Topics in Harmonic Analysis Lecture 4: Singular integrals and Littlewood-Paley decompositions

Po-Lam Yung

The Chinese University of Hong Kong

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Introduction

- Last time we studied mapping properties of maximal functions and the Riesz potentials.
- ► The latter involves (non-negative) integral kernels in a weak-L^q space for some 1 < q < ∞, in lieu of the (strong) L^q.
- This time we study singular integrals, which are convolutions with certain (signed) integral kernels that belong to weak-L¹.
- Examples include the Hilbert transform and the Riesz transforms we have seen in Lecture 2; other multiplier operators will also be discussed.
- An important application will be given to the Littlewood-Paley decomposition of functions in L^p, 1
- Note that when p ≠ 2, L^p is not a Hilbert space, and hence the notion of orthogonality is not immediately present. The Littlewood-Paley decomposition often allows one to resurrect certain orthogonality in L^p spaces, and is hence very useful.

Outline

- Singular integral operators: an introduction
- The Calderón-Zygmund decomposition
- Mapping properties of singular integral operators

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

- Hörmander-Mikhlin multipliers
- A vector-valued version of the main theorem
- Littlewood-Paley decompositions

Singular integral operators: an introduction

From Young's convolution inequality, we know that if K ∈ L¹(ℝⁿ), then the convolution operator

$$f \mapsto f * K$$

is bounded on $L^{p}(\mathbb{R}^{n})$ for any $1 \leq p \leq \infty$.

- ▶ But many operators of interest in harmonic analysis involve convolution kernels that are not in L¹, that are only in L^{1,∞}.
- Examples include the Hilbert transform on \mathbb{R} :

$$Hf = f * \frac{1}{\pi} \text{p.v.} \frac{1}{x},$$

as well as the Riesz transforms on \mathbb{R}^n :

$$R_j f = f * \frac{\Gamma(\frac{n+1}{2})}{\pi^{\frac{n+1}{2}}} \text{p.v.} \frac{x_j}{|x|^{n+1}}.$$

- ► The Hilbert transform and the Riesz transforms will be prototypes of what we call singular integral operators on Rⁿ.
- We want to study mapping properties of such on $L^p(\mathbb{R}^n)$.
- Note that the convolution kernels of the earlier operators are not just in L^{1,∞}; they satisfy certain *cancellation conditions*. This is important for what follows.
- In particular, the kernels of both the Hilbert transform and the Riesz transforms takes on both positive and negative values (indeed the kernels are odd).
- Things fail if we replace these convolution kernels with their non-negative counterparts.
- ▶ It is known, for instance, that $f \mapsto f * \frac{1}{|x|}$ (appropriately defined) is not bounded on $L^p(\mathbb{R})$ for any $1 \le p \le \infty$.
- Before we turn to the mapping properties of singular integral operators, we need to establish the important *Calderón-Zygmund decomposition* of an L¹ function.

The Calderón-Zygmund decomposition

Theorem Let $f \in L^1(\mathbb{R}^n)$ and $\alpha > 0$. Then there exists a decomposition f = g + b, such that

 $\|g\|_{L^1} + \|b\|_{L^1} \le C_n \|f\|_{L^1},$ $\|g\|_{L^{\infty}} \le C_n \alpha,$

In addition, b can be further decomposed into $b = \sum_j b_j$, so that each b_j is supported on a cube Q_j (with $0 < |Q_j| < \infty$),

$$\int_{Q_j} b_j(y) dy = 0 \quad \text{for all } j,$$

the Q_j 's are essentially disjoint (in the sense that $|Q_j \cap Q_k| = 0$ whenever $j \neq k$), and that

$$\sum_{j} |Q_{j}| \leq \frac{C_{n}}{\alpha} \|f\|_{L^{1}}.$$

- To establish this Calderón-Zygmund decomposition, let f ∈ L¹(ℝⁿ) and α > 0.
- Tile ℝⁿ by essentially disjoint cubes of side lengths L, where L is chosen so large so that f_Q |f| < α for each cube Q in the collection (f_Q = 1/|Q| ∫_Q).
- Subdivide each cube into 2ⁿ cubes of equal sizes, and consider f_{Q'} |f| for each smaller cube Q' that arises. If this average is ≥ α, we collect Q' into a collection Q; if not, then we keep subdividing.
- We end up with a countable collection Q of essentially disjoint cubes so that for each Q ∈ Q, we have

$$f_Q|f| \ge \alpha$$
, whereas $f_{\tilde{Q}}|f| < \alpha$

where \tilde{Q} is the 'parent' of Q (the cube from which Q was obtained by subdivision).

 Thus we have obtained a countable collection Q of essentially disjoint cubes

$$lpha \leq \int_{\mathcal{Q}} |f| \leq 2^n lpha \quad \text{for all } \mathcal{Q} \in \mathcal{Q}.$$

• We also note that if $\Omega = \bigcup_{Q \in Q} Q$, then

$$|f(x)| \leq \alpha$$
 for a.e. $x \notin \Omega$

by the Lebesgue differentiation theorem.

