which the above inequality holds for all \(\alpha > 0\) is precisely

$$\sup_{\alpha>0} \left[\alpha | \{ x \in \mathbb{R}^n \colon |f(x)| > \alpha \} |^{1/p} \right].$$

Hence f is in $L^{p,\infty}$, if and only if the above supremum is finite.

- ► By Chebyshev, L^p embeds into L^{p,∞} for 1 ≤ p < ∞, but the embedding is strict.</p>
- e.g. $|x|^{-n/p} \in L^{p,\infty}$ for all $1 \le p < \infty$ (but not in L^p).

- $L^{p}(\mathbb{R}^{n})$ is a Banach space for all $1 \leq p \leq \infty$.
- ▶ On the other hand, for $1 \le p < \infty$, the supremum defining $L^{p,\infty}$ on the last slide, namely

$$\sup_{\alpha>0} \left[\alpha | \{ x \in \mathbb{R}^n \colon |f(x)| > \alpha \} |^{1/p} \right]$$

defines only a quasi-norm but not a norm; it only satisfies a quasi-triangle inequality, but not the triangle inequality itself.

▶ Nevertheless, when 1 , there is a comparable quantity

$$\|f\|_{L^{p,\infty}} := \sup_{\substack{E \text{ measurable} \\ 0 < |E| < \infty}} \frac{1}{|E|^{1/p'}} \int_{\mathbb{R}^n} |f| \chi_E dx$$

which is a norm on $L^{p,\infty}$ and turn $L^{p,\infty}$ into a Banach space (indeed this identifies $L^{p,\infty}$ as the dual of another Banach space $L^{p',1}$ when 1).

The Hardy-Littlewood maximal function

- Let f be a locally integrable function on \mathbb{R}^n .
- Write B(x, r) for the ball of radius r centered at x.
- Define the Hardy-Littlewood maximal operator by

$$Mf(x) = \sup_{r>0} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(t)| dt$$
 for every $x \in \mathbb{R}^n$.

- It is the maximal average of |f| over all balls centered at x.
- ▶ Note that *M* is a sublinear operator:

$$M(f+g) \leq Mf + Mg.$$

Mf is also lower semi-continuous for every *f*: the set $\{x \in \mathbb{R}^n : Mf(x) > \alpha\}$ is open for every $\alpha \in \mathbb{R}$.

We are interested in the mapping properties of *M* on *L^p* or weak *L^p*.

- ▶ Indeed we will show that *M* is bounded on L^p for all 1 .
- It is easy to see that M is not bounded on L¹; indeed Mf ∉ L¹ unless f = 0 a.e.
- Nevertheless, a substitute result is available for the action of M on L¹.
- We will show that M maps L¹ boundedly into weak-L¹, and that's the key to the proof of the boundedness of M on L^p (1
- ► The key then is to interpolate the fact that M: L¹ → L^{1,∞} with the easy observation that M: L[∞] → L[∞].
- Terminology: a sublinear operator is said to be of strong-type (p, q) if it defines a bounded operator from L^p into L^q; and it is said to be of weak-type (p, q) if it defines a bounded operator from L^p into weak-L^q.

Theorem

M is of weak-type (1,1) on \mathbb{R}^n , i.e. there exists a constant $C_n > 0$ such that for any $\alpha > 0$,

$$|\{x \in \mathbb{R}^n \colon |Mf(x)| > \alpha\}| \le \frac{C_n}{\alpha} ||f||_{L^1(\mathbb{R}^n)}$$

The proof proceeds via the following covering lemma:

Lemma

Let $E \subset \mathbb{R}^n$, and suppose there exists a finite collection of open balls \mathcal{B} that covers E. Then there exists a subcollection $B_1, \ldots, B_N \in \mathcal{B}$ such that

- B_1, \ldots, B_N are pairwise disjoint; and
- ▶ 3B₁,..., 3B_N covers E, where 3B_j is the ball with the same center as B_j but three times the radius.

- Assume the lemma for now. We will prove the theorem.
- Let f ∈ L¹(ℝⁿ), and α > 0. Let E_α be any compact subset of the open set {x ∈ ℝⁿ: |Mf(x)| > α}.
- By inner regularity of the Lebesgue measure, it suffices to prove that

$$|E_{\alpha}| \leq \frac{C_n}{\alpha} \|f\|_{L^1(\mathbb{R}^n)}$$

with a constant independent of E_{α} .

