Topics in Harmonic Analysis
 Lecture 4: Singular integrals and Littlewood-Paley decompositions

Po-Lam Yung

The Chinese University of Hong Kong

Introduction

- Last time we studied mapping properties of maximal functions and the Riesz potentials.
- The latter involves (non-negative) integral kernels in a weak- L^{q} space for some $1<q<\infty$, in lieu of the (strong) L^{q}.
- This time we study singular integrals, which are convolutions with certain (signed) integral kernels that belong to weak- L^{1}.
- Examples include the Hilbert transform and the Riesz transforms we have seen in Lecture 2; other multiplier operators will also be discussed.
- An important application will be given to the Littlewood-Paley decomposition of functions in $L^{p}, 1<p<\infty$.
- Note that when $p \neq 2, L^{p}$ is not a Hilbert space, and hence the notion of orthogonality is not immediately present. The Littlewood-Paley decomposition often allows one to resurrect certain orthogonality in L^{p} spaces, and is hence very useful.

Outline

- Singular integral operators: an introduction
- The Calderón-Zygmund decomposition
- Mapping properties of singular integral operators
- Hörmander-Mikhlin multipliers
- A vector-valued version of the main theorem
- Littlewood-Paley decompositions

Singular integral operators: an introduction

- From Young's convolution inequality, we know that if $K \in L^{1}\left(\mathbb{R}^{n}\right)$, then the convolution operator

$$
f \mapsto f * K
$$

is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for any $1 \leq p \leq \infty$.

- But many operators of interest in harmonic analysis involve convolution kernels that are not in L^{1}, that are only in $L^{1, \infty}$.
- Examples include the Hilbert transform on \mathbb{R} :

$$
H f=f * \frac{1}{\pi} \text { p.v. } \frac{1}{x}
$$

as well as the Riesz transforms on \mathbb{R}^{n} :

$$
R_{j} f=f * \frac{\Gamma\left(\frac{n+1}{2}\right)}{\pi^{\frac{n+1}{2}}} \text { p.v. } \frac{x_{j}}{|x|^{n+1}} .
$$

- The Hilbert transform and the Riesz transforms will be prototypes of what we call singular integral operators on \mathbb{R}^{n}.
- We want to study mapping properties of such on $L^{p}\left(\mathbb{R}^{n}\right)$.
- Note that the convolution kernels of the earlier operators are not just in $L^{1, \infty}$; they satisfy certain cancellation conditions. This is important for what follows.
- In particular, the kernels of both the Hilbert transform and the Riesz transforms takes on both positive and negative values (indeed the kernels are odd).
- Things fail if we replace these convolution kernels with their non-negative counterparts.
- It is known, for instance, that $f \mapsto f * \frac{1}{|x|}$ (appropriately defined) is not bounded on $L^{p}(\mathbb{R})$ for any $1 \leq p \leq \infty$.
- Before we turn to the mapping properties of singular integral operators, we need to establish the important Calderón-Zygmund decomposition of an L^{1} function.

The Calderón-Zygmund decomposition

Theorem
Let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$. Then there exists a decomposition $f=g+b$, such that

$$
\begin{gathered}
\|g\|_{L^{1}}+\|b\|_{L^{1}} \leq C_{n}\|f\|_{L^{1}} \\
\|g\|_{L^{\infty}} \leq C_{n} \alpha
\end{gathered}
$$

In addition, b can be further decomposed into $b=\sum_{j} b_{j}$, so that each b_{j} is supported on a cube Q_{j} (with $0<\left|Q_{j}\right|<\infty$),

$$
\int_{Q_{j}} b_{j}(y) d y=0 \quad \text { for all } j
$$

the Q_{j} 's are essentially disjoint (in the sense that $\left|Q_{j} \cap Q_{k}\right|=0$ whenever $j \neq k$), and that

$$
\sum_{j}\left|Q_{j}\right| \leq \frac{C_{n}}{\alpha}\|f\|_{L^{1}}
$$

- To establish this Calderón-Zygmund decomposition, let $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$.
- Tile \mathbb{R}^{n} by essentially disjoint cubes of side lengths L, where L is chosen so large so that $f_{Q}|f|<\alpha$ for each cube Q in the collection $\left(f_{Q}=\frac{1}{|Q|} \int_{Q}\right)$.
- Subdivide each cube into 2^{n} cubes of equal sizes, and consider $f_{Q^{\prime}}|f|$ for each smaller cube Q^{\prime} that arises. If this average is $\geq \alpha$, we collect Q^{\prime} into a collection \mathcal{Q}; if not, then we keep subdividing.
- We end up with a countable collection \mathcal{Q} of essentially disjoint cubes so that for each $Q \in \mathcal{Q}$, we have

$$
f_{Q}|f| \geq \alpha, \quad \text { whereas } \quad f_{\tilde{Q}}|f|<\alpha
$$

where \tilde{Q} is the 'parent' of Q (the cube from which Q was obtained by subdivision).