▶ It suffices now to enumerate Q as $\{Q_1, Q_2, ...\}$, and define

$$g(x) = \begin{cases} f(x) & \text{if } x \notin \Omega \\ f_{Q_j} f(y) dy & \text{if } x \in Q_j \text{ for some } j, \end{cases}$$
$$b_j(x) = \begin{cases} f(x) - f_{Q_j} f(y) dy & \text{if } x \in Q_j \\ 0 & \text{otherwise.} \end{cases}$$

for each j, and $b = \sum_j b_j$.

$$g(x) = \begin{cases} f(x) & \text{if } x \notin \Omega \\ f_{Q_j} f(y) dy & \text{if } x \in Q_j \text{ for some } j, \end{cases}$$
$$b_j(x) = \begin{cases} f(x) - f_{Q_j} f(y) dy & \text{if } x \in Q_j \\ 0 & \text{otherwise.} \end{cases}$$

Indeed then

$$\|g\|_{L^{1}} \leq \|f\|_{L^{1}}, \quad \|g\|_{L^{\infty}} \leq 2^{n}\alpha,$$
$$\int_{Q_{j}} b_{j} = 0 \quad \text{and} \quad |Q_{j}| \leq \frac{1}{\alpha} \int_{Q_{j}} |f| \quad \text{for all } j,$$

from which all desired properties of g and b can be easily derived.

Alternatively, we apply the following Whitney decomposition theorem for open sets in Rⁿ:

Theorem

Let Ω be a proper open subset in \mathbb{R}^n . Then there exists a countable collection of Q of essentially disjoint cubes, such that

$$\Omega = \bigcup_{Q \in \mathcal{Q}} Q,$$

with

$$diam(Q) \leq dist(Q, \mathbb{R}^n \setminus \Omega) < 4diam(Q).$$

- The proof of Whitney's theorem is just one sentence: Indeed one just takes Q to be the collection of maximal dyadic cubes in ℝⁿ that satisfies diam(Q) ≤ dist(Q, ℝⁿ \ Ω).
- Given f ∈ L¹(ℝⁿ) and α > 0, we apply Whitney's theorem to the open set {x ∈ ℝⁿ: Mf(x) > α}.

 This yields a countable collection of Q of essentially disjoint cubes, for which

$$\sum_{j} |Q_j| = |\Omega| \le \frac{C_n}{\alpha} ||f||_{L^1},$$

and for which

$$\int_{Q_j} |f| \leq C_n lpha$$
 for every j

since one can bound $\int_{Q_j} |f|$ by $C_n \int_{\tilde{Q}_j} |f|$, where \tilde{Q}_j is a cube centered at some point in $\mathbb{R}^n \setminus \Omega$, of side length $\leq 5 \text{diam}(Q)$, that contains Q_j (such \tilde{Q}_j exists because of the distance comparison property in the Whitney decomposition theorem).

We can then construct g and b from Q as before, and obtain a Calderón-Zygmund decomposition of f at height α. Mapping properties of singular integral operators

Theorem Let $K \in S'(\mathbb{R}^n)$. Suppose $\widehat{K} \in L^{\infty}(\mathbb{R}^n)$ with $\|\widehat{K}\|_{L^{\infty}(\mathbb{R}^n)} \leq C$,

and that K agrees with a C^1 function K_0 away from the origin, with

$$|
abla \mathcal{K}_0(x)| \leq C|x|^{-(n+1)}$$
 for all $x \neq 0$.

Let $T : S(\mathbb{R}^n) \to S'(\mathbb{R}^n)$ be the convolution operator defined by Tf := f * K. Then for all $f \in S(\mathbb{R}^n)$, we have

$$|\{x \in \mathbb{R}^n \colon |Tf(x)| > lpha\}| \le rac{\mathcal{C}_n}{lpha} \|f\|_{L^1(\mathbb{R}^n)}$$
 for all $lpha > 0$, and

 $\|Tf\|_{L^p(\mathbb{R}^n)} \leq C_{n,p} \|f\|_{L^p(\mathbb{R}^n)}$ for all 1 .

Hence T can be extended as an operator of weak-type (1, 1), and of strong-type (p, p) for all 1 .

- The Hilbert transform and the Riesz transforms clearly fall under the scope of the previous theorem.
- ▶ Indeed \widehat{K} is a homogeneous function of degree 0 (hence L^{∞}), and $K_0(x)$ is just a multiple of $\frac{1}{x}$ and $\frac{x_j}{|x|^{n+1}}$ respectively.
- Such K₀ are smooth on Sⁿ⁻¹ and homogeneous of degree −n (so that ∇K₀(x) satisfies the desired bound).
- ► Hence the theorem shows that the Hilbert transform and the Riesz transforms extend as an operator of weak-type (1, 1), and as a bounded linear operators on L^p, for 1
- We note that the hypothesis on K_0 implies

$$\sup_{y\in\mathbb{R}^n}\int_{|x|\geq 2|y|}|K_0(x-y)-K_0(x)|dx\leq C;$$

indeed this is all we will use in the proof.

• We now turn to the proof of this theorem.

- The proof of the theorem consists of four parts:
- First we prove the case p = 2; then we prove that T is weak-type (1,1); then we prove that T is bounded on L^p when 1 finally we prove that T is bounded on L^p when 2
- The case p = 2 follows from Plancherel easily, since we assumed K
 ∈ L[∞]:

$$\|Tf\|_{L^2} = \|\widehat{f}\widehat{K}\|_{L^2} \le \|\widehat{K}\|_{L^{\infty}}\|\widehat{f}\|_{L^2} \le C\|f\|_{L^2}.$$

- ▶ Next, to prove T is weak-type (1,1), let $f \in L^1$, $\alpha > 0$.
- Perform a Calderón-Zygmund decomposition at height α:

$$f = g + b = g + \sum_j b_j$$

with b_j supported on Q_j for each j.