▶ Now for each $x \in E_{\alpha}$, there exists some radius $r_x > 0$ such that

$$\frac{1}{|B(x,r_x)|}\int_{B(x,r_x)}|f|>\alpha.$$

The collection of open balls {B(x, r_x): x ∈ E_α} covers E_α, and since E_α is compact, we can select a finite subcover B_α of E_α from this collection.

- Now apply the covering lemma to E_α and this collection of balls B_α.
- ▶ We obtain a subcollection $B_1, \ldots, B_N \in \mathcal{B}_\alpha$ such that B_1, \ldots, B_N are pairwise disjoint, and $E_\alpha \subset \bigcup_{j=1}^N 3B_j$.
- As a result,

$$|E_{\alpha}| \leq \sum_{j=1}^{N} |3B_{j}| = 3^{n} \sum_{j=1}^{N} |B_{j}| \leq \frac{3^{n}}{\alpha} \sum_{j=1}^{N} \int_{B_{j}} |f| \leq \frac{3^{n}}{\alpha} ||f||_{L^{1}},$$

the last inequality following since B_1, \ldots, B_N are pairwise disjoint.

▶ This proves the theorem with $C_n = 3^n$, modulo the proof of the covering lemma.

(This constant is not sharp; one can replace it with $(2 + \varepsilon)^n$ for any $\varepsilon > 0$ by using a more refined covering lemma.)

- The proof of the covering lemma is by greedy algorithm:
- ► Just let B₁ be a ball in B with maximal radius (possible since B is only a finite collection).
- ► Throw away all balls in B that intersects B₁, and let B₂ be a ball in the remaining collection whose radius is maximal.
- Repeat this process until no balls are left.
- The process will terminate since we have only a finite collection of balls.
- The chosen balls are clearly pairwise disjoint.
- Any ball that is thrown away intersects one of the chosen balls with a larger or equal radius.
- Thus any ball that is thrown away is contained in 3B_j for some chosen ball B_j, and this shows 3B₁, 3B₂,... cover E.
- This finishes the proof of the covering lemma.

Next we prove the following theorem:

Theorem

M is of strong-type (p, p) on \mathbb{R}^n for all 1 , i.e. for any such*p* $, there exists a constant <math>C_{n,p}$ such that

$$\|Mf\|_{L^p} \leq C_{n,p} \|f\|_{L^p}$$

for all $f \in L^p(\mathbb{R}^n)$.

- Since clearly Mf(x) ≤ ||f||_{L∞} for every x ∈ ℝⁿ, the theorem is trivial when p = ∞ (with C_{n,∞} = 1).
- ▶ We will prove the theorem by interpolating this L[∞] endpoint with the weak-type (1,1) result we just proved.
- This gives a constant $C_{n,p}$ that depends on n.
- On the other hand, we remark that via more sophisticated methods, the constant C_{n,p} can be chosen independent of n for all 1

The starting point of the proof of the theorem is the following identity:

$$\|Mf\|_{L^p}^p = \int_0^\infty p\alpha^{p-1} |\{x \in \mathbb{R}^n \colon Mf(x) > \alpha\}| d\alpha$$

which holds for all 1 by Fubini's theorem.

• Now for each $\alpha > 0$, we have

$$f = f\chi_{|f| > \alpha/2} + f\chi_{|f| \le \alpha/2}$$

and $M(f\chi_{|f| \le \alpha/2})(x) \le \alpha/2$ for every $x \in \mathbb{R}^n$, by the boundedness of M on L^{∞} .

Thus by subadditivity,

$$\{x \in \mathbb{R}^n \colon Mf(x) > \alpha\} \subseteq \{x \in \mathbb{R}^n \colon M(f\chi_{|f| > \alpha/2})(x) > \alpha/2\}.$$

Since *M* is of weak-type (1,1), the measure of the latter is at most

$$\frac{2C_n}{\alpha} \int_{\mathbb{R}^n} |f| \chi_{|f| > \alpha/2}.$$

Thus

$$\begin{split} \|Mf\|_{L^p}^p &= \int_0^\infty p\alpha^{p-1} |\{x \in \mathbb{R}^n \colon Mf(x) > \alpha\} | d\alpha \\ &\leq \int_0^\infty p\alpha^{p-1} \frac{2C_n}{\alpha} \int_{\mathbb{R}^n} |f(x)| \chi_{|f| > \alpha/2}(x) dx d\alpha \\ &\leq 2C_n p \int_{\mathbb{R}^n} |f(x)| \int_0^{2|f(x)|} \alpha^{p-2} d\alpha dx \\ &\leq 2C_n \frac{p}{p-1} \int_{\mathbb{R}^n} 2^{p-1} |f(x)|^p dx \\ &= C_n 2^p \frac{p}{p-1} \|f\|_{L^p}^p. \end{split}$$