- Thus we have obtained a countable collection \mathcal{Q} of essentially disjoint cubes

$$
\alpha \leq f_{Q}|f| \leq 2^{n} \alpha \quad \text { for all } Q \in \mathcal{Q}
$$

- We also note that if $\Omega=\bigcup_{Q \in \mathcal{Q}} Q$, then

$$
|f(x)| \leq \alpha \quad \text { for a.e. } x \notin \Omega
$$

by the Lebesgue differentiation theorem.

- It suffices now to enumerate \mathcal{Q} as $\left\{Q_{1}, Q_{2}, \ldots\right\}$, and define

$$
\begin{gathered}
g(x)= \begin{cases}f(x) & \text { if } x \notin \Omega \\
f_{Q_{j}} f(y) d y & \text { if } x \in Q_{j} \text { for some } j,\end{cases} \\
b_{j}(x)= \begin{cases}f(x)-f_{Q_{j}} f(y) d y & \text { if } x \in Q_{j} \\
0 & \text { otherwise. }\end{cases}
\end{gathered}
$$

for each j, and $b=\sum_{j} b_{j}$.

$$
\begin{gathered}
g(x)=\left\{\begin{array}{ll}
f(x) & \text { if } x \notin \Omega \\
f_{Q_{j}} f(y) d y & \text { if } x \in Q_{j}
\end{array} \text { for some } j,\right. \\
b_{j}(x)= \begin{cases}f(x)-f_{Q_{j}} f(y) d y & \text { if } x \in Q_{j} \\
0 & \text { otherwise. }\end{cases}
\end{gathered}
$$

- Indeed then

$$
\begin{gathered}
\|g\|_{L^{1}} \leq\|f\|_{L^{1}}, \quad\|g\|_{L^{\infty}} \leq 2^{n} \alpha \\
\int_{Q_{j}} b_{j}=0 \quad \text { and } \quad\left|Q_{j}\right| \leq \frac{1}{\alpha} \int_{Q_{j}}|f| \quad \text { for all } j
\end{gathered}
$$

from which all desired properties of g and b can be easily derived.

- Alternatively, we apply the following Whitney decomposition theorem for open sets in \mathbb{R}^{n} :

Theorem
Let Ω be a proper open subset in \mathbb{R}^{n}. Then there exists a countable collection of \mathcal{Q} of essentially disjoint cubes, such that

$$
\Omega=\bigcup_{Q \in \mathcal{Q}} Q
$$

with

$$
\operatorname{diam}(Q) \leq \operatorname{dist}\left(Q, \mathbb{R}^{n} \backslash \Omega\right)<4 \operatorname{diam}(Q)
$$

- The proof of Whitney's theorem is just one sentence: Indeed one just takes \mathcal{Q} to be the collection of maximal dyadic cubes in \mathbb{R}^{n} that satisfies $\operatorname{diam}(Q) \leq \operatorname{dist}\left(Q, \mathbb{R}^{n} \backslash \Omega\right)$.
- Given $f \in L^{1}\left(\mathbb{R}^{n}\right)$ and $\alpha>0$, we apply Whitney's theorem to the open set $\left\{x \in \mathbb{R}^{n}: \operatorname{Mf}(x)>\alpha\right\}$.
- This yields a countable collection of \mathcal{Q} of essentially disjoint cubes, for which

$$
\sum_{j}\left|Q_{j}\right|=|\Omega| \leq \frac{C_{n}}{\alpha}\|f\|_{L^{1}}
$$

and for which

$$
f_{Q_{j}}|f| \leq C_{n} \alpha \quad \text { for every } j
$$

since one can bound $f_{Q_{j}}|f|$ by $C_{n} f_{\tilde{Q}_{j}}|f|$, where \tilde{Q}_{j} is a cube centered at some point in $\mathbb{R}^{n} \backslash \Omega$, of side length $\leq 5 \operatorname{diam}(Q)$, that contains Q_{j} (such \tilde{Q}_{j} exists because of the distance comparison property in the Whitney decomposition theorem).

- We can then construct g and b from \mathcal{Q} as before, and obtain a Calderón-Zygmund decomposition of f at height α.

Mapping properties of singular integral operators

Theorem
Let $K \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$. Suppose $\widehat{K} \in L^{\infty}\left(\mathbb{R}^{n}\right)$ with

$$
\|\widehat{K}\|_{L^{\infty}\left(\mathbb{R}^{n}\right)} \leq C,
$$

and that K agrees with a C^{1} function K_{0} away from the origin, with

$$
\left|\nabla K_{0}(x)\right| \leq C|x|^{-(n+1)} \quad \text { for all } x \neq 0 .
$$

Let $T: \mathcal{S}\left(R^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ be the convolution operator defined by Tf $:=f * K$. Then for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{gathered}
\left|\left\{x \in \mathbb{R}^{n}:|T f(x)|>\alpha\right\}\right| \leq \frac{C_{n}}{\alpha}\|f\|_{L^{1}\left(\mathbb{R}^{n}\right)} \quad \text { for all } \alpha>0, \text { and } \\
\|T f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C_{n, p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \quad \text { for all } 1<p<\infty .
\end{gathered}
$$

Hence T can be extended as an operator of weak-type (1,1), and of strong-type (p, p) for all $1<p<\infty$.