We estimate

$$|\{x \in \mathbb{R}^n \colon |Tf(x)| > \alpha\}|$$

$$\leq |\{x \in \mathbb{R}^n \colon |Tg(x)| > \alpha/2\}| + |\{x \in \mathbb{R}^n \colon |Tb(x)| > \alpha/2\}|.$$

• We have both $g \in L^1$ and $g \in L^\infty$, so $g \in L^2$ with

$$\|g\|_{L^2}^2 \leq C\alpha \|f\|_{L^1}.$$

This gives

$$|\{x \in \mathbb{R}^n \colon |Tg(x)| > \alpha/2\}| \leq \frac{4}{\alpha^2} ||Tg||_{L^2}^2 \leq \frac{C}{\alpha} ||f||_{L^1}.$$

Also, if Q_j^{*} is the cube with same center as Q_j but 2√n times the side length, then Ω^{*} := ⋃_j Q_j^{*} satisfies

$$|\Omega^*| \leq \sum_j |Q_j^*| \leq (2\sqrt{n})^n \sum_j |Q_j| \leq \frac{C_n}{\alpha} \|f\|_{L^1}.$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

Thus we are left to show that

$$|\{x \in \mathbb{R}^n \setminus \Omega^* : |Tb(x)| > \alpha/2\}| \le \frac{C}{\alpha} ||f||_{L^1}.$$

We do so by showing that

$$\| \mathcal{T} b_j \|_{L^1(\mathbb{R}^n \setminus Q_j^*)} \leq C \| b_j \|_{L^1}$$
 for all $j,$

so that

$$\|Tb\|_{L^1(\mathbb{R}^n\setminus\Omega^*)} \leq C\sum_j \|Tb_j\|_{L^1(\mathbb{R}^n\setminus Q_j^*)} \leq C\sum_j \|b_j\|_{L^1} \leq C \|f\|_{L^1},$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへで

and the desired inequality follows by Chebyshev's inequality.

To prove that

$$\|Tb_j\|_{L^1(\mathbb{R}^n \setminus Q_j^*)} \le C \|b_j\|_{L^1} \quad \text{for all } j,$$

recall $\int_{Q_j} b_j = 0$. Thus for $x \notin Q_j^*$, we have
 $Tb_j(x) = \int_{y \in Q_j} K_0(x - y)b_j(y)dy$
 $= \int_{y \in Q_j} [K_0((x - y_j) - (y - y_j)) - K_0(x - y_j)] b_j(y)dy.$

where y_j is the center of Q_j . Note that $|x - y_j| \ge 2|y - y_j|$ if $x \notin Q_j^*$ and $y \in Q_j$. Also recall

$$\int_{|x|\geq 2|y|} |K_0(x-y)-K_0(x)|dx \leq C$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

for all $y \in \mathbb{R}^n$.

This shows

$$\begin{split} &\int_{\mathbb{R}^n \setminus Q_j^*} |Tb_j(x)| dx \\ &\leq \int_{y \in Q_j} \int_{x \in \mathbb{R}^n \setminus Q_j^*} |\mathcal{K}_0((x - y_j) - (y - y_j)) - \mathcal{K}_0(x - y_j)| |b_j(y)| dx dy \\ &\leq \int_{y \in Q_j} C|b_j(y)| dy \\ &\leq C \|b_j\|_{L^1} \end{split}$$

as desired, and finishes the proof that T is of weak-type (1, 1).

► To prove that T is strong-type (p, p) for 1

• More precisely, let $f \in L^p(\mathbb{R}^n)$, $1 . For <math>\alpha > 0$, write

$$f = f\chi_{|f| \le \alpha} + f\chi_{|f| > \alpha} = f_{\alpha} + f^{\alpha},$$

so that $f_{\alpha} \in L^2$, $f^{\alpha} \in L^1$.

We have

$$\|Tf\|_{L^{p}}^{p} = \int_{0}^{\infty} p\alpha^{p-1} |\{x \in \mathbb{R}^{n} \colon |Tf(x)| > \alpha\}| d\alpha$$

$$\leq \int_{0}^{\infty} p\alpha^{p-1} |\{x \in \mathbb{R}^{n} \colon |Tf_{\alpha}(x)| > \alpha/2\}| d\alpha$$

$$+ \int_{0}^{\infty} p\alpha^{p-1} |\{x \in \mathbb{R}^{n} \colon |Tf^{\alpha}(x)| > \alpha/2\}| d\alpha$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

But

$$|\{x \in \mathbb{R}^n \colon |Tf_\alpha(x)| > \alpha/2\}| \leq \frac{4}{\alpha^2} \|Tf_\alpha\|_{L^2}^2 \leq \frac{C}{\alpha^2} \|f_\alpha\|_{L^2}^2,$$

so

$$\int_0^\infty p\alpha^{p-1} |\{x \in \mathbb{R}^n \colon |Tf_\alpha(x)| > \alpha/2\}| d\alpha$$
$$\leq C \int_0^\infty p\alpha^{p-1}\alpha^{-2} ||f_\alpha||_{L^2}^2 d\alpha$$
$$\leq C \int_{\mathbb{R}^n} |f(x)|^2 \int_{|f(x)|}^\infty p\alpha^{p-3} d\alpha$$
$$= C_p ||f||_{L^p}^p.$$

(We used p < 2 in the last line.)

$$|\{x \in \mathbb{R}^n \colon |Tf^{\alpha}(x)| > \alpha/2\}| \leq \frac{C_n}{\alpha} ||f^{\alpha}||_{L^1},$$

SO

$$\int_0^\infty p\alpha^{p-1} |\{x \in \mathbb{R}^n \colon |Tf^\alpha(x)| > \alpha/2\}| d\alpha$$
$$\leq C_n \int_0^\infty p\alpha^{p-1}\alpha^{-1} ||f^\alpha||_{L^1} d\alpha$$
$$\leq C_n \int_{\mathbb{R}^n} |f(x)| \int_0^{|f(x)|} p\alpha^{p-2} d\alpha$$
$$= C_{n,p} ||f||_{L^p}^p.$$

(We used p > 1 in the last line.)

