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Introduction

I Last time we saw some operators of interest in harmonic
analysis, such as the Riesz potentials.

I We will study the Riesz potentials in more detail this time.

I Before that, we detour into a study of the Hardy-Littlewood
maximal operator, whose study was motivated by another
important question. We briefly describe this question next.

I The fundamental theorem of calculus says that if f is
continuous at x , then

d

dx

∫ x

0
f (t)dt = f (x).

I In particular, if f is continuous at x , then

lim
r→0+

1

2r

∫
(x−r ,x+r)

f (t)dt = f (x).



lim
r→0+

1

2r

∫
(x−r ,x+r)

f (t)dt = f (x).

I We seek a variant of this, where we do not assume continuity
of f at x .

I This variant will also extend to higher dimensions.

I The key issue here is the behaviour of averages of a locally
integrable function f over balls of varying radii.

I For this reason we will study the Hardy-Littlewood maximal
operator; what we gather will also ultimately enable us to
come back and study some mapping properties of the Riesz
potentials.
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Lp and weak Lp spaces
I The Lp space on Rn is the space of measurable functions on

Rn for which ‖f ‖Lp <∞, where

‖f ‖Lp :=

(∫
Rn

|f (x)|pdx
)1/p

when 1 ≤ p <∞, and

‖f ‖L∞ := inf{M > 0: |f (x)| ≤ M for a.e. x ∈ Rn}.
I By Fubini’s theorem, we have

‖f ‖Lp =

(∫ ∞
0

pαp−1|{x ∈ Rn : |f (x)| > α}|dα
)1/p

for 1 ≤ p <∞.
I The function α 7→ |{x ∈ Rn : |f (x)| > α}| is sometimes called

the distribution function of f .
I The Chebyshev’s inequality says that if f ∈ Lp, then

|{x ∈ Rn : |f (x)| > α}| ≤ 1

αp
‖f ‖pLp for all α > 0.



I For 1 ≤ p <∞, the weak Lp space on Rn (denoted Lp,∞) is
the space of measurable functions f on Rn for which there
exists a constant C such that

|{x ∈ Rn : |f (x)| > α}| ≤ Cp

αp
for all α > 0.

I The smallest constant C for which the above inequality holds
for all α > 0 is precisely

sup
α>0

[
α|{x ∈ Rn : |f (x)| > α}|1/p

]
.

Hence f is in Lp,∞, if and only if the above supremum is finite.

I By Chebyshev, Lp embeds into Lp,∞ for 1 ≤ p <∞, but the
embedding is strict.

I e.g. |x |−n/p ∈ Lp,∞ for all 1 ≤ p <∞ (but not in Lp).



I Lp(Rn) is a Banach space for all 1 ≤ p ≤ ∞.

I On the other hand, for 1 ≤ p <∞, the supremum defining
Lp,∞ on the last slide, namely

sup
α>0

[
α|{x ∈ Rn : |f (x)| > α}|1/p

]
defines only a quasi-norm but not a norm; it only satisfies a
quasi-triangle inequality, but not the triangle inequality itself.

I Nevertheless, when 1 < p <∞, there is a comparable quantity

‖f ‖Lp,∞ := sup
E measurable
0<|E |<∞

1

|E |1/p′
∫
Rn

|f |χEdx

which is a norm on Lp,∞ and turn Lp,∞ into a Banach space
(indeed this identifies Lp,∞ as the dual of another Banach
space Lp

′,1 when 1 < p <∞).



The Hardy-Littlewood maximal function

I Let f be a locally integrable function on Rn.

I Write B(x , r) for the ball of radius r centered at x .

I Define the Hardy-Littlewood maximal operator by

Mf (x) = sup
r>0

1

|B(x , r)|

∫
B(x ,r)

|f (t)|dt for every x ∈ Rn.

I It is the maximal average of |f | over all balls centered at x .

I Note that M is a sublinear operator:

M(f + g) ≤ Mf + Mg .

Mf is also lower semi-continuous for every f : the set
{x ∈ Rn : Mf (x) > α} is open for every α ∈ R.

I We are interested in the mapping properties of M on Lp or
weak Lp.



I Indeed we will show that M is bounded on Lp for all
1 < p ≤ ∞.

I It is easy to see that M is not bounded on L1; indeed Mf /∈ L1

unless f = 0 a.e.

I Nevertheless, a substitute result is available for the action of
M on L1.

I We will show that M maps L1 boundedly into weak-L1, and
that’s the key to the proof of the boundedness of M on Lp

(1 < p <∞) as well.