- ► This proves the theorem with $C_{n,p} = 2(p')^{1/p} C_n^{1/p}$ where p' = p/(p-1) is the Hölder conjugate of p.
- Note that this constant blows up like O(1/(p−1)) as p → 1[−].
- The above method of proof is an example of the technique of real interpolation. We will return to this in Lecture 8.

Lebesgue differentiation theorem

We may now prove the Lebesgue differentiation theorem, which can be thought of as a measure-theoretic version of the fundamental theorem of calculus in 1-dimension.

Theorem

Let f be a locally integrable function on \mathbb{R}^n . Then for a.e. $x \in \mathbb{R}^n$, we have

$$f(x) = \lim_{r \to 0^+} \frac{1}{|B(x,r)|} \int_{B(x,r)} f(t) dt.$$

- Without loss of generality we assume that f is compactly supported (and hence in L¹).
- ▶ If f were also continuous, then the conclusion of the theorem clearly holds for all $x \in \mathbb{R}^n$.
- ► The idea is to approximate f in L¹ by a continuous function with compact support.

Suppose f ∈ L¹(ℝⁿ). We will prove a slightly stronger statement:

$$\limsup_{r \to 0^+} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(t) - f(x)| dt = 0$$

for a.e. $x \in \mathbb{R}^n$.

▶ Let $\varepsilon > 0$. Let $g \in C_c(\mathbb{R}^n)$ be such that $||f - g||_{L^1(\mathbb{R}^n)} \le \varepsilon$. ▶ Then

$$\begin{split} &\limsup_{r \to 0^+} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(t) - f(x)| dt \\ &\leq \limsup_{r \to 0^+} \frac{1}{|B(x,r)|} \int_{B(x,r)} |g(t) - g(x)| dt \\ &+ \limsup_{r \to 0^+} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(t) - g(t)| dt + |f(x) - g(x)| \\ &\leq M |f - g|(x) + |f - g|(x) \end{split}$$

• Hence for any $\alpha > 0$, we have

$$\begin{split} &|\{x \in \mathbb{R}^n \colon \limsup_{r \to 0^+} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(t) - f(x)| dt > \alpha\}|\\ &\leq |\{x \in \mathbb{R}^n \colon M|f - g|(x) > \alpha/2\}| + |\{x \in \mathbb{R}^n \colon |f - g|(x) > \alpha/2\}|\\ &\leq \frac{C_n}{\alpha/2} \|f - g\|_{L^1(\mathbb{R}^n)} \leq \frac{2C_n}{\alpha} \varepsilon. \end{split}$$

• Letting $\varepsilon \to 0$, we see that

$$|\{x\in\mathbb{R}^n\colon\limsup_{r o 0^+}rac{1}{|B(x,r)|}\int_{B(x,r)}|f(t)-f(x)|dt>lpha\}|=0$$

for all $\alpha > 0$, i.e.

$$\limsup_{r \to 0^+} \frac{1}{|B(x,r)|} \int_{B(x,r)} |f(t) - f(x)| dt = 0$$

for a.e. $x \in \mathbb{R}^n$.

More generally, we have the following generalization of Lebesgue's differentiation theorem:

Theorem

Suppose $\phi \in L^1(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \phi(x) dx = 1$. Let ψ be the least radial decreasing majorant of $|\phi|$, i.e.

$$\psi(x) = \sup_{|y| \ge |x|} |\phi(y)|.$$

Suppose $\psi \in L^1(\mathbb{R}^n)$. Let $\phi_r(x) = r^{-n}\phi(r^{-1}x)$ for r > 0. Let f be an L^p function on \mathbb{R}^n for some $1 \le p \le \infty$. Then we have

$$\sup_{r>0} |f * \phi_r|(x) \le A M f(x)$$

for every $x \in \mathbb{R}^n$, where $A = \int_{\mathbb{R}^n} \psi(x) dx$. Also,

$$f(x) = \lim_{r \to 0^+} f * \phi_r(x)$$
 for a.e. $x \in \mathbb{R}^n$.