- The Hilbert transform and the Riesz transforms clearly fall under the scope of the previous theorem.
- Indeed \widehat{K} is a homogeneous function of degree 0 (hence L^{∞}), and $K_{0}(x)$ is just a multiple of $\frac{1}{x}$ and $\frac{x_{j}}{|x|^{n+1}}$ respectively.
- Such K_{0} are smooth on \mathbb{S}^{n-1} and homogeneous of degree -n (so that $\nabla K_{0}(x)$ satisfies the desired bound).
- Hence the theorem shows that the Hilbert transform and the Riesz transforms extend as an operator of weak-type (1, 1), and as a bounded linear operators on L^{p}, for $1<p<\infty$.
- We note that the hypothesis on K_{0} implies

$$
\sup _{y \in \mathbb{R}^{n}} \int_{|x| \geq 2|y|}\left|K_{0}(x-y)-K_{0}(x)\right| d x \leq C ;
$$

indeed this is all we will use in the proof.

- We now turn to the proof of this theorem.
- The proof of the theorem consists of four parts:
- First we prove the case $p=2$; then we prove that T is weak-type $(1,1)$; then we prove that T is bounded on L^{p} when $1<p<2$; finally we prove that T is bounded on L^{p} when $2<p<\infty$.
- The case $p=2$ follows from Plancherel easily, since we assumed $\widehat{K} \in L^{\infty}$:

$$
\|T f\|_{L^{2}}=\|\widehat{f} \widehat{K}\|_{L^{2}} \leq\|\widehat{K}\|_{L^{\infty}}\|\widehat{f}\|_{L^{2}} \leq C\|f\|_{L^{2}}
$$

- Next, to prove T is weak-type $(1,1)$, let $f \in L^{1}, \alpha>0$.
- Perform a Calderón-Zygmund decomposition at height α :

$$
f=g+b=g+\sum_{j} b_{j}
$$

with b_{j} supported on Q_{j} for each j.

- We estimate

$$
\begin{aligned}
& \left|\left\{x \in \mathbb{R}^{n}:|\operatorname{Tf}(x)|>\alpha\right\}\right| \\
\leq & \left|\left\{x \in \mathbb{R}^{n}:|\operatorname{Tg}(x)|>\alpha / 2\right\}\right|+\left|\left\{x \in \mathbb{R}^{n}:|\operatorname{Tb}(x)|>\alpha / 2\right\}\right| .
\end{aligned}
$$

- We have both $g \in L^{1}$ and $g \in L^{\infty}$, so $g \in L^{2}$ with

$$
\|g\|_{L^{2}}^{2} \leq C \alpha\|f\|_{L^{1}} .
$$

This gives

$$
\left|\left\{x \in \mathbb{R}^{n}:|T g(x)|>\alpha / 2\right\}\right| \leq \frac{4}{\alpha^{2}}\|T g\|_{L^{2}}^{2} \leq \frac{C}{\alpha}\|f\|_{L^{1}}
$$

- Also, if Q_{j}^{*} is the cube with same center as Q_{j} but $2 \sqrt{n}$ times the side length, then $\Omega^{*}:=\bigcup_{j} Q_{j}^{*}$ satisfies

$$
\left|\Omega^{*}\right| \leq \sum_{j}\left|Q_{j}^{*}\right| \leq(2 \sqrt{n})^{n} \sum_{j}\left|Q_{j}\right| \leq \frac{C_{n}}{\alpha}\|f\|_{L^{1}}
$$

- Thus we are left to show that

$$
\left|\left\{x \in \mathbb{R}^{n} \backslash \Omega^{*}:|T b(x)|>\alpha / 2\right\}\right| \leq \frac{C}{\alpha}\|f\|_{L^{1}} .
$$

- We do so by showing that

$$
\left\|T b_{j}\right\|_{L^{1}\left(\mathbb{R}^{n} \backslash Q_{j}^{*}\right)} \leq C\left\|b_{j}\right\|_{L^{1}} \quad \text { for all } j
$$

so that
$\|T b\|_{L^{1}\left(\mathbb{R}^{n} \backslash \Omega^{*}\right)} \leq C \sum_{j}\left\|T b_{j}\right\|_{L^{1}\left(\mathbb{R}^{n} \backslash Q_{j}^{*}\right)} \leq C \sum_{j}\left\|b_{j}\right\|_{L^{1}} \leq C\|f\|_{L^{1}}$,
and the desired inequality follows by Chebyshev's inequality.

