Topics in Harmonic Analysis
 Lecture 3: Maximal functions and Riesz potentials

Po-Lam Yung

The Chinese University of Hong Kong

Introduction

- Last time we saw some operators of interest in harmonic analysis, such as the Riesz potentials.
- We will study the Riesz potentials in more detail this time.
- Before that, we detour into a study of the Hardy-Littlewood maximal operator, whose study was motivated by another important question. We briefly describe this question next.
- The fundamental theorem of calculus says that if f is continuous at x, then

$$
\frac{d}{d x} \int_{0}^{x} f(t) d t=f(x)
$$

- In particular, if f is continuous at x, then

$$
\lim _{r \rightarrow 0^{+}} \frac{1}{2 r} \int_{(x-r, x+r)} f(t) d t=f(x)
$$

$$
\lim _{r \rightarrow 0^{+}} \frac{1}{2 r} \int_{(x-r, x+r)} f(t) d t=f(x)
$$

- We seek a variant of this, where we do not assume continuity of f at x.
- This variant will also extend to higher dimensions.
- The key issue here is the behaviour of averages of a locally integrable function f over balls of varying radii.
- For this reason we will study the Hardy-Littlewood maximal operator; what we gather will also ultimately enable us to come back and study some mapping properties of the Riesz potentials.

Outline

- L^{p} and weak- L^{p} spaces
- The Hardy-Littlewood maximal function
- Lebesgue differentiation theorem
- Boundary behaviour of Poisson integral
- Mapping properties of the Riesz potentials

L^{p} and weak L^{p} spaces

- The L^{p} space on \mathbb{R}^{n} is the space of measurable functions on \mathbb{R}^{n} for which $\|f\|_{L^{p}}<\infty$, where

$$
\begin{aligned}
\|f\|_{L^{p}} & :=\left(\int_{\mathbb{R}^{n}}|f(x)|^{p} d x\right)^{1 / p} \quad \text { when } 1 \leq p<\infty, \text { and } \\
\|f\|_{L^{\infty}} & :=\inf \left\{M>0:|f(x)| \leq M \text { for a.e. } x \in \mathbb{R}^{n}\right\}
\end{aligned}
$$

- By Fubini's theorem, we have

$$
\|f\|_{L^{p}}=\left(\int_{0}^{\infty} p \alpha^{p-1}\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right| d \alpha\right)^{1 / p}
$$

for $1 \leq p<\infty$.

- The function $\alpha \mapsto\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right|$ is sometimes called the distribution function of f.
- The Chebyshev's inequality says that if $f \in L^{p}$, then

$$
\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right| \leq \frac{1}{\alpha^{p}}\|f\|_{L^{p}}^{p} \quad \text { for all } \alpha>0
$$

- For $1 \leq p<\infty$, the weak L^{p} space on \mathbb{R}^{n} (denoted $L^{p, \infty}$) is the space of measurable functions f on \mathbb{R}^{n} for which there exists a constant C such that

$$
\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right| \leq \frac{C^{p}}{\alpha^{p}} \quad \text { for all } \alpha>0
$$

- The smallest constant C for which the above inequality holds for all $\alpha>0$ is precisely

$$
\sup _{\alpha>0}\left[\alpha\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right|^{1 / p}\right] .
$$

Hence f is in $L^{p, \infty}$, if and only if the above supremum is finite.

- By Chebyshev, L^{p} embeds into $L^{p, \infty}$ for $1 \leq p<\infty$, but the embedding is strict.
- e.g. $|x|^{-n / p} \in L^{p, \infty}$ for all $1 \leq p<\infty$ (but not in L^{p}).
- $L^{p}\left(\mathbb{R}^{n}\right)$ is a Banach space for all $1 \leq p \leq \infty$.
- On the other hand, for $1 \leq p<\infty$, the supremum defining $L^{p, \infty}$ on the last slide, namely

$$
\sup _{\alpha>0}\left[\alpha\left|\left\{x \in \mathbb{R}^{n}:|f(x)|>\alpha\right\}\right|^{1 / p}\right]
$$

defines only a quasi-norm but not a norm; it only satisfies a quasi-triangle inequality, but not the triangle inequality itself.