The above shows

 $\|Tf\|_{L^p} \leq C_{n,p} \|f\|_{L^p}$ whenever 1 ,

i.e. T is strong-type (p, p) for 1 .

Finally we need to show that T is strong-type (p, p) for 2

- This follows by duality.
- Indeed the adjoint T* of T also satisfies the same conditions as T.
- Hence T^* is of strong type (p, p) for 1 .
- ▶ It follows that T is of strong type (p, p) for 2 .
- This finishes the proof of the theorem.
- We formulate a variable coefficient extension of the theorem in the next slide. It allows for operators that are not convolutions (that do not commute with translations).

Theorem

Let T be a bounded linear operator on $L^2(\mathbb{R}^n)$. Suppose there exists a locally L^{∞} function K_0 on $\{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : x \neq y\}$, such that

$$Tf(x) = \int_{\mathbb{R}^n} f(y) K_0(x, y) dy$$

for every $f \in L^1(\mathbb{R}^n)$ with compact support, and a.e. $x \notin supp(f)$. Suppose in addition that

$$\sup_{(y,y_0)\in\mathbb{R}^n\times\mathbb{R}^n}\int_{|x-y_0|\geq 2|y-y_0|}|K_0(x,y)-K_0(x,y_0)|dx\leq C.$$

Then T extends as a linear operator of weak-type (1,1), and of strong-type (p,p) for all 1 .

- The proof is almost the same as before, which we omit.
- In Lecture 7 we will give some general conditions under which such *T* would be bounded on L²(ℝⁿ).

Hörmander-Mikhlin multipliers

- We return to operators that commute with translations, and consider multiplier operators.
- ► Recall that if *m* is a bounded function on ℝⁿ, then the operator

$$f\mapsto T_mf:=\mathcal{F}^{-1}(m\widehat{f})$$

is bounded and linear on $L^2(\mathbb{R}^n)$.

 Such operators are called multiplier operators, and can be written as

$$T_m f = f * K$$

whenever $f \in \mathcal{S}(\mathbb{R}^n)$, where $K := \mathcal{F}^{-1}m$ is the inverse Fourier transform of the tempered distribution m.

We seek conditions on m so that T_m extends as a bounded linear operator on L^p(ℝⁿ), for 1

Theorem (Hörmander-Mikhlin)

Suppose *m* is a C^{∞} function on $\mathbb{R}^n \setminus \{0\}$, and that

 $|\partial_{\xi}^{lpha} m(\xi)| \lesssim_{lpha} |\xi|^{-|lpha|}$ for all $\xi
eq 0$

and all multiindices α . Then T_m extends as a linear operator of weak-type (1,1), and of strong-type (p,p) for all 1 .

- ► This applies, for instance, when m is homogeneous of degree 0 and smooth on the unit sphere Sⁿ⁻¹.
- In particular, this shows again that the Hilbert transform and the Riesz transforms are of weak-type (1, 1), and of strong-type (p, p) for all 1
- Theorem also applies to imaginary powers of the Laplacian: $(-\Delta)^{it}$ is the multiplier operator with multiplier $(4\pi^2|\xi|^2)^{it}$, where the principal branch of the logarithm is taken $(t \in \mathbb{R})$.
- Various refinements of this theorem are given in Homework 4.

- The previous theorem deals with multipliers that are singular only at one point (the origin). Examples of multipliers with a bigger set of singularities will be considered in Lecture 11.
- The previous theorem also fails to deal with multipliers m(ξ) that oscillates rapidly as |ξ| → ∞. Examples of such rapidly oscillating multipliers include e^{i|ξ|^a} when a > 0; such will be considered in Homework 9.
- ► The proof of the Hörmander-Mikhlin multiplier theorem consists of estimation of the convolution kernel K := F⁻¹m.
- In particular, we show that K agrees with a C[∞] function K₀ away from the origin, and that

$$|\partial_x^lpha \mathcal{K}_0(x)| \lesssim_lpha rac{1}{|x|^{n+|lpha|}} \quad ext{for all } x
eq 0$$

and all multiindices α , so that our previous theorem applies.

- Let ψ(ξ) be a smooth function with compact support on the unit ball B(0,2), with ψ(ξ) ≡ 1 on B(0,1).
- ► Let $\varphi(\xi) = \psi(\xi) \psi(2\xi)$ so that ψ is supported on the annulus $\{1/2 \le |\xi| \le 2\}$, and

$$\sum_{j\in\mathbb{Z}} arphi(2^{-j}\xi) = 1 \quad ext{for every } \xi
eq 0.$$

Then

$$\sum_{|j|\leq J}\varphi(2^{-j}\xi)m(\xi)\to m(\xi)$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

in the topology of $\mathcal{S}'(\mathbb{R}^n)$, as $J \to +\infty$.

For $j \in \mathbb{Z}$, let

$$\mathcal{K}^{(j)} = \mathcal{F}^{-1}[\varphi(2^{-j}\xi)m(\xi)] \in \mathcal{S}(\mathbb{R}^n)$$

so that $K := \mathcal{F}^{-1}m$ is the limit of $\sum_{|j| \le J} K^{(j)}(x)$ in the

topology of $\mathcal{S}'(\mathbb{R}^n)$ as $J \to +\infty$.