- To prove that

$$
\left\|T b_{j}\right\|_{L^{1}\left(\mathbb{R}^{n} \backslash Q_{j}^{*}\right)} \leq C\left\|b_{j}\right\|_{L^{1}} \quad \text { for all } j
$$

recall $\int_{Q_{j}} b_{j}=0$. Thus for $x \notin Q_{j}^{*}$, we have

$$
\begin{aligned}
T b_{j}(x) & =\int_{y \in Q_{j}} K_{0}(x-y) b_{j}(y) d y \\
& =\int_{y \in Q_{j}}\left[K_{0}\left(\left(x-y_{j}\right)-\left(y-y_{j}\right)\right)-K_{0}\left(x-y_{j}\right)\right] b_{j}(y) d y
\end{aligned}
$$

where y_{j} is the center of Q_{j}. Note that $\left|x-y_{j}\right| \geq 2\left|y-y_{j}\right|$ if $x \notin Q_{j}^{*}$ and $y \in Q_{j}$. Also recall

$$
\int_{|x| \geq 2|y|}\left|K_{0}(x-y)-K_{0}(x)\right| d x \leq C
$$

for all $y \in \mathbb{R}^{n}$.

- This shows

$$
\begin{aligned}
& \int_{\mathbb{R}^{n} \backslash Q_{j}^{*}}\left|T b_{j}(x)\right| d x \\
\leq & \int_{y \in Q_{j}} \int_{x \in \mathbb{R}^{n} \backslash Q_{j}^{*}}\left|K_{0}\left(\left(x-y_{j}\right)-\left(y-y_{j}\right)\right)-K_{0}\left(x-y_{j}\right)\right|\left|b_{j}(y)\right| d x d y \\
\leq & \int_{y \in Q_{j}} C\left|b_{j}(y)\right| d y \\
\leq & C\left\|b_{j}\right\|_{L^{1}}
\end{aligned}
$$

as desired, and finishes the proof that T is of weak-type $(1,1)$.

- To prove that T is strong-type (p, p) for $1<p<2$, we interpolate between $p=1$ and $p=2$.
- More precisely, let $f \in L^{p}\left(\mathbb{R}^{n}\right), 1<p<2$. For $\alpha>0$, write

$$
f=f \chi_{|f| \leq \alpha}+f \chi_{|f|>\alpha}=f_{\alpha}+f^{\alpha}
$$

so that $f_{\alpha} \in L^{2}, f^{\alpha} \in L^{1}$.

- We have

$$
\begin{aligned}
\|T f\|_{L^{p}}^{p}= & \int_{0}^{\infty} p \alpha^{p-1}\left|\left\{x \in \mathbb{R}^{n}:|T f(x)|>\alpha\right\}\right| d \alpha \\
\leq & \int_{0}^{\infty} p \alpha^{p-1}\left|\left\{x \in \mathbb{R}^{n}:\left|T f_{\alpha}(x)\right|>\alpha / 2\right\}\right| d \alpha \\
& +\int_{0}^{\infty} p \alpha^{p-1}\left|\left\{x \in \mathbb{R}^{n}:\left|T f^{\alpha}(x)\right|>\alpha / 2\right\}\right| d \alpha
\end{aligned}
$$

- But

$$
\left|\left\{x \in \mathbb{R}^{n}:\left|T f_{\alpha}(x)\right|>\alpha / 2\right\}\right| \leq \frac{4}{\alpha^{2}}\left\|T f_{\alpha}\right\|_{L^{2}}^{2} \leq \frac{C}{\alpha^{2}}\left\|f_{\alpha}\right\|_{L^{2}}^{2}
$$

SO

$$
\begin{aligned}
& \int_{0}^{\infty} p \alpha^{p-1}\left|\left\{x \in \mathbb{R}^{n}:\left|T f_{\alpha}(x)\right|>\alpha / 2\right\}\right| d \alpha \\
\leq & C \int_{0}^{\infty} p \alpha^{p-1} \alpha^{-2}\left\|f_{\alpha}\right\|_{L^{2}}^{2} d \alpha \\
\leq & C \int_{\mathbb{R}^{n}}|f(x)|^{2} \int_{|f(x)|}^{\infty} p \alpha^{p-3} d \alpha \\
= & C_{p}\|f\|_{L^{p}}^{p} .
\end{aligned}
$$

(We used $p<2$ in the last line.)

- Similarly

$$
\left|\left\{x \in \mathbb{R}^{n}:\left|T f^{\alpha}(x)\right|>\alpha / 2\right\}\right| \leq \frac{C_{n}}{\alpha}\left\|f^{\alpha}\right\|_{L^{1}}
$$

so

$$
\begin{aligned}
& \int_{0}^{\infty} p \alpha^{p-1}\left|\left\{x \in \mathbb{R}^{n}:\left|T f^{\alpha}(x)\right|>\alpha / 2\right\}\right| d \alpha \\
\leq & C_{n} \int_{0}^{\infty} p \alpha^{p-1} \alpha^{-1}\left\|f^{\alpha}\right\|_{L^{1}} d \alpha \\
\leq & C_{n} \int_{\mathbb{R}^{n}}|f(x)| \int_{0}^{|f(x)|} p \alpha^{p-2} d \alpha \\
= & C_{n, p}\|f\|_{L^{p}}^{p} .
\end{aligned}
$$

(We used $p>1$ in the last line.)