I The key then is to interpolate the fact that M : L1 → L1,∞

with the easy observation that M : L∞ → L∞.

I Terminology: a sublinear operator is said to be of strong-type
(p, q) if it defines a bounded operator from Lp into Lq; and it
is said to be of weak-type (p, q) if it defines a bounded
operator from Lp into weak-Lq.



Theorem
M is of weak-type (1, 1) on Rn, i.e. there exists a constant Cn > 0
such that for any α > 0,

|{x ∈ Rn : |Mf (x)| > α}| ≤ Cn

α
‖f ‖L1(Rn)

I The proof proceeds via the following covering lemma:

Lemma
Let E ⊂ Rn, and suppose there exists a finite collection of open
balls B that covers E . Then there exists a subcollection
B1, . . . ,BN ∈ B such that

I B1, . . . ,BN are pairwise disjoint; and

I 3B1, . . . , 3BN covers E , where 3Bj is the ball with the same
center as Bj but three times the radius.



I Assume the lemma for now. We will prove the theorem.

I Let f ∈ L1(Rn), and α > 0. Let Eα be any compact subset of
the open set {x ∈ Rn : |Mf (x)| > α}.

I By inner regularity of the Lebesgue measure, it suffices to
prove that

|Eα| ≤
Cn

α
‖f ‖L1(Rn)

with a constant independent of Eα.

I Now for each x ∈ Eα, there exists some radius rx > 0 such
that

1

|B(x , rx)|

∫
B(x ,rx )

|f | > α.

I The collection of open balls {B(x , rx) : x ∈ Eα} covers Eα,
and since Eα is compact, we can select a finite subcover Bα of
Eα from this collection.



I Now apply the covering lemma to Eα and this collection of
balls Bα.

I We obtain a subcollection B1, . . . ,BN ∈ Bα such that
B1, . . . ,BN are pairwise disjoint, and Eα ⊂

⋃N
j=1 3Bj .

I As a result,

|Eα| ≤
N∑
j=1

|3Bj | = 3n
N∑
j=1

|Bj | ≤
3n

α

N∑
j=1

∫
Bj

|f | ≤ 3n

α
‖f ‖L1 ,

the last inequality following since B1, . . . ,BN are pairwise
disjoint.

I This proves the theorem with Cn = 3n, modulo the proof of
the covering lemma.
(This constant is not sharp; one can replace it with (2 + ε)n

for any ε > 0 by using a more refined covering lemma.)



I The proof of the covering lemma is by greedy algorithm:

I Just let B1 be a ball in B with maximal radius (possible since
B is only a finite collection).

I Throw away all balls in B that intersects B1, and let B2 be a
ball in the remaining collection whose radius is maximal.

I Repeat this process until no balls are left.

I The process will terminate since we have only a finite
collection of balls.

I The chosen balls are clearly pairwise disjoint.

I Any ball that is thrown away intersects one of the chosen balls
with a larger or equal radius.

I Thus any ball that is thrown away is contained in 3Bj for
some chosen ball Bj , and this shows 3B1, 3B2, . . . cover E .

I This finishes the proof of the covering lemma.



I Next we prove the following theorem:

Theorem
M is of strong-type (p, p) on Rn for all 1 < p ≤ ∞, i.e. for any
such p, there exists a constant Cn,p such that

‖Mf ‖Lp ≤ Cn,p‖f ‖Lp

for all f ∈ Lp(Rn).

I Since clearly Mf (x) ≤ ‖f ‖L∞ for every x ∈ Rn, the theorem is
trivial when p =∞ (with Cn,∞ = 1).

I We will prove the theorem by interpolating this L∞ endpoint
with the weak-type (1,1) result we just proved.

I This gives a constant Cn,p that depends on n.

I On the other hand, we remark that via more sophisticated
methods, the constant Cn,p can be chosen independent of n
for all 1 < p ≤ ∞. We will not pursue this here.



I The starting point of the proof of the theorem is the following
identity:

‖Mf ‖pLp =

∫ ∞
0

pαp−1|{x ∈ Rn : Mf (x) > α}|dα

which holds for all 1 < p <∞ by Fubini’s theorem.

I Now for each α > 0, we have

f = f χ|f |>α/2 + f χ|f |≤α/2

and M(f χ|f |≤α/2)(x) ≤ α/2 for every x ∈ Rn, by the
boundedness of M on L∞.

I Thus by subadditivity,

{x ∈ Rn : Mf (x) > α} ⊆ {x ∈ Rn : M(f χ|f |>α/2)(x) > α/2}.