- Nevertheless, when $1<p<\infty$, there is a comparable quantity

$$
\|f\|_{L^{p, \infty}}:=\sup _{\substack{\text { measurable } \\ 0<|E|<\infty}} \frac{1}{|E|^{1 / p^{\prime}}} \int_{\mathbb{R}^{n}}|f| \chi_{E} d x
$$

which is a norm on $L^{p, \infty}$ and turn $L^{p, \infty}$ into a Banach space (indeed this identifies $L^{p, \infty}$ as the dual of another Banach space $L^{p^{\prime}, 1}$ when $\left.1<p<\infty\right)$.

The Hardy-Littlewood maximal function

- Let f be a locally integrable function on \mathbb{R}^{n}.
- Write $B(x, r)$ for the ball of radius r centered at x.
- Define the Hardy-Littlewood maximal operator by

$$
M f(x)=\sup _{r>0} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(t)| d t \quad \text { for every } x \in \mathbb{R}^{n}
$$

- It is the maximal average of $|f|$ over all balls centered at x.
- Note that M is a sublinear operator:

$$
M(f+g) \leq M f+M g
$$

Mf is also lower semi-continuous for every f : the set $\left\{x \in \mathbb{R}^{n}: \operatorname{Mf}(x)>\alpha\right\}$ is open for every $\alpha \in \mathbb{R}$.

- We are interested in the mapping properties of M on L^{p} or weak L^{p}.
- Indeed we will show that M is bounded on L^{p} for all $1<p \leq \infty$.
- It is easy to see that M is not bounded on L^{1}; indeed $M f \notin L^{1}$ unless $f=0$ a.e.
- Nevertheless, a substitute result is available for the action of M on L^{1}.
- We will show that M maps L^{1} boundedly into weak- L^{1}, and that's the key to the proof of the boundedness of M on L^{p} $(1<p<\infty)$ as well.
- The key then is to interpolate the fact that $M: L^{1} \rightarrow L^{1, \infty}$ with the easy observation that $M: L^{\infty} \rightarrow L^{\infty}$.
- Terminology: a sublinear operator is said to be of strong-type (p, q) if it defines a bounded operator from L^{p} into L^{q}; and it is said to be of weak-type (p, q) if it defines a bounded operator from L^{p} into weak- L^{q}.

Theorem

M is of weak-type $(1,1)$ on \mathbb{R}^{n}, i.e. there exists a constant $C_{n}>0$ such that for any $\alpha>0$,

$$
\left|\left\{x \in \mathbb{R}^{n}:|M f(x)|>\alpha\right\}\right| \leq \frac{C_{n}}{\alpha}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

- The proof proceeds via the following covering lemma:

Lemma

Let $E \subset \mathbb{R}^{n}$, and suppose there exists a finite collection of open balls \mathcal{B} that covers E. Then there exists a subcollection $B_{1}, \ldots, B_{N} \in \mathcal{B}$ such that

- B_{1}, \ldots, B_{N} are pairwise disjoint; and
- $3 B_{1}, \ldots, 3 B_{N}$ covers E, where $3 B_{j}$ is the ball with the same center as B_{j} but three times the radius.
- Assume the lemma for now. We will prove the theorem.
- Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$, and $\alpha>0$. Let E_{α} be any compact subset of the open set $\left\{x \in \mathbb{R}^{n}:|M f(x)|>\alpha\right\}$.
- By inner regularity of the Lebesgue measure, it suffices to prove that

$$
\left|E_{\alpha}\right| \leq \frac{C_{n}}{\alpha}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)}
$$

with a constant independent of E_{α}.