- The above shows

$$
\|T f\|_{L^{p}} \leq C_{n, p}\|f\|_{L^{p}} \quad \text { whenever } 1<p<2
$$

i.e. T is strong-type (p, p) for $1<p<2$.

- Finally we need to show that T is strong-type (p, p) for $2<p<\infty$.
- This follows by duality.
- Indeed the adjoint T^{*} of T also satisfies the same conditions as T.
- Hence T^{*} is of strong type (p, p) for $1<p<2$.
- It follows that T is of strong type (p, p) for $2<p<\infty$.
- This finishes the proof of the theorem.
- We formulate a variable coefficient extension of the theorem in the next slide. It allows for operators that are not convolutions (that do not commute with translations).

Theorem

Let T be a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$. Suppose there exists a locally L^{∞} function K_{0} on $\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x \neq y\right\}$, such that

$$
T f(x)=\int_{\mathbb{R}^{n}} f(y) K_{0}(x, y) d y
$$

for every $f \in L^{1}\left(\mathbb{R}^{n}\right)$ with compact support, and a.e. $x \notin \operatorname{supp}(f)$. Suppose in addition that

$$
\sup _{\left(y, y_{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}} \int_{\left|x-y_{0}\right| \geq 2\left|y-y_{0}\right|}\left|K_{0}(x, y)-K_{0}\left(x, y_{0}\right)\right| d x \leq C
$$

Then T extends as a linear operator of weak-type $(1,1)$, and of strong-type (p, p) for all $1<p<\infty$.

- The proof is almost the same as before, which we omit.
- In Lecture 7 we will give some general conditions under which such T would be bounded on $L^{2}\left(\mathbb{R}^{n}\right)$.

Hörmander-Mikhlin multipliers

- We return to operators that commute with translations, and consider multiplier operators.
- Recall that if m is a bounded function on \mathbb{R}^{n}, then the operator

$$
f \mapsto T_{m} f:=\mathcal{F}^{-1}(m \widehat{f})
$$

is bounded and linear on $L^{2}\left(\mathbb{R}^{n}\right)$.

- Such operators are called multiplier operators, and can be written as

$$
T_{m} f=f * K
$$

whenever $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, where $K:=\mathcal{F}^{-1} m$ is the inverse Fourier transform of the tempered distribution m.

- We seek conditions on m so that T_{m} extends as a bounded linear operator on $L^{p}\left(\mathbb{R}^{n}\right)$, for $1<p<\infty$.

Theorem (Hörmander-Mikhlin)

Suppose m is a C^{∞} function on $\mathbb{R}^{n} \backslash\{0\}$, and that

$$
\left|\partial_{\xi}^{\alpha} m(\xi)\right| \lesssim \alpha|\xi|^{-|\alpha|} \quad \text { for all } \xi \neq 0
$$

and all multiindices α. Then T_{m} extends as a linear operator of weak-type $(1,1)$, and of strong-type (p, p) for all $1<p<\infty$.

- This applies, for instance, when m is homogeneous of degree 0 and smooth on the unit sphere \mathbb{S}^{n-1}.
- In particular, this shows again that the Hilbert transform and the Riesz transforms are of weak-type (1,1), and of strong-type (p, p) for all $1<p<\infty$.
- Theorem also applies to imaginary powers of the Laplacian: $(-\Delta)^{i t}$ is the multiplier operator with multiplier $\left(4 \pi^{2}|\xi|^{2}\right)^{i t}$, where the principal branch of the logarithm is taken $(t \in \mathbb{R})$.
- Various refinements of this theorem are given in Homework 4.
- The previous theorem deals with multipliers that are singular only at one point (the origin). Examples of multipliers with a bigger set of singularities will be considered in Lecture 11.
- The previous theorem also fails to deal with multipliers $m(\xi)$ that oscillates rapidly as $|\xi| \rightarrow \infty$. Examples of such rapidly oscillating multipliers include $e^{i|\xi|^{a}}$ when $a>0$; such will be considered in Homework 9.
- The proof of the Hörmander-Mikhlin multiplier theorem consists of estimation of the convolution kernel $K:=\mathcal{F}^{-1} m$.
- In particular, we show that K agrees with a C^{∞} function K_{0} away from the origin, and that

$$
\left|\partial_{x}^{\alpha} K_{0}(x)\right| \lesssim \alpha \frac{1}{|x|^{n+|\alpha|}} \quad \text { for all } x \neq 0
$$

and all multiindices α, so that our previous theorem applies.