• Indeed, let $\psi_r(x) = r^{-n}\psi(r^{-1}x)$. We claim that

$$\sup_{r>0} |f| * \psi_r(x) \le AMf(x)$$

for all $x \in \mathbb{R}^n$, where $A = \int_{\mathbb{R}^n} \psi(x) dx$.

- If this claim is verified, then at any x where Mf(x) < ∞, we have |f| * ψ_r(x) < ∞ for all r > 0, and hence the integral defining f * φ_r(x) converges for all r > 0.
- It then remains to observe that

$$\sup_{r>0} |f * \phi_r(x)| \leq \sup_{r>0} |f| * \psi_r(x) \leq A M f(x)$$

which is the desired conclusion.

• The claim can be proved by approximating ψ from below by linear combinations of characteristic functions of balls centered at the origin.

More precisely, one can find a sequence of functions {ρ_k}[∞]_{k=1} increasing pointwisely to ψ, such that each ρ_k is a finite sum of the form

$$\rho_k(x) = \sum_j a_{j,k} \chi_{B_{j,k}}$$

for some non-negative coefficients $a_{j,k}$ and some balls $B_{j,k}$ centered at the origin, and such that

$$\sum_j \mathsf{a}_{j,k} |B_{j,k}| \leq A$$
 for any $k \in \mathbb{N}.$

Then

$$|f| * \psi_r(x) = \lim_{k \to \infty} |f| * (\rho_k)_r(x),$$

where $(\rho_k)_r(x) = r^{-n} \rho_k(r^{-1}x)$, and
 $|f| * (\rho_k)_r(x) = \sum_j a_{j,k} |f| * (\chi_{B_{j,k}})_r(x)$
 $\leq \sum_j a_{j,k} |B_{j,k}| Mf(x) \leq A Mf(x)$

for any $k \in \mathbb{N}$, r > 0 and $x \in \mathbb{R}^n$.

(ロ)、(型)、(E)、(E)、(E)、(O)へ(C)

• Once we established that $\sup_{r>0} |f * \phi_r(x)| \le A Mf(x)$ for all $x \in \mathbb{R}^n$, then to prove

$$f(x) = \lim_{r \to 0^+} f * \phi_r(x)$$

for a.e. $x \in \mathbb{R}^n$, we may proceed as before when $1 \le p < \infty$.

- We only need to note that the above identity holds for every x ∈ ℝⁿ if f were in addition continuous with compact support.
- To see the latter fact, let f ∈ C_c(ℝⁿ). Let ε > 0. Then we can choose R > 0 large enough, so that ∫_{|y|>R} |φ(y)|dy < ε. Then</p>

$$f * \phi_r(x) - f(x) = \int_{\mathbb{R}^n} [f(x - ry) - f(x)]\phi(y)dy,$$

and we split this integral into two parts depending on whether $|y| \le R$ or $|y| \ge R$.

- The integral over $|y| \ge R$ is bounded by $2||f||_{L^{\infty}\varepsilon}$.
- The integral over |y| ≤ R can be made smaller than ε if r were chosen small enough, by uniform continuity of f.

- Now suppose $f \in L^p(\mathbb{R}^n)$ with $1 \le p < \infty$.
- Let $\varepsilon > 0$. Let $g \in C_c(\mathbb{R}^n)$ be such that $||f g||_{L^p(\mathbb{R}^n)} \le \varepsilon$.
- Then for any $\alpha > 0$, we have

$$\begin{split} &|\{x \in \mathbb{R}^n \colon \limsup_{r \to 0^+} |f * \phi_r(x) - f(x)| > \alpha\}| \\ &\leq |\{x \in \mathbb{R}^n \colon 2M | f - g | (x) > \alpha\}| \\ &\leq \frac{C_{n,p}}{\alpha^p} \|f - g\|_{L^p(\mathbb{R}^n)}^p \leq \frac{C_{n,p}}{\alpha^p} \varepsilon^p. \end{split}$$

- Letting $\varepsilon \to 0$ we see that $f(x) = \lim_{r \to 0^+} f * \phi_r(x)$ for a.e. $x \in \mathbb{R}^n$.
- When f ∈ L[∞](ℝⁿ), a small modification is necessary: we will instead prove that

$$f(x) = \lim_{r \to 0^+} f * \phi_r(x)$$

for a.e. $x \in B(0, R)$, for every R > 0.