I Since M is of weak-type (1,1), the measure of the latter is at
most

2Cn

α

∫
Rn

|f |χ|f |>α/2.



I Thus

‖Mf ‖pLp =

∫ ∞
0

pαp−1|{x ∈ Rn : Mf (x) > α}|dα

≤
∫ ∞
0

pαp−1 2Cn

α

∫
Rn

|f (x)|χ|f |>α/2(x)dxdα

≤ 2Cnp

∫
Rn

|f (x)|
∫ 2|f (x)|

0
αp−2dαdx

≤ 2Cn
p

p − 1

∫
Rn

2p−1|f (x)|pdx

= Cn2p
p

p − 1
‖f ‖pLp .

I This proves the theorem with Cn,p = 2(p′)1/pC
1/p
n where

p′ = p/(p − 1) is the Hölder conjugate of p.

I Note that this constant blows up like O(1/(p−1)) as p → 1−.

I The above method of proof is an example of the technique of
real interpolation. We will return to this in Lecture 8.



Lebesgue differentiation theorem

I We may now prove the Lebesgue differentiation theorem,
which can be thought of as a measure-theoretic version of the
fundamental theorem of calculus in 1-dimension.

Theorem
Let f be a locally integrable function on Rn. Then for a.e. x ∈ Rn,
we have

f (x) = lim
r→0+

1

|B(x , r)|

∫
B(x ,r)

f (t)dt.

I Without loss of generality we assume that f is compactly
supported (and hence in L1).

I If f were also continuous, then the conclusion of the theorem
clearly holds for all x ∈ Rn.

I The idea is to approximate f in L1 by a continuous function
with compact support.



I Suppose f ∈ L1(Rn). We will prove a slightly stronger
statement:

lim sup
r→0+

1

|B(x , r)|

∫
B(x ,r)

|f (t)− f (x)|dt = 0

for a.e. x ∈ Rn.

I Let ε > 0. Let g ∈ Cc(Rn) be such that ‖f − g‖L1(Rn) ≤ ε.

I Then

lim sup
r→0+

1

|B(x , r)|

∫
B(x ,r)

|f (t)− f (x)|dt

≤ lim sup
r→0+

1

|B(x , r)|

∫
B(x ,r)

|g(t)− g(x)|dt

+ lim sup
r→0+

1

|B(x , r)|

∫
B(x ,r)

|f (t)− g(t)|dt + |f (x)− g(x)|

≤M|f − g |(x) + |f − g |(x)



I Hence for any α > 0, we have

|{x ∈ Rn : lim sup
r→0+

1

|B(x , r)|

∫
B(x ,r)

|f (t)− f (x)|dt > α}|

≤|{x ∈ Rn : M|f − g |(x) > α/2}|+ |{x ∈ Rn : |f − g |(x) > α/2}|

≤ Cn

α/2
‖f − g‖L1(Rn) ≤

2Cn

α
ε.

I Letting ε→ 0, we see that

|{x ∈ Rn : lim sup
r→0+

1

|B(x , r)|

∫
B(x ,r)

|f (t)− f (x)|dt > α}| = 0

for all α > 0, i.e.

lim sup
r→0+

1

|B(x , r)|

∫
B(x ,r)

|f (t)− f (x)|dt = 0

for a.e. x ∈ Rn.



I More generally, we have the following generalization of
Lebesgue’s differentiation theorem:

Theorem
Suppose φ ∈ L1(Rn) with

∫
Rn φ(x)dx = 1. Let ψ be the least

radial decreasing majorant of |φ|, i.e.

ψ(x) = sup
|y |≥|x |

|φ(y)|.

Suppose ψ ∈ L1(Rn). Let φr (x) = r−nφ(r−1x) for r > 0. Let f be
an Lp function on Rn for some 1 ≤ p ≤ ∞. Then we have

sup
r>0
|f ∗ φr |(x) ≤ AMf (x)

for every x ∈ Rn, where A =
∫
Rn ψ(x)dx . Also,

f (x) = lim
r→0+

f ∗ φr (x) for a.e. x ∈ Rn.



I Indeed, let ψr (x) = r−nψ(r−1x). We claim that

sup
r>0
|f | ∗ ψr (x) ≤ AMf (x)

for all x ∈ Rn, where A =
∫
Rn ψ(x)dx .

I If this claim is verified, then at any x where Mf (x) <∞, we
have |f | ∗ ψr (x) <∞ for all r > 0, and hence the integral
defining f ∗ φr (x) converges for all r > 0.