- Let $\psi(\xi)$ be a smooth function with compact support on the unit ball $B(0,2)$, with $\psi(\xi) \equiv 1$ on $B(0,1)$.
- Let $\varphi(\xi)=\psi(\xi)-\psi(2 \xi)$ so that ψ is supported on the annulus $\{1 / 2 \leq|\xi| \leq 2\}$, and

$$
\sum_{j \in \mathbb{Z}} \varphi\left(2^{-j} \xi\right)=1 \quad \text { for every } \xi \neq 0
$$

- Then

$$
\sum_{|j| \leq J} \varphi\left(2^{-j} \xi\right) m(\xi) \rightarrow m(\xi)
$$

in the topology of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, as $J \rightarrow+\infty$.

- For $j \in \mathbb{Z}$, let

$$
K^{(j)}=\mathcal{F}^{-1}\left[\varphi\left(2^{-j} \xi\right) m(\xi)\right] \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

so that $K:=\mathcal{F}^{-1} m$ is the limit of $\sum_{|j| \leq J} K^{(j)}(x)$ in the
topology of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ as $J \rightarrow+\infty$.

- But it is easy to see that

$$
\left|\partial_{x}^{\alpha} K^{(j)}(x)\right| \lesssim_{\alpha, N} 2^{j(n+|\alpha|)} \min \left\{1,2^{-j N}|x|^{-N}\right\}
$$

for any multiindex α and any positive integer N.

- Thus there exists a C^{∞} function $K_{0}(x)$ on $\mathbb{R}^{n} \backslash\{0\}$, so that

$$
\sum_{|j| \leq J} K^{(j)}(x) \text { converges uniformly to } K_{0}(x)
$$

on any compact subsets of $\mathbb{R}^{n} \backslash\{0\}$ as $J \rightarrow \infty$.

- This shows $K:=\mathcal{F}^{-1} m$ agrees with this C^{∞} function K_{0} away from the origin.
- Furthermore, the above estimates for $\partial_{x}^{\alpha} K^{(j)}(x)$ also readily implies that

$$
\left|\partial_{x}^{\alpha} K_{0}(x)\right| \lesssim \alpha \frac{1}{|x|^{n+|\alpha|}} \text { for all } x \neq 0
$$

and all multiindices α.

- Hence our previous theorem applies, and this concludes the proof of the Hörmander-Mikhlin multiplier theorem.

A vector-valued version of the main theorem

- We turn to a version of the singular integral theorem for vector-valued operators.
- Let B_{1}, B_{2} be Banach spaces.
- Let $\operatorname{End}\left(B_{1}, B_{2}\right)$ be the space of continuous endomorphisms from B_{1} to B_{2}.
- Let $L^{p}\left(\mathbb{R}^{n}, B_{j}\right)$ be the space of L^{p} mappings from \mathbb{R}^{n} into B_{j}.
- Write $\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)^{*}$ for the set $\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x \neq y\right\}$.
- Then we have the following theorem.

Theorem

Let T be a bounded linear operator from $L^{q}\left(\mathbb{R}^{n}, B_{1}\right)$ to $L^{q}\left(\mathbb{R}^{n}, B_{2}\right)$ for some $q \in(1, \infty]$. Suppose there exists a function

$$
K_{0}(x, y) \in L_{\text {loc }}^{\infty}\left(\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)^{*}, \operatorname{End}\left(B_{1}, B_{2}\right)\right),
$$

such that

$$
T f(x)=\int_{\mathbb{R}^{n}} K_{0}(x, y) f(y) d y
$$

for every $f \in L^{1}\left(\mathbb{R}^{n}, B_{1}\right)$ with compact support, and for a.e. $x \notin \operatorname{supp}(f)$. Suppose in addition that
$\sup _{\left(y, y_{0}\right) \in \mathbb{R}^{n} \times \mathbb{R}^{n}} \int_{\left|x-y_{0}\right| \geq 2\left|y-y_{0}\right|}\left\|K_{0}(x, y)-K_{0}\left(x, y_{0}\right)\right\|_{E n d\left(B_{1}, B_{2}\right)} d x \leq C$.
Then T extends as a continuous linear operator from $L^{1}\left(\mathbb{R}^{n}, B_{1}\right)$ to $L^{1, \infty}\left(\mathbb{R}^{n}, B_{2}\right)$, and a continuous linear operator from $L^{p}\left(\mathbb{R}^{n}, B_{1}\right)$ to $L^{p}\left(\mathbb{R}^{n}, B_{2}\right)$ for all $1<p<q$.

- The proof is almost the same as before, which we omit.
- Note that we do not claim mapping properties on L^{p} for $p>q$, because duality no longer works when say $q<2$.
- We use this vector-valued version with $B_{1}=\mathbb{C}$ and $B_{2}=\ell^{2}(\mathbb{Z}, \mathbb{C})$ (or the other way round) to derive a Littlewood-Paley inequality.
- First we introduce the Littlewood-Paley projections in the next slide.