To do so, it suffices to let

$$f = f\chi_{B(0,2R)} + f\chi_{B(0,2R)^c} = f_1 + f_2,$$

and verify pointwise a.e. convergence in B(0, R) for each of them.

• But for every $x \in B(0, R)$,

$$|f_2 * \phi_r(x)| = \left| \int_{|y| \ge 2R} f(y) \phi_r(x - y) dy \right|$$
$$\leq ||f||_{L^{\infty}(\mathbb{R}^n)} \int_{|y| \ge R} \phi_r(y) dy \to 0$$

as $r \to 0^+$. Also since $f_1 \in L^1(\mathbb{R}^n)$, we have

$$\lim_{r\to 0^+} f_1 * \phi_r(x) = f_1(x) = f(x) \quad \text{for a.e. } x\in B(0,R).$$

Thus $\lim_{r\to 0^+} f * \phi_r(x) = f(x)$ for a.e. $x \in B(0, R)$.

Boundary behaviour of Poisson integral

- We have thus completed the proof of the generalization of the Lebesgue differentiation theorem.
- As an application, this allows us to study the behaviour of the Poisson integral u(x, y) of a function f(x) on ℝⁿ as y → 0⁺.

Theorem

Let f(x) be an L^p function on \mathbb{R}^n for some $1 \le p \le \infty$, and let $u(x, y) = f * P_y(x)$ be its Poisson integral for $(x, y) \in \mathbb{R}^{n+1}_+$. Then we have

$$\lim_{y\to 0^+} u(x,y) = f(x) \quad \text{for a.e. } x \in \mathbb{R}^n.$$

In addition,

$$\sup_{y>0} |u(x,y)| \le Mf(x) \quad \text{for every } x \in \mathbb{R}^n.$$

▶ We remark that we also have L^p norm convergence of u(x, y) to f(x) if $f \in L^p(\mathbb{R}^n)$ and $p \in [1, \infty)$.

Mapping properties of Riesz potentials

- ► Finally, we establish mapping properties of the Riesz potentials on L^p(ℝⁿ) from the mapping properties of the Hardy-Littlewood maximal function.
- ▶ Recall the Riesz potentials \mathcal{I}_{α} : $\mathcal{S}(\mathbb{R}^n) \to \mathcal{S}'(\mathbb{R}^n)$, defined by

$$\mathcal{I}_{\alpha}f = (-\Delta)^{-\alpha/2}f = \mathcal{F}^{-1}((2\pi|\xi|)^{-\alpha}\widehat{f}(\xi)) = c_{n,\alpha}f * |x|^{-(n-\alpha)}$$

for some explicit constant $c_{n,\alpha}$ if $\alpha \in (0, n)$ and $f \in \mathcal{S}(\mathbb{R}^n)$.

- The kernel $|x|^{-(n-\alpha)}$ is in $L^{\frac{n}{n-\alpha},\infty}(\mathbb{R}^n)$ but not in $L^{\frac{n}{n-\alpha}}(\mathbb{R}^n)$.
- ▶ If it were in $L^{\frac{n}{n-\alpha}}(\mathbb{R}^n)$, then Young's convolution inequality says that $\mathcal{I}_{\alpha} \colon L^p(\mathbb{R}^n) \to L^q(\mathbb{R}^n)$ where

$$rac{1}{q} = rac{1}{p} + rac{n-lpha}{n} - 1 = rac{1}{p} - rac{lpha}{n} \quad ext{whenever } 1 \leq p \leq n/lpha.$$

- ロ ト - 4 回 ト - 4 □ - 4

▶ Remarkably, this mapping property remains true when $1 even though <math>|x|^{-(n-\alpha)} \notin L^{\frac{n}{n-\alpha}}(\mathbb{R}^n)$.

Theorem For $\alpha \in (0, n)$ and $1 \le p < n/\alpha$, let

$$\frac{1}{p^*} = \frac{1}{p} - \frac{\alpha}{n}.$$

Then we have

(a) \mathcal{I}_{α} is of weak type $(1, 1^*)$ on \mathbb{R}^n ;

(b) \mathcal{I}_{α} is of strong type (p, p^*) on \mathbb{R}^n if 1 .