- Now for each $x \in E_{\alpha}$, there exists some radius $r_{x}>0$ such that

$$
\frac{1}{\left|B\left(x, r_{x}\right)\right|} \int_{B\left(x, r_{x}\right)}|f|>\alpha
$$

- The collection of open balls $\left\{B\left(x, r_{x}\right): x \in E_{\alpha}\right\}$ covers E_{α}, and since E_{α} is compact, we can select a finite subcover \mathcal{B}_{α} of E_{α} from this collection.
- Now apply the covering lemma to E_{α} and this collection of balls \mathcal{B}_{α}.
- We obtain a subcollection $B_{1}, \ldots, B_{N} \in \mathcal{B}_{\alpha}$ such that B_{1}, \ldots, B_{N} are pairwise disjoint, and $E_{\alpha} \subset \bigcup_{j=1}^{N} 3 B_{j}$.
- As a result,

$$
\left|E_{\alpha}\right| \leq \sum_{j=1}^{N}\left|3 B_{j}\right|=3^{n} \sum_{j=1}^{N}\left|B_{j}\right| \leq \frac{3^{n}}{\alpha} \sum_{j=1}^{N} \int_{B_{j}}|f| \leq \frac{3^{n}}{\alpha}\|f\|_{L^{1}}
$$

the last inequality following since B_{1}, \ldots, B_{N} are pairwise disjoint.

- This proves the theorem with $C_{n}=3^{n}$, modulo the proof of the covering lemma.
(This constant is not sharp; one can replace it with $(2+\varepsilon)^{n}$ for any $\varepsilon>0$ by using a more refined covering lemma.)
- The proof of the covering lemma is by greedy algorithm:
- Just let B_{1} be a ball in \mathcal{B} with maximal radius (possible since \mathcal{B} is only a finite collection).
- Throw away all balls in \mathcal{B} that intersects B_{1}, and let B_{2} be a ball in the remaining collection whose radius is maximal.
- Repeat this process until no balls are left.
- The process will terminate since we have only a finite collection of balls.
- The chosen balls are clearly pairwise disjoint.
- Any ball that is thrown away intersects one of the chosen balls with a larger or equal radius.
- Thus any ball that is thrown away is contained in $3 B_{j}$ for some chosen ball B_{j}, and this shows $3 B_{1}, 3 B_{2}, \ldots$ cover E.
- This finishes the proof of the covering lemma.
- Next we prove the following theorem:

Theorem

M is of strong-type (p, p) on \mathbb{R}^{n} for all $1<p \leq \infty$, i.e. for any such p, there exists a constant $C_{n, p}$ such that

$$
\|M f\|_{L^{p}} \leq C_{n, p}\|f\|_{L^{p}}
$$

for all $f \in L^{p}\left(\mathbb{R}^{n}\right)$.

- Since clearly $\operatorname{Mf}(x) \leq\|f\|_{L^{\infty}}$ for every $x \in \mathbb{R}^{n}$, the theorem is trivial when $p=\infty$ (with $C_{n, \infty}=1$).
- We will prove the theorem by interpolating this L^{∞} endpoint with the weak-type $(1,1)$ result we just proved.
- This gives a constant $C_{n, p}$ that depends on n.
- On the other hand, we remark that via more sophisticated methods, the constant $C_{n, p}$ can be chosen independent of n for all $1<p \leq \infty$. We will not pursue this here.
- The starting point of the proof of the theorem is the following identity:

$$
\|M f\|_{L^{p}}^{p}=\int_{0}^{\infty} p \alpha^{p-1}\left|\left\{x \in \mathbb{R}^{n}: M f(x)>\alpha\right\}\right| d \alpha
$$

which holds for all $1<p<\infty$ by Fubini's theorem.

- Now for each $\alpha>0$, we have

$$
f=f \chi_{|f|>\alpha / 2}+f_{\chi|f| \leq \alpha / 2}
$$

and $M\left(f \chi_{|f| \leq \alpha / 2}\right)(x) \leq \alpha / 2$ for every $x \in \mathbb{R}^{n}$, by the boundedness of M on L^{∞}.