Littlewood-Paley decompositions

- As before, let $\psi(\xi)$ be a smooth function with compact support on the unit ball $B(0,2)$, with $\psi(\xi) \equiv 1$ on $B(0,1)$.
- Let $\varphi(\xi)=\psi(\xi)-\psi(2 \xi)$ so that ψ is supported on the annulus $\{1 / 2 \leq|\xi| \leq 2\}$, and

$$
\psi(\xi)+\sum_{j=1}^{\infty} \varphi\left(2^{-j} \xi\right)=1 \quad \text { for every } \xi \in \mathbb{R}^{n}
$$

- For $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, let

$$
\begin{gathered}
P_{0} f=\mathcal{F}^{-1}[\psi(\xi) \widehat{f}(\xi)], \quad \text { and } \\
P_{j} f=\mathcal{F}^{-1}\left[\varphi\left(2^{-j} \xi\right) \widehat{f}(\xi)\right] \quad \text { for } j \geq 1
\end{gathered}
$$

- We think of $P_{j} f$ as the localization of f to frequency $\simeq 2^{j}$ if $j \geq 1$, and to frequency $\lesssim 1$ if $j=0$.
- By Plancherel, it is easy to see that if $f \in L^{2}\left(\mathbb{R}^{n}\right)$, then $\sum_{j=0}^{N} P_{j} f$ converges to f in $L^{2}\left(\mathbb{R}^{n}\right)$ as $N \rightarrow \infty$.
- In addition, if $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, then $\sum_{j=0}^{N} P_{j} f$ converges to f in the topology of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ as $N \rightarrow \infty$.
- As a result, if $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, then $\sum_{j=0}^{N} P_{j} f$ converges to f in the topology of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ as $N \rightarrow \infty$.
- This applies, in particular, for every $f \in L^{p}\left(\mathbb{R}^{n}\right), 1 \leq p \leq \infty$.
- Note also that if $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, then

$$
\sum_{j=0}^{N} P_{j} f=f * k_{2-N}
$$

where $k_{\varepsilon}(x):=\varepsilon^{-n} k\left(\varepsilon^{-1} x\right)$, and $k:=\mathcal{F}^{-1} \psi$.

- Thus $\sum_{j=0}^{N} P_{j} f(x)$ converges pointwisely to $f(x)$ for a.e. $x \in \mathbb{R}^{n}$, whenever $f \in L^{p}\left(\mathbb{R}^{n}\right)$ with $1 \leq p \leq \infty$.
- If in addition $1 \leq p<\infty$, then Question 3 from Homework 3 then shows that for every $f \in L^{p}\left(\mathbb{R}^{n}\right), \sum_{j=0}^{N} P_{j} f$ converges to f in $L^{p}\left(\mathbb{R}^{n}\right)$ as $N \rightarrow \infty$.
- Thus for $1 \leq p<\infty$, one way of estimating the L^{p} norm of $f \in L^{p}\left(\mathbb{R}^{n}\right)$ is to estimate

$$
\sup _{N \geq 1}\left\|\sum_{j=0}^{N} P_{j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

- Via the triangle inequality, we can control the above expression if we can bound

$$
\left\|\sum_{j=0}^{N}\left|P_{j} f\right|\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

uniformly in N, which can be done if we can bound

$$
N^{1 / 2}\left\|\left(\sum_{j=0}^{N}\left|P_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

uniformly in N.

- It turns out that one can do better, when $1<p<\infty$; intuitively this is because there is certain orthogonality between the different $P_{j} f$'s. (In particular, the following Theorem is easy to prove if $p=2$, by Plancherel.)

Theorem (Littlewood-Paley)
Suppose $1<p<\infty$.
(a) For every $f \in L^{p}\left(\mathbb{R}^{n}\right)$, we have

$$
\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \simeq\left\|\left(\sum_{j=0}^{\infty}\left|P_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

(b) Furthermore, if $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and the right hand side above is finite, then $f \in L^{p}\left(\mathbb{R}^{n}\right)$ (hence the above comparison holds).

- Let's first prove that

$$
\left\|\left(\sum_{j=0}^{\infty}\left|P_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

when $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and $1<p<\infty$.
(This is half of part (a) of the Theorem.)

- Note that the term corresponding to $j=0$ can be easily estimated: indeed

$$
\left\|P_{0} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq C\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

by Young's convolution inequality.