- To prove this, let $1 \le p < n/\alpha$.
- Note that for each $x \in \mathbb{R}^n$, we have

$$\mathcal{I}_{\alpha}f(x) = c_{n,\alpha}\int_{y\in\mathbb{R}^n}f(x-y)\frac{1}{|y|^{n-\alpha}}dy.$$

- Since the kernel of *I*_α is non-negative, we may assume that *f* is non-negative.
- ▶ We split the integral into two parts, depending on whether $|y| \le R$ or $|y| \ge R$, where R > 0 is to be chosen.

$$\mathcal{I}_{lpha}f(x)=c_{n,lpha}\int_{y\in\mathbb{R}^n}f(x-y)rac{1}{|y|^{n-lpha}}dy=\int_{|y|\leq R}+\int_{|y|>R}$$

▶ We estimate the first integral by the Hardy-Littlewood maximal function: indeed, since $\int_{|y| \le R} \frac{1}{|y|^{n-\alpha}} dy \le C_{\alpha,n} R^{\alpha}$, by a previous theorem, we have

$$\int_{|y|\leq R} f(x-y) \frac{1}{|y|^{n-\alpha}} dy \leq C_{\alpha,n} R^{\alpha} M f(x).$$

▶ We estimate the second integral by Hölder's inequality: indeed, since $p < n/\alpha$, we have $\chi_{|y|>R}|y|^{-(n-\alpha)} \in L^{p'}(\mathbb{R}^n)$, and hence

$$\int_{|y|>R} f(x-y) \frac{1}{|y|^{n-\alpha}} dy \leq C_{\alpha,n,p} R^{\alpha-\frac{n}{p}} \|f\|_{L^p}.$$

Thus

$$\mathcal{I}_{\alpha}f(x) \lesssim_{\alpha,n,p} R^{\alpha}Mf(x) + R^{\alpha-\frac{n}{p}} \|f\|_{L^{p}}.$$

$$\mathcal{I}_{\alpha}f(x) \lesssim_{\alpha,n,p} R^{\alpha}Mf(x) + R^{\alpha-\frac{n}{p}} \|f\|_{L^{p}}$$

We choose R so that the right hand side is almost minimized, say so that R^αMf(x) = R^{α-n/p} ||f||_{L^p}. Then

$$\mathcal{I}_{\alpha}f(x) \lesssim_{\alpha,n,p} \|f\|_{L^p}^{\frac{\alpha_p}{n}} Mf(x)^{1-\frac{\alpha_p}{n}} = \|f\|_{L^p}^{1-\frac{p}{p^*}} Mf(x)^{\frac{p}{p^*}}.$$

This shows

$$\|\mathcal{I}_{\alpha}f(x)\|_{L^{p^{*}}} \lesssim_{\alpha,n,p} \|f\|_{L^{p}}^{1-\frac{p}{p^{*}}} \|Mf(x)\|_{L^{p}}^{\frac{p}{p^{*}}} \lesssim_{\alpha,n,p} \|f\|_{L^{p}}$$

if 1 , whereas for <math>p = 1 we have

$$\begin{aligned} &|\{x \in \mathbb{R}^{n} \colon \mathcal{I}_{\alpha}f(x) > \alpha\}| \\ &\leq |\{x \in \mathbb{R}^{n} \colon Mf(x) > C_{\alpha,n}\alpha^{1^{*}} \|f\|_{L^{p}}^{-1^{*}+1}\}| \\ &\lesssim_{\alpha,n} \alpha^{-1^{*}} \|f\|_{L^{1}}^{1^{*}-1} \|f\|_{L^{1}} = \alpha^{-1^{*}} \|f\|_{L^{1}}^{1^{*}}. \end{aligned}$$

Hence *I_α* is strong type (*p*, *p*^{*}) if 1 < *p* < *n*/*α*, and weak type (1, 1^{*}), as desired.

We remark that using the mapping properties of *I*_α we just proved, and certain rearrangement arguments, one can establish the following generalized Young's convolution inequality on ℝⁿ:

Theorem

Suppose $1 < p, q, r < \infty$ and

$$1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q}$$

Then for any $f \in L^p(\mathbb{R}^n)$, $g \in L^{q,\infty}(\mathbb{R}^n)$, we have

 $\|f * g\|_{L^r(\mathbb{R}^n)} \lesssim_{p,q,r} \|f\|_{L^p(\mathbb{R}^n)} \|g\|_{L^{q,\infty}(\mathbb{R}^n)}.$

Instead of giving this rearrangement argument here, we will give a proof of this theorem in Homework 8, as an application of a technique called real interpolation (which incidentally allows one to refine this inequality further).