But it is easy to see that

$$|\partial_x^{\alpha} \mathcal{K}^{(j)}(x)| \lesssim_{\alpha, N} 2^{j(n+|\alpha|)} \min\{1, 2^{-jN}|x|^{-N}\}$$

for any multiindex α and any positive integer N.

• Thus there exists a C^{∞} function $K_0(x)$ on $\mathbb{R}^n \setminus \{0\}$, so that

$$\sum_{|j| \leq J} K^{(j)}(x)$$
 converges uniformly to $K_0(x)$

on any compact subsets of $\mathbb{R}^n \setminus \{0\}$ as $J \to \infty$.

- ► This shows K := F⁻¹m agrees with this C[∞] function K₀ away from the origin.
- Furthermore, the above estimates for ∂^α_xK^(j)(x) also readily implies that

$$|\partial_x^{lpha} \mathcal{K}_0(x)| \lesssim_lpha rac{1}{|x|^{n+|lpha|}} ext{for all } x
eq 0$$

< □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > < □ > <

and all multiindices α .

Hence our previous theorem applies, and this concludes the proof of the Hörmander-Mikhlin multiplier theorem.

A vector-valued version of the main theorem

- We turn to a version of the singular integral theorem for vector-valued operators.
- Let B_1 , B_2 be Banach spaces.
- ▶ Let End(B₁, B₂) be the space of continuous endomorphisms from B₁ to B₂.
- Let $L^{p}(\mathbb{R}^{n}, B_{j})$ be the space of L^{p} mappings from \mathbb{R}^{n} into B_{j} .

- Write $(\mathbb{R}^n \times \mathbb{R}^n)^*$ for the set $\{(x, y) \in \mathbb{R}^n \times \mathbb{R}^n : x \neq y\}$.
- Then we have the following theorem.

Theorem

Let T be a bounded linear operator from $L^q(\mathbb{R}^n, B_1)$ to $L^q(\mathbb{R}^n, B_2)$ for some $q \in (1, \infty]$. Suppose there exists a function

$$K_0(x,y) \in L^{\infty}_{loc}((\mathbb{R}^n \times \mathbb{R}^n)^*, End(B_1, B_2)),$$

such that

$$Tf(x) = \int_{\mathbb{R}^n} K_0(x, y) f(y) dy$$

for every $f \in L^1(\mathbb{R}^n, B_1)$ with compact support, and for a.e. $x \notin supp(f)$. Suppose in addition that

 $\sup_{(y,y_0)\in\mathbb{R}^n\times\mathbb{R}^n}\int_{|x-y_0|\geq 2|y-y_0|}\|K_0(x,y)-K_0(x,y_0)\|_{End(B_1,B_2)}dx\leq C.$

Then T extends as a continuous linear operator from $L^1(\mathbb{R}^n, B_1)$ to $L^{1,\infty}(\mathbb{R}^n, B_2)$, and a continuous linear operator from $L^p(\mathbb{R}^n, B_1)$ to $L^p(\mathbb{R}^n, B_2)$ for all 1 .

- The proof is almost the same as before, which we omit.
- Note that we do not claim mapping properties on L^p for p > q, because duality no longer works when say q < 2.</p>
- We use this vector-valued version with B₁ = C and B₂ = ℓ²(Z, C) (or the other way round) to derive a Littlewood-Paley inequality.
- First we introduce the Littlewood-Paley projections in the next slide.

Littlewood-Paley decompositions

- As before, let ψ(ξ) be a smooth function with compact support on the unit ball B(0,2), with ψ(ξ) ≡ 1 on B(0,1).
- Let φ(ξ) = ψ(ξ) − ψ(2ξ) so that ψ is supported on the annulus {1/2 ≤ |ξ| ≤ 2}, and

$$\psi(\xi)+\sum_{j=1}^{\infty} arphi(2^{-j}\xi)=1 \quad ext{for every } \xi\in \mathbb{R}^n.$$

▶ For $f \in \mathcal{S}'(\mathbb{R}^n)$, let

$$P_0f = \mathcal{F}^{-1}[\psi(\xi)\widehat{f}(\xi)], \quad ext{and}$$

 $P_jf = \mathcal{F}^{-1}[arphi(2^{-j}\xi)\widehat{f}(\xi)] \quad ext{for } j \ge 1$

▶ We think of $P_j f$ as the localization of f to frequency $\simeq 2^j$ if $j \ge 1$, and to frequency $\lesssim 1$ if j = 0.

.

- ▶ By Plancherel, it is easy to see that if $f \in L^2(\mathbb{R}^n)$, then $\sum_{j=0}^{N} P_j f$ converges to f in $L^2(\mathbb{R}^n)$ as $N \to \infty$.
- ▶ In addition, if $f \in \mathcal{S}(\mathbb{R}^n)$, then $\sum_{j=0}^{N} P_j f$ converges to f in the topology of $\mathcal{S}(\mathbb{R}^n)$ as $N \to \infty$.
- ▶ As a result, if $f \in S'(\mathbb{R}^n)$, then $\sum_{j=0}^N P_j f$ converges to f in the topology of $S'(\mathbb{R}^n)$ as $N \to \infty$.
- ▶ This applies, in particular, for every $f \in L^p(\mathbb{R}^n)$, $1 \le p \le \infty$.
- Note also that if $f \in \mathcal{S}'(\mathbb{R}^n)$, then

$$\sum_{j=0}^{N} P_j f = f \ast k_{2^{-N}}$$

where $k_{\varepsilon}(x) := \varepsilon^{-n} k(\varepsilon^{-1}x)$, and $k := \mathcal{F}^{-1} \psi$.