I It then remains to observe that

sup
r>0
|f ∗ φr (x)| ≤ sup

r>0
|f | ∗ ψr (x) ≤ AMf (x)

which is the desired conclusion.

I The claim can be proved by approximating ψ from below by
linear combinations of characteristic functions of balls
centered at the origin.



I More precisely, one can find a sequence of functions {ρk}∞k=1

increasing pointwisely to ψ, such that each ρk is a finite sum
of the form

ρk(x) =
∑
j

aj ,kχBj,k

for some non-negative coefficients aj ,k and some balls Bj ,k

centered at the origin, and such that∑
j

aj ,k |Bj ,k | ≤ A for any k ∈ N.

I Then
|f | ∗ ψr (x) = lim

k→∞
|f | ∗ (ρk)r (x),

where (ρk)r (x) = r−nρk(r−1x), and

|f | ∗ (ρk)r (x) =
∑
j

aj ,k |f | ∗ (χBj,k
)r (x)

≤
∑
j

aj ,k |Bj ,k |Mf (x) ≤ AMf (x)

for any k ∈ N, r > 0 and x ∈ Rn.



I Once we established that supr>0 |f ∗ φr (x)| ≤ AMf (x) for all
x ∈ Rn, then to prove

f (x) = lim
r→0+

f ∗ φr (x)

for a.e. x ∈ Rn, we may proceed as before when 1 ≤ p <∞.

I We only need to note that the above identity holds for every
x ∈ Rn if f were in addition continuous with compact support.

I To see the latter fact, let f ∈ Cc(Rn). Let ε > 0. Then we can
choose R > 0 large enough, so that

∫
|y |≥R |φ(y)|dy < ε. Then

f ∗ φr (x)− f (x) =

∫
Rn

[f (x − ry)− f (x)]φ(y)dy ,

and we split this integral into two parts depending on whether
|y | ≤ R or |y | ≥ R.

I The integral over |y | ≥ R is bounded by 2‖f ‖L∞ε.

I The integral over |y | ≤ R can be made smaller than ε if r
were chosen small enough, by uniform continuity of f .



I Now suppose f ∈ Lp(Rn) with 1 ≤ p <∞.

I Let ε > 0. Let g ∈ Cc(Rn) be such that ‖f − g‖Lp(Rn) ≤ ε.

I Then for any α > 0, we have

|{x ∈ Rn : lim sup
r→0+

|f ∗ φr (x)− f (x)| > α}|

≤|{x ∈ Rn : 2M|f − g |(x) > α}|

≤Cn,p

αp
‖f − g‖pLp(Rn) ≤

Cn,p

αp
εp.

I Letting ε→ 0 we see that f (x) = limr→0+ f ∗ φr (x) for a.e.
x ∈ Rn.

I When f ∈ L∞(Rn), a small modification is necessary:
we will instead prove that

f (x) = lim
r→0+

f ∗ φr (x)

for a.e. x ∈ B(0,R), for every R > 0.



I To do so, it suffices to let

f = f χB(0,2R) + f χB(0,2R)c = f1 + f2,

and verify pointwise a.e. convergence in B(0,R) for each of
them.

I But for every x ∈ B(0,R),

|f2 ∗ φr (x)| =

∣∣∣∣∣
∫
|y |≥2R

f (y)φr (x − y)dy

∣∣∣∣∣
≤ ‖f ‖L∞(Rn)

∫
|y |≥R

φr (y)dy → 0

as r → 0+. Also since f1 ∈ L1(Rn), we have

lim
r→0+

f1 ∗ φr (x) = f1(x) = f (x) for a.e. x ∈ B(0,R).

Thus limr→0+ f ∗ φr (x) = f (x) for a.e. x ∈ B(0,R).



Boundary behaviour of Poisson integral
I We have thus completed the proof of the generalization of the

Lebesgue differentiation theorem.
I As an application, this allows us to study the behaviour of the

Poisson integral u(x , y) of a function f (x) on Rn as y → 0+.

Theorem
Let f (x) be an Lp function on Rn for some 1 ≤ p ≤ ∞, and
let u(x , y) = f ∗ Py (x) be its Poisson integral for (x , y) ∈ Rn+1

+ .
Then we have

lim
y→0+

u(x , y) = f (x) for a.e. x ∈ Rn.

In addition,

sup
y>0
|u(x , y)| ≤ Mf (x) for every x ∈ Rn.

I We remark that we also have Lp norm convergence of u(x , y)
to f (x) if f ∈ Lp(Rn) and p ∈ [1,∞).