- Thus by subadditivity,

$$
\left\{x \in \mathbb{R}^{n}: M f(x)>\alpha\right\} \subseteq\left\{x \in \mathbb{R}^{n}: M\left(f \chi_{|f|>\alpha / 2}\right)(x)>\alpha / 2\right\}
$$

- Since M is of weak-type (1,1), the measure of the latter is at most

$$
\frac{2 C_{n}}{\alpha} \int_{\mathbb{R}^{n}}|f| \chi_{|f|>\alpha / 2}
$$

- Thus

$$
\begin{aligned}
\|M f\|_{L^{p}}^{p} & =\int_{0}^{\infty} p \alpha^{p-1}\left|\left\{x \in \mathbb{R}^{n}: M f(x)>\alpha\right\}\right| d \alpha \\
& \leq \int_{0}^{\infty} p \alpha^{p-1} \frac{2 C_{n}}{\alpha} \int_{\mathbb{R}^{n}}|f(x)| \chi_{|f|>\alpha / 2}(x) d x d \alpha \\
& \leq 2 C_{n} p \int_{\mathbb{R}^{n}}|f(x)| \int_{0}^{2|f(x)|} \alpha^{p-2} d \alpha d x \\
& \leq 2 C_{n} \frac{p}{p-1} \int_{\mathbb{R}^{n}} 2^{p-1}|f(x)|^{p} d x \\
& =C_{n} 2^{p} \frac{p}{p-1}\|f\|_{L^{p}}^{p} .
\end{aligned}
$$

- This proves the theorem with $C_{n, p}=2\left(p^{\prime}\right)^{1 / p} C_{n}^{1 / p}$ where $p^{\prime}=p /(p-1)$ is the Hölder conjugate of p.
- Note that this constant blows up like $O(1 /(p-1))$ as $p \rightarrow 1^{-}$.
- The above method of proof is an example of the technique of real interpolation. We will return to this in Lecture 8.

Lebesgue differentiation theorem

- We may now prove the Lebesgue differentiation theorem, which can be thought of as a measure-theoretic version of the fundamental theorem of calculus in 1-dimension.

Theorem

Let f be a locally integrable function on \mathbb{R}^{n}. Then for a.e. $x \in \mathbb{R}^{n}$, we have

$$
f(x)=\lim _{r \rightarrow 0^{+}} \frac{1}{|B(x, r)|} \int_{B(x, r)} f(t) d t
$$

- Without loss of generality we assume that f is compactly supported (and hence in L^{1}).
- If f were also continuous, then the conclusion of the theorem clearly holds for all $x \in \mathbb{R}^{n}$.
- The idea is to approximate f in L^{1} by a continuous function with compact support.
- Suppose $f \in L^{1}\left(\mathbb{R}^{n}\right)$. We will prove a slightly stronger statement:

$$
\limsup _{r \rightarrow 0^{+}} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(t)-f(x)| d t=0
$$

for a.e. $x \in \mathbb{R}^{n}$.

- Let $\varepsilon>0$. Let $g \in C_{c}\left(\mathbb{R}^{n}\right)$ be such that $\|f-g\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leq \varepsilon$.
- Then

$$
\begin{aligned}
& \limsup _{r \rightarrow 0^{+}} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(t)-f(x)| d t \\
& \leq \limsup _{r \rightarrow 0^{+}} \frac{1}{|B(x, r)|} \int_{B(x, r)}|g(t)-g(x)| d t \\
&+\limsup _{r \rightarrow 0^{+}} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(t)-g(t)| d t+|f(x)-g(x)| \\
& \leq M|f-g|(x)+|f-g|(x)
\end{aligned}
$$

- Hence for any $\alpha>0$, we have

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n}: \limsup _{r \rightarrow 0^{+}} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(t)-f(x)| d t>\alpha\right\}\right| \\
\leq & \left|\left\{x \in \mathbb{R}^{n}: M|f-g|(x)>\alpha / 2\right\}\right|+\left|\left\{x \in \mathbb{R}^{n}:|f-g|(x)>\alpha / 2\right\}\right| \\
\leq & \frac{C_{n}}{\alpha / 2}\|f-g\|_{L^{1}\left(\mathbb{R}^{n}\right)} \leq \frac{2 C_{n}}{\alpha} \varepsilon .
\end{aligned}
$$