- ▶ Thus $\sum_{j=0}^{N} P_j f(x)$ converges pointwisely to f(x) for a.e. $x \in \mathbb{R}^n$, whenever $f \in L^p(\mathbb{R}^n)$ with $1 \le p \le \infty$.
- ▶ If in addition $1 \le p < \infty$, then Question 3 from Homework 3 then shows that for every $f \in L^p(\mathbb{R}^n)$, $\sum_{j=0}^N P_j f$ converges to f in $L^p(\mathbb{R}^n)$ as $N \to \infty$.

Thus for 1 ≤ p < ∞, one way of estimating the L^p norm of f ∈ L^p(ℝⁿ) is to estimate

$$\sup_{N\geq 1} \left\| \sum_{j=0}^{N} P_j f \right\|_{L^p(\mathbb{R}^n)}$$

 Via the triangle inequality, we can control the above expression if we can bound

$$\left\|\sum_{j=0}^{N}|P_{j}f|\right\|_{L^{p}(\mathbb{R}^{n})}$$

uniformly in N, which can be done if we can bound

$$N^{1/2} \left\| \left(\sum_{j=0}^{N} |P_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)}$$

uniformly in N.

► It turns out that one can do better, when 1 intuitively this is because there is certain orthogonality between the different P_jf's. (In particular, the following Theorem is easy to prove if p = 2, by Plancherel.)

```
Theorem (Littlewood-Paley)

Suppose 1 .

(a) For every <math>f \in L^p(\mathbb{R}^n), we have

\| (\infty )^{1/2} \|
```

$$\|f\|_{L^p(\mathbb{R}^n)} \simeq \left\| \left(\sum_{j=0}^{\infty} |P_j f|^2 \right) \right\|_{L^p(\mathbb{R}^n)}$$

(b) Furthermore, if $f \in S'(\mathbb{R}^n)$ and the right hand side above is finite, then $f \in L^p(\mathbb{R}^n)$ (hence the above comparison holds).

Let's first prove that

$$\left\| \left(\sum_{j=0}^{\infty} |P_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} \lesssim \|f\|_{L^p(\mathbb{R}^n)}$$

when $f \in L^p(\mathbb{R}^n)$ and 1 .(This is half of part (a) of the Theorem.)

Note that the term corresponding to j = 0 can be easily estimated: indeed

$$\|P_0f\|_{L^p(\mathbb{R}^n)} \leq C\|f\|_{L^p(\mathbb{R}^n)}$$

by Young's convolution inequality.

- Thus we may replace $\sum_{j=0}^{\infty}$ by $\sum_{j=1}^{\infty}$.
- The crux of the matter is captured in the following theorem:

Theorem' Let $\Phi \in S(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \Phi = 0$. For $j \in \mathbb{Z}$ and $f \in S'(\mathbb{R}^n)$, let $\Delta_j f(x) = f * \Phi_j(x)$ where $\Phi_j(x) = 2^{jn} \Phi(2^j x)$.

Let $1 . Then for all <math>f \in L^p(\mathbb{R}^n)$, $\|\Delta_j f\|_{\ell^2(\mathbb{Z})} \in L^p(\mathbb{R}^n)$, and

$$\left\| \left\| \Delta_{j} f \right\|_{\ell^{2}(\mathbb{Z})} \right\|_{L^{p}(\mathbb{R}^{n})} \lesssim_{n,p} \| f \|_{L^{p}(\mathbb{R}^{n})}.$$

- By monotone convergence, density and Fatou's lemma, we may assume f ∈ S(ℝⁿ).
- ▶ We will treat the cases $1 and <math>2 \le p < \infty$ separately.
- For 1 1</sub> = C, B₂ = ℓ²(Z, C) = the space of all complex-valued ℓ² sequences (a_j)_{j∈Z}.
- ▶ We apply the vector-valued singular integral theorem.

- ► Let $K(x) = {\Phi_j(x)}_{j \in \mathbb{Z}} \in \text{End}(B_1, B_2) \text{ and } Tf(x) = f * K(x)$ so that $Tf(x) = {\Delta_j f(x)}_{j \in \mathbb{Z}}$.
- ► One checks, via Plancherel, that T defines a bounded linear map from L²(ℝⁿ, B₁) to L²(ℝⁿ, B₂); also

$$\|\partial_x \mathcal{K}(x)\|_{\operatorname{End}(B_1,B_2)} = \left(\sum_{j\in\mathbb{Z}} |\partial_x \Phi_j(x)|^2\right)^{1/2}$$

is bounded by $C|x|^{-(n+1)}$ whenever $x \neq 0$.

Thus the vector-valued singular integral theorem shows that

$$\left\| \left(\sum_{j \in \mathbb{Z}} |\Delta_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} \lesssim_{n,p} \|f\|_{L^p(\mathbb{R}^n)}$$

whenever $1 and <math>f \in \mathcal{S}(\mathbb{R}^n)$, as desired.

For $2 \le p < \infty$, we observe that by duality, we just need to prove that

$$\left\|\sum_{j\in\mathbb{Z}}\Delta_j g_j\right\|_{L^{p'}(\mathbb{R}^n)}\lesssim_{n,p}\left\|\|g_j\|_{\ell^2(\mathbb{Z})}\right\|_{L^{p'}(\mathbb{R}^n)}$$

for all sequences of Schwartz functions $\{g_i\}_{i\in\mathbb{Z}}$, where only finitely many g_i 's are non-zero.