Mapping properties of Riesz potentials

I Finally, we establish mapping properties of the Riesz
potentials on Lp(Rn) from the mapping properties of
the Hardy-Littlewood maximal function.

I Recall the Riesz potentials Iα : S(Rn)→ S ′(Rn), defined by

Iαf = (−∆)−α/2f = F−1((2π|ξ|)−αf̂ (ξ)) = cn,αf ∗ |x |−(n−α)

for some explicit constant cn,α if α ∈ (0, n) and f ∈ S(Rn).

I The kernel |x |−(n−α) is in L
n

n−α ,∞(Rn) but not in L
n

n−α (Rn).

I If it were in L
n

n−α (Rn), then Young’s convolution inequality
says that Iα : Lp(Rn)→ Lq(Rn) where

1

q
=

1

p
+

n − α
n
− 1 =

1

p
− α

n
whenever 1 ≤ p ≤ n/α.

I Remarkably, this mapping property remains true when
1 < p < n/α even though |x |−(n−α) /∈ L

n
n−α (Rn).



Theorem
For α ∈ (0, n) and 1 ≤ p < n/α, let

1

p∗
=

1

p
− α

n
.

Then we have

(a) Iα is of weak type (1, 1∗) on Rn;

(b) Iα is of strong type (p, p∗) on Rn if 1 < p < n/α.

I To prove this, let 1 ≤ p < n/α.

I Note that for each x ∈ Rn, we have

Iαf (x) = cn,α

∫
y∈Rn

f (x − y)
1

|y |n−α
dy .

I Since the kernel of Iα is non-negative, we may assume that f
is non-negative.

I We split the integral into two parts, depending on whether
|y | ≤ R or |y | ≥ R, where R > 0 is to be chosen.



Iαf (x) = cn,α

∫
y∈Rn

f (x − y)
1

|y |n−α
dy =

∫
|y |≤R

+

∫
|y |>R

I We estimate the first integral by the Hardy-Littlewood
maximal function: indeed, since

∫
|y |≤R

1
|y |n−α dy ≤ Cα,nR

α,

by a previous theorem, we have∫
|y |≤R

f (x − y)
1

|y |n−α
dy ≤ Cα,nR

αMf (x).

I We estimate the second integral by Hölder’s inequality:
indeed, since p < n/α, we have χ|y |>R |y |−(n−α) ∈ Lp

′
(Rn),

and hence∫
|y |>R

f (x − y)
1

|y |n−α
dy ≤ Cα,n,pR

α− n
p ‖f ‖Lp .

I Thus
Iαf (x) .α,n,p RαMf (x) + Rα−

n
p ‖f ‖Lp .



Iαf (x) .α,n,p RαMf (x) + Rα−
n
p ‖f ‖Lp

I We choose R so that the right hand side is almost minimized,
say so that RαMf (x) = Rα−

n
p ‖f ‖Lp . Then

Iαf (x) .α,n,p ‖f ‖
αp
n
Lp Mf (x)1−

αp
n = ‖f ‖

1− p
p∗

Lp Mf (x)
p
p∗ .

I This shows

‖Iαf (x)‖Lp∗ .α,n,p ‖f ‖
1− p

p∗
Lp ‖Mf (x)‖

p
p∗
Lp .α,n,p ‖f ‖Lp

if 1 < p < n/α, whereas for p = 1 we have

|{x ∈ Rn : Iαf (x) > α}|
≤ |{x ∈ Rn : Mf (x) > Cα,nα

1∗‖f ‖−1∗+1
Lp }|

.α,n α
−1∗‖f ‖1∗−1

L1
‖f ‖L1 = α−1

∗‖f ‖1∗L1 .

I Hence Iα is strong type (p, p∗) if 1 < p < n/α, and weak
type (1, 1∗), as desired.



I We remark that using the mapping properties of Iα we just
proved, and certain rearrangement arguments, one can
establish the following generalized Young’s convolution
inequality on Rn:

Theorem
Suppose 1 < p, q, r <∞ and

1 +
1

r
=

1

p
+

1

q
.

Then for any f ∈ Lp(Rn), g ∈ Lq,∞(Rn), we have

‖f ∗ g‖Lr (Rn) .p,q,r ‖f ‖Lp(Rn)‖g‖Lq,∞(Rn).

I Instead of giving this rearrangement argument here, we will
give a proof of this theorem in Homework 8, as an application
of a technique called real interpolation (which incidentally
allows one to refine this inequality further).