- Letting $\varepsilon \rightarrow 0$, we see that

$$
\left|\left\{x \in \mathbb{R}^{n}: \limsup _{r \rightarrow 0^{+}} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(t)-f(x)| d t>\alpha\right\}\right|=0
$$

for all $\alpha>0$, i.e.

$$
\limsup _{r \rightarrow 0^{+}} \frac{1}{|B(x, r)|} \int_{B(x, r)}|f(t)-f(x)| d t=0
$$

for a.e. $x \in \mathbb{R}^{n}$.

- More generally, we have the following generalization of Lebesgue's differentiation theorem:

Theorem

Suppose $\phi \in L^{1}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}} \phi(x) d x=1$. Let ψ be the least radial decreasing majorant of $|\phi|$, i.e.

$$
\psi(x)=\sup _{|y| \geq|x|}|\phi(y)| .
$$

Suppose $\psi \in L^{1}\left(\mathbb{R}^{n}\right)$. Let $\phi_{r}(x)=r^{-n} \phi\left(r^{-1} x\right)$ for $r>0$. Let f be an L^{p} function on \mathbb{R}^{n} for some $1 \leq p \leq \infty$. Then we have

$$
\sup _{r>0}\left|f * \phi_{r}\right|(x) \leq A M f(x)
$$

for every $x \in \mathbb{R}^{n}$, where $A=\int_{\mathbb{R}^{n}} \psi(x) d x$. Also,

$$
f(x)=\lim _{r \rightarrow 0^{+}} f * \phi_{r}(x) \quad \text { for a.e. } x \in \mathbb{R}^{n} \text {. }
$$

- Indeed, let $\psi_{r}(x)=r^{-n} \psi\left(r^{-1} x\right)$. We claim that

$$
\sup _{r>0}|f| * \psi_{r}(x) \leq A M f(x)
$$

for all $x \in \mathbb{R}^{n}$, where $A=\int_{\mathbb{R}^{n}} \psi(x) d x$.

- If this claim is verified, then at any x where $\operatorname{Mf}(x)<\infty$, we have $|f| * \psi_{r}(x)<\infty$ for all $r>0$, and hence the integral defining $f * \phi_{r}(x)$ converges for all $r>0$.
- It then remains to observe that

$$
\sup _{r>0}\left|f * \phi_{r}(x)\right| \leq \sup _{r>0}|f| * \psi_{r}(x) \leq A \operatorname{Mf}(x)
$$

which is the desired conclusion.

- The claim can be proved by approximating ψ from below by linear combinations of characteristic functions of balls centered at the origin.
- More precisely, one can find a sequence of functions $\left\{\rho_{k}\right\}_{k=1}^{\infty}$ increasing pointwisely to ψ, such that each ρ_{k} is a finite sum of the form

$$
\rho_{k}(x)=\sum_{j} a_{j, k} \chi_{B_{j, k}}
$$

for some non-negative coefficients $a_{j, k}$ and some balls $B_{j, k}$ centered at the origin, and such that

$$
\sum_{j} a_{j, k}\left|B_{j, k}\right| \leq A \quad \text { for any } k \in \mathbb{N} .
$$

- Then

$$
|f| * \psi_{r}(x)=\lim _{k \rightarrow \infty}|f| *\left(\rho_{k}\right)_{r}(x)
$$

where $\left(\rho_{k}\right)_{r}(x)=r^{-n} \rho_{k}\left(r^{-1} x\right)$, and

$$
\begin{aligned}
|f| *\left(\rho_{k}\right)_{r}(x) & =\sum_{j} a_{j, k}|f| *\left(\chi_{B_{j, k}}\right)_{r}(x) \\
& \leq \sum_{j} a_{j, k}\left|B_{j, k}\right| M f(x) \leq A M f(x)
\end{aligned}
$$

for any $k \in \mathbb{N}, r>0$ and $x \in \mathbb{R}^{n}$.