▶ This is because then for every $f \in L^p(\mathbb{R}^n)$ and all such $\{g_i\}$'s, we have

$$\begin{split} \int_{\mathbb{R}^n} \sum_{j \in \mathbb{Z}} \Delta_j f(x) g_j(x) dx &= \int_{\mathbb{R}^n} f(x) \sum_{j \in \mathbb{Z}} \Delta_j g_j(x) dx \\ &\lesssim \|f\|_{L^p(\mathbb{R}^n)} \left\| \sum_{j \in \mathbb{Z}} \Delta_j g_j \right\|_{L^{p'}(\mathbb{R}^n)} \\ &\lesssim_{n,p} \|f\|_{L^p(\mathbb{R}^n)} \left\| \|g_j\|_{\ell^2(\mathbb{Z})} \|_{L^{p'}(\mathbb{R}^n)} \right. \end{split}$$

The density of such $\{g_i\}$'s in $L^{p'}(\ell^2)$ gives the desired conclusion.

$$\left\|\sum_{j\in\mathbb{Z}}\Delta_j g_j\right\|_{L^{p'}(\mathbb{R}^n)}\lesssim_{n,p}\left\|\|g_j\|_{\ell^2(\mathbb{Z})}\right\|_{L^{p'}(\mathbb{R}^n)}$$

- ► To prove this, this time we let B₁ = ℓ²(Z, C), B₂ = C, and apply the vector-valued singular integral theorem.
- Indeed, let K(x) = ∑_{j∈Z} Φ_j(x)e^{*}_j ∈ End(B₁, B₂) where {e_j} is the coordinate basis of B₁ = ℓ², and {e^{*}_j} is the dual basis. Let

$$\widetilde{T}g(x) = \int_{y \in \mathbb{R}^n} K(y)g(x-y)dy$$

if $g = \{g_j\}$, so that

$$ilde{\mathcal{T}}g(x) = \sum_{j\in\mathbb{Z}}\Delta_j g_j.$$

One checks, via Plancherel, that T̃ defines a bounded linear map from L²(ℝⁿ, B₁) to L²(ℝⁿ, B₂); also

$$\|\partial_x \mathcal{K}(x)\|_{\mathsf{End}(B_1,B_2)} = \left(\sum_{j\in\mathbb{Z}} |\partial_x \Phi_j(x)|^2\right)^{1/2}$$

is bounded by $C|x|^{-(n+1)}$ whenever $x \neq 0$.

Thus the vector-valued singular integral theorem says that

$$\left\|\sum_{j\in\mathbb{Z}}\Delta_j g_j\right\|_{L^{p'}(\mathbb{R}^n)}\lesssim_{n,p}\left\|\|g_j\|_{\ell^2(\mathbb{Z})}\right\|_{L^{p'}(\mathbb{R}^n)}$$

for $1 < p' \leq 2$, i.e. for $2 \leq p < \infty$, as desired.

- Theorem' can also be proved using Klintchine's inequality, without using vector-valued singular integrals.
- For $j \ge 1$, define the *j*-th Rademacher function r_j by

$$r_j(t) = egin{cases} +1 & ext{if } t \in [k2^{-j}, (k+1)2^{-j}) ext{ for some odd integer } k \ -1 & ext{if } t \in [k2^{-j}, (k+1)2^{-j}) ext{ for some even integer } k \end{cases}$$

Theorem (Klintchine)

For every $p \in (0, \infty)$, there exist constants A_p and B_p that depend only on p (but not on N), such that for every sequence of complex numbers $\{a_j\}_{1 \le j \le N}$, we have

$$A_{p}\left(\sum_{j=1}^{N}|a_{j}|^{2}\right)^{p/2} \leq \int_{0}^{1}\left|\sum_{j=1}^{N}a_{j}r_{j}(t)\right|^{p}dt \leq B_{p}\left(\sum_{j=1}^{N}|a_{j}|^{2}\right)^{p/2}$$

► A more general version is given in Homework 4.

- We are now ready to give a second proof of Theorem'.
- Let $\{\varepsilon_j(t)\}_{j\in\mathbb{Z}}$ be an enumeration of $\{r_j(t)\}_{j\geq 1}$.

Proposition

Let $\Phi \in \mathcal{S}(\mathbb{R}^n)$ with $\int_{\mathbb{R}^n} \Phi = 0$. For $j \in \mathbb{Z}$ and $f \in \mathcal{S}(\mathbb{R}^n)$, let

$$\Delta_j f(x) = f * \Phi_j(x)$$
 where $\Phi_j(x) = 2^{jn} \Phi(2^j x)$.

Then for every $1 and <math>f \in \mathcal{S}(\mathbb{R}^n)$, we have

$$\sup_{N\in\mathbb{N}}\sup_{t\in[0,1]}\left\|\sum_{|j|\leq N}\varepsilon_j(t)\Delta_j f\right\|_{L^p(\mathbb{R}^n)}\lesssim_{n,p}\|f\|_{L^p(\mathbb{R}^n)}.$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

If the proposition were true, then applying Klintchine, we have

$$\sup_{N\in\mathbb{N}} \left\| \left(\sum_{|j|\leq N} |\Delta_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} \lesssim_{n,p} \|f\|_{L^p(\mathbb{R}^n)}$$

for $1 and <math>f \in \mathcal{S}(\mathbb{R}^n)$.

► The same holds for f ∈ L^p(ℝⁿ) by density, which gives our desired conclusion.