- Once we established that $\sup _{r>0}\left|f * \phi_{r}(x)\right| \leq A M f(x)$ for all $x \in \mathbb{R}^{n}$, then to prove

$$
f(x)=\lim _{r \rightarrow 0^{+}} f * \phi_{r}(x)
$$

for a.e. $x \in \mathbb{R}^{n}$, we may proceed as before when $1 \leq p<\infty$.

- We only need to note that the above identity holds for every $x \in \mathbb{R}^{n}$ if f were in addition continuous with compact support.
- To see the latter fact, let $f \in C_{c}\left(\mathbb{R}^{n}\right)$. Let $\varepsilon>0$. Then we can choose $R>0$ large enough, so that $\int_{|y| \geq R}|\phi(y)| d y<\varepsilon$. Then

$$
f * \phi_{r}(x)-f(x)=\int_{\mathbb{R}^{n}}[f(x-r y)-f(x)] \phi(y) d y
$$

and we split this integral into two parts depending on whether $|y| \leq R$ or $|y| \geq R$.

- The integral over $|y| \geq R$ is bounded by $2\|f\|_{L \infty \varepsilon}$.
- The integral over $|y| \leq R$ can be made smaller than ε if r were chosen small enough, by uniform continuity of f.
- Now suppose $f \in L^{p}\left(\mathbb{R}^{n}\right)$ with $1 \leq p<\infty$.
- Let $\varepsilon>0$. Let $g \in C_{c}\left(\mathbb{R}^{n}\right)$ be such that $\|f-g\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq \varepsilon$.
- Then for any $\alpha>0$, we have

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n}: \limsup _{r \rightarrow 0^{+}}\left|f * \phi_{r}(x)-f(x)\right|>\alpha\right\}\right| \\
\leq & \left|\left\{x \in \mathbb{R}^{n}: 2 M|f-g|(x)>\alpha\right\}\right| \\
\leq & \frac{C_{n, p}}{\alpha^{p}}\|f-g\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p} \leq \frac{C_{n, p}}{\alpha^{p}} \varepsilon^{p} .
\end{aligned}
$$

- Letting $\varepsilon \rightarrow 0$ we see that $f(x)=\lim _{r \rightarrow 0^{+}} f * \phi_{r}(x)$ for a.e. $x \in \mathbb{R}^{n}$.
- When $f \in L^{\infty}\left(\mathbb{R}^{n}\right)$, a small modification is necessary: we will instead prove that

$$
f(x)=\lim _{r \rightarrow 0^{+}} f * \phi_{r}(x)
$$

for a.e. $x \in B(0, R)$, for every $R>0$.

- To do so, it suffices to let

$$
f=f \chi_{B(0,2 R)}+f \chi_{B(0,2 R)^{c}}=f_{1}+f_{2},
$$

and verify pointwise a.e. convergence in $B(0, R)$ for each of them.

- But for every $x \in B(0, R)$,

$$
\begin{aligned}
\left|f_{2} * \phi_{r}(x)\right| & =\left|\int_{|y| \geq 2 R} f(y) \phi_{r}(x-y) d y\right| \\
& \leq\|f\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \int_{|y| \geq R} \phi_{r}(y) d y \rightarrow 0
\end{aligned}
$$

as $r \rightarrow 0^{+}$. Also since $f_{1} \in L^{1}\left(\mathbb{R}^{n}\right)$, we have

$$
\lim _{r \rightarrow 0^{+}} f_{1} * \phi_{r}(x)=f_{1}(x)=f(x) \quad \text { for a.e. } x \in B(0, R)
$$

Thus $\lim _{r \rightarrow 0^{+}} f * \phi_{r}(x)=f(x)$ for a.e. $x \in B(0, R)$.

Boundary behaviour of Poisson integral

- We have thus completed the proof of the generalization of the Lebesgue differentiation theorem.
- As an application, this allows us to study the behaviour of the Poisson integral $u(x, y)$ of a function $f(x)$ on \mathbb{R}^{n} as $y \rightarrow 0^{+}$.

Theorem

Let $f(x)$ be an L^{p} function on \mathbb{R}^{n} for some $1 \leq p \leq \infty$, and let $u(x, y)=f * P_{y}(x)$ be its Poisson integral for $(x, y) \in \mathbb{R}_{+}^{n+1}$.
Then we have

$$
\lim _{y \rightarrow 0^{+}} u(x, y)=f(x) \quad \text { for a.e. } x \in \mathbb{R}^{n} .
$$

In addition,

$$
\sup _{y>0}|u(x, y)| \leq M f(x) \quad \text { for every } x \in \mathbb{R}^{n} .
$$

- We remark that we also have L^{p} norm convergence of $u(x, y)$ to $f(x)$ if $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $p \in[1, \infty)$.

Mapping properties of Riesz potentials

- Finally, we establish mapping properties of the Riesz potentials on $L^{p}\left(\mathbb{R}^{n}\right)$ from the mapping properties of the Hardy-Littlewood maximal function.
- Recall the Riesz potentials $\mathcal{I}_{\alpha}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, defined by

$$
\mathcal{I}_{\alpha} f=(-\Delta)^{-\alpha / 2} f=\mathcal{F}^{-1}\left((2 \pi|\xi|)^{-\alpha} \widehat{f}(\xi)\right)=c_{n, \alpha} f *|x|^{-(n-\alpha)}
$$

for some explicit constant $c_{n, \alpha}$ if $\alpha \in(0, n)$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

- The kernel $|x|^{-(n-\alpha)}$ is in $L^{\frac{n}{n-\alpha}, \infty}\left(\mathbb{R}^{n}\right)$ but not in $L^{\frac{n}{n-\alpha}}\left(\mathbb{R}^{n}\right)$.
- If it were in $L^{\frac{n}{n-\alpha}}\left(\mathbb{R}^{n}\right)$, then Young's convolution inequality says that $\mathcal{I}_{\alpha}: L^{p}\left(\mathbb{R}^{n}\right) \rightarrow L^{q}\left(\mathbb{R}^{n}\right)$ where

$$
\frac{1}{q}=\frac{1}{p}+\frac{n-\alpha}{n}-1=\frac{1}{p}-\frac{\alpha}{n} \quad \text { whenever } 1 \leq p \leq n / \alpha .
$$

- Remarkably, this mapping property remains true when $1<p<n / \alpha$ even though $|x|^{-(n-\alpha)} \notin L^{\frac{n}{n-\alpha}}\left(\mathbb{R}^{n}\right)$.

Theorem
For $\alpha \in(0, n)$ and $1 \leq p<n / \alpha$, let

$$
\frac{1}{p^{*}}=\frac{1}{p}-\frac{\alpha}{n} .
$$

Then we have
(a) \mathcal{I}_{α} is of weak type $\left(1,1^{*}\right)$ on \mathbb{R}^{n};
(b) \mathcal{I}_{α} is of strong type $\left(p, p^{*}\right)$ on \mathbb{R}^{n} if $1<p<n / \alpha$.

- To prove this, let $1 \leq p<n / \alpha$.
- Note that for each $x \in \mathbb{R}^{n}$, we have

$$
\mathcal{I}_{\alpha} f(x)=c_{n, \alpha} \int_{y \in \mathbb{R}^{n}} f(x-y) \frac{1}{|y|^{n-\alpha}} d y
$$

- Since the kernel of \mathcal{I}_{α} is non-negative, we may assume that f is non-negative.
- We split the integral into two parts, depending on whether $|y| \leq R$ or $|y| \geq R$, where $R>0$ is to be chosen.

$$
\mathcal{I}_{\alpha} f(x)=c_{n, \alpha} \int_{y \in \mathbb{R}^{n}} f(x-y) \frac{1}{|y|^{n-\alpha}} d y=\int_{|y| \leq R}+\int_{|y|>R}
$$