▶ To prove the proposition, for every $t \in [0, 1]$, and every $N \in \mathbb{N}$, let

$$\mathcal{K}_{N,t}(x) = \sum_{|j| \leq N} \varepsilon_j(t) \Phi_j(x)$$

so that

$$\sum_{|j|\leq N} \varepsilon_j(t) \Delta_j f = f * K_{N,t}.$$

- ► One checks that K_{N,t} is a Calderon-Zygmund kernel uniformly in N and t.
- The (scalar-valued) singular integral theorem then gives the claim of the proposition.

► To recap, we proved half of part (a) of the Littlewood-Paley theorem. It says that for every 1 p</sup>(ℝⁿ), we have

$$\left\| \left(\sum_{j=0}^{\infty} |P_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} \lesssim_{n,p} \|f\|_{L^p(\mathbb{R}^n)}.$$

▶ We remark that the smoothness of the multipliers for P_j is important here; for instance, if we defined P₀ instead by

$$P_0f = \mathcal{F}^{-1}(\chi_{B(0,1)}(\xi)\widehat{f}(\xi)),$$

where $\chi_{B(0,1)}$ is the characteristic function of the unit ball, then P_0 is not bounded on $L^p(\mathbb{R}^n)$ whenever $n \ge 2$ and $p \ne 2$.

► The latter is the famous ball multiplier theorem of Fefferman, to which we will return in Lecture 11.

- We still need to prove the other half of part (a), and also part (b), of the Littlewood-Paley theorem.
- For that we use duality.
- For f ∈ S'(ℝⁿ), let P_jf be the Littlewood-Paley projection of f defined earlier, for j ≥ 0.
- We need to prove the following: If $f \in \mathcal{S}'(\mathbb{R}^n)$ and

$$\left\| \left(\sum_{j=0}^{\infty} |P_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} < \infty$$

for some 1 , then <math>f can be identified with an L^p function on \mathbb{R}^n , and that $\|f\|_{L^p(\mathbb{R}^n)}$ is controlled by the above quantity.

Indeed, it suffices to show that

$$\langle f,g\rangle \lesssim_{n,p} \left\| \left(\sum_{j=0}^{\infty} |P_j f|^2\right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} \|g\|_{L^{p'}(\mathbb{R}^n)}$$

for all $g \in \mathcal{S}(\mathbb{R}^n)$.

- ► To do so, let \$\tilde{\psi}\$ be a smooth function with compact support on the unit ball B(0,4), with \$\tilde{\psi}\$ \equiv 1 on the support of \$\psi\$.
- Let φ̃ be a smooth function with compact support on the annulus {1/4 ≤ |ξ| ≤ 4}, with φ̃ ≡ 1 on the support of φ.
- ▶ For $g \in \mathcal{S}(\mathbb{R}^n)$, let

$$ilde{P}_0 g = \mathcal{F}^{-1}[ilde{\psi}(\xi)\widehat{g}(\xi)], \quad ext{and}$$

 $ilde{P}_j g = \mathcal{F}^{-1}[ilde{\varphi}(2^{-j}\xi)\widehat{g}(\xi)] \quad ext{for } j \ge 1$

▶ Note that if $j \ge 1$, then $\tilde{P}_j g = g * \tilde{\Phi}_{2^{-j}}$ for some Schwartz function $\tilde{\Phi}$ with $\int_{\mathbb{R}^n} \tilde{\Phi} = 0$, so the forward Littlewood-Paley inequality applies. Also $P_j = P_j \tilde{P}_j$.

• Hence for $g \in \mathcal{S}(\mathbb{R}^n)$, we have

$$\begin{split} \langle f, g \rangle &= \lim_{N \to \infty} \sum_{j=0}^{N} \langle f, P_j g \rangle = \lim_{N \to \infty} \sum_{j=0}^{N} \langle f, P_j \tilde{P}_j g \rangle \\ &= \lim_{N \to \infty} \sum_{j=0}^{N} \langle P_j f, \tilde{P}_j g \rangle \\ &\leq \left\| \left(\sum_{j=0}^{\infty} |P_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} \left\| \left(\sum_{j=0}^{\infty} |\tilde{P}_j g|^2 \right)^{1/2} \right\|_{L^{p'}(\mathbb{R}^n)} \\ &\lesssim_{n,p} \left\| \left(\sum_{j=0}^{\infty} |P_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} \|g\|_{L^{p'}(\mathbb{R}^n)}. \end{split}$$

This concludes the proof of the other half of part (a), and also part (b), of the Littlewood-Paley theorem we stated earlier.

• To close this lecture, we remark that if $f \in \mathcal{S}'(\mathbb{R}^n)$ and

$$\left\| \left(\sum_{j \in \mathbb{Z}} |\Delta_j f|^2 \right)^{1/2} \right\|_{L^p(\mathbb{R}^n)} < \infty$$

for some 1 , it does NOT necessarily follow that <math>f can be identified with an L^p function on \mathbb{R}^n . This is because Δ_j does not capture the Fourier transform of f at 0.

Nonetheless, if 1 f ∈ L^p(ℝⁿ), then we do have

$$\|f\|_{L^p(\mathbb{R}^n)}\lesssim \left\|\left(\sum_{j\in\mathbb{Z}}|\Delta_j f|^2
ight)^{1/2}
ight\|_{L^p(\mathbb{R}^n)}$$

This is because for g ∈ S(ℝⁿ), we do have ∑_{|j|≤N} Δ_jg → g in L^{p'}(ℝⁿ) as N → ∞, when 1 < p' < ∞, so that we can run our previous argument. c.f. Homework 4 for the former fact.