- We estimate the first integral by the Hardy-Littlewood maximal function: indeed, since $\int_{|y| \leq R} \frac{1}{|y|^{n-\alpha}} d y \leq C_{\alpha, n} R^{\alpha}$, by a previous theorem, we have

$$
\int_{|y| \leq R} f(x-y) \frac{1}{|y|^{n-\alpha}} d y \leq C_{\alpha, n} R^{\alpha} M f(x)
$$

- We estimate the second integral by Hölder's inequality: indeed, since $p<n / \alpha$, we have $\chi_{|y|>R}|y|^{-(n-\alpha)} \in L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$, and hence

$$
\int_{|y|>R} f(x-y) \frac{1}{|y|^{n-\alpha}} d y \leq C_{\alpha, n, p} R^{\alpha-\frac{n}{p}}\|f\|_{L^{p}}
$$

- Thus

$$
\mathcal{I}_{\alpha} f(x) \lesssim_{\alpha, n, p} R^{\alpha} M f(x)+R^{\alpha-\frac{n}{p}}\|f\|_{L^{p}} .
$$

$$
\mathcal{I}_{\alpha} f(x) \lesssim{ }_{\alpha, n, p} R^{\alpha} M f(x)+R^{\alpha-\frac{n}{p}}\|f\|_{L^{p}}
$$

- We choose R so that the right hand side is almost minimized, say so that $R^{\alpha} M f(x)=R^{\alpha-\frac{n}{p}}\|f\|_{L^{p}}$. Then

$$
\mathcal{I}_{\alpha} f(x) \lesssim \alpha, n, p\|f\|_{L^{p}}^{\frac{\alpha p}{p}} M f(x)^{1-\frac{\alpha p}{n}}=\|f\|_{L^{p}}^{1-\frac{p}{p^{*}}} M f(x)^{\frac{p}{p^{*}}} .
$$

- This shows

$$
\left\|\mathcal{I}_{\alpha} f(x)\right\|_{L^{p^{*}}} \lesssim_{\alpha, n, p}\|f\|_{L^{p}}^{1-\frac{p}{p^{*}}}\|M f(x)\|_{L^{p}}^{\frac{p}{p^{*}}} \lesssim_{\alpha, n, p}\|f\|_{L^{p}}
$$

if $1<p<n / \alpha$, whereas for $p=1$ we have

$$
\begin{aligned}
&\left|\left\{x \in \mathbb{R}^{n}: \mathcal{I}_{\alpha} f(x)>\alpha\right\}\right| \\
& \leq\left|\left\{x \in \mathbb{R}^{n}: M f(x)>C_{\alpha, n} \alpha^{1^{*}}\|f\|_{L^{p}}^{-1^{*}+1}\right\}\right| \\
& \lesssim_{\alpha, n} \alpha^{-1^{*}}\|f\|_{L^{1}}^{1^{*}-1}\|f\|_{L^{1}}=\alpha^{-1^{*}}\|f\|_{L^{1}}^{1^{*}} .
\end{aligned}
$$

- Hence \mathcal{I}_{α} is strong type $\left(p, p^{*}\right)$ if $1<p<n / \alpha$, and weak type $\left(1,1^{*}\right)$, as desired.
- We remark that using the mapping properties of \mathcal{I}_{α} we just proved, and certain rearrangement arguments, one can establish the following generalized Young's convolution inequality on \mathbb{R}^{n} :

Theorem
Suppose $1<p, q, r<\infty$ and

$$
1+\frac{1}{r}=\frac{1}{p}+\frac{1}{q} .
$$

Then for any $f \in L^{p}\left(\mathbb{R}^{n}\right), g \in L^{q, \infty}\left(\mathbb{R}^{n}\right)$, we have

$$
\|f * g\|_{L^{r}\left(\mathbb{R}^{n}\right)} \lesssim_{p, q, r}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{q, \infty}\left(\mathbb{R}^{n}\right)}
$$

- Instead of giving this rearrangement argument here, we will give a proof of this theorem in Homework 8, as an application of a technique called real interpolation (which incidentally allows one to refine this inequality further).