- Thus we may replace $\sum_{j=0}^{\infty}$ by $\sum_{j=1}^{\infty}$.
- The crux of the matter is captured in the following theorem:

Theorem'

Let $\Phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}} \Phi=0$. For $j \in \mathbb{Z}$ and $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, let

$$
\Delta_{j} f(x)=f * \Phi_{j}(x) \quad \text { where } \Phi_{j}(x)=2^{j n} \Phi\left(2^{j} x\right)
$$

Let $1<p<\infty$. Then for all $f \in L^{p}\left(\mathbb{R}^{n}\right),\left\|\Delta_{j} f\right\|_{\ell^{2}(\mathbb{Z})} \in L^{p}\left(\mathbb{R}^{n}\right)$, and

$$
\left\|\left\|\Delta_{j} f\right\|_{\ell^{2}(\mathbb{Z})}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim_{n, p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

- By monotone convergence, density and Fatou's lemma, we may assume $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.
- We will treat the cases $1<p \leq 2$ and $2 \leq p<\infty$ separately.
- For $1<p \leq 2$, let $B_{1}=\mathbb{C}, B_{2}=\ell^{2}(\mathbb{Z}, \mathbb{C})=$ the space of all complex-valued ℓ^{2} sequences $\left(a_{j}\right)_{j \in \mathbb{Z}}$.
- We apply the vector-valued singular integral theorem.
- Let $K(x)=\left\{\Phi_{j}(x)\right\}_{j \in \mathbb{Z}} \in \operatorname{End}\left(B_{1}, B_{2}\right)$ and $T f(x)=f * K(x)$ so that $\operatorname{Tf}(x)=\left\{\Delta_{j} f(x)\right\}_{j \in \mathbb{Z}}$.
- One checks, via Plancherel, that T defines a bounded linear map from $L^{2}\left(\mathbb{R}^{n}, B_{1}\right)$ to $L^{2}\left(\mathbb{R}^{n}, B_{2}\right)$; also

$$
\left\|\partial_{x} K(x)\right\|_{E n d\left(B_{1}, B_{2}\right)}=\left(\sum_{j \in \mathbb{Z}}\left|\partial_{x} \Phi_{j}(x)\right|^{2}\right)^{1 / 2}
$$

is bounded by $C|x|^{-(n+1)}$ whenever $x \neq 0$.

- Thus the vector-valued singular integral theorem shows that

$$
\left\|\left(\sum_{j \in \mathbb{Z}}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim_{n, p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

whenever $1<p \leq 2$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, as desired.

- For $2 \leq p<\infty$, we observe that by duality, we just need to prove that

$$
\left\|\sum_{j \in \mathbb{Z}} \Delta_{j} g_{j}\right\|_{L^{p^{\prime}\left(\mathbb{R}^{n}\right)}} \lesssim_{n, p}\| \| g_{j}\left\|_{\ell^{2}(\mathbb{Z})}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)}
$$

for all sequences of Schwartz functions $\left\{g_{j}\right\}_{j \in \mathbb{Z}}$, where only finitely many g_{j} 's are non-zero.

- This is because then for every $f \in L^{p}\left(\mathbb{R}^{n}\right)$ and all such $\left\{g_{j}\right\}$'s, we have

$$
\begin{aligned}
\int_{\mathbb{R}^{n}} \sum_{j \in \mathbb{Z}} \Delta_{j} f(x) g_{j}(x) d x & =\int_{\mathbb{R}^{n}} f(x) \sum_{j \in \mathbb{Z}} \Delta_{j} g_{j}(x) d x \\
& \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}\left\|\sum_{j \in \mathbb{Z}} \Delta_{j} g_{j}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)} \\
& \lesssim n, p
\end{aligned}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}\| \| g_{j}\left\|_{\ell^{2}(\mathbb{Z})}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)} .
$$

The density of such $\left\{g_{j}\right\}^{\prime} \mathrm{s}$ in $L^{p^{\prime}}\left(\ell^{2}\right)$ gives the desired conclusion.

$$
\left\|\sum_{j \in \mathbb{Z}} \Delta_{j} g_{j}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)} \lesssim_{n, p}\| \| g_{j}\left\|_{\ell^{2}(\mathbb{Z})}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)}
$$

- To prove this, this time we let $B_{1}=\ell^{2}(\mathbb{Z}, \mathbb{C}), B_{2}=\mathbb{C}$, and apply the vector-valued singular integral theorem.
- Indeed, let $K(x)=\sum_{j \in \mathbb{Z}} \Phi_{j}(x) e_{j}^{*} \in \operatorname{End}\left(B_{1}, B_{2}\right)$ where $\left\{e_{j}\right\}$ is the coordinate basis of $B_{1}=\ell^{2}$, and $\left\{e_{j}^{*}\right\}$ is the dual basis. Let

$$
\tilde{T} g(x)=\int_{y \in \mathbb{R}^{n}} K(y) g(x-y) d y
$$

if $g=\left\{g_{j}\right\}$, so that

$$
\tilde{T} g(x)=\sum_{j \in \mathbb{Z}} \Delta_{j} g_{j}
$$

- One checks, via Plancherel, that \tilde{T} defines a bounded linear map from $L^{2}\left(\mathbb{R}^{n}, B_{1}\right)$ to $L^{2}\left(\mathbb{R}^{n}, B_{2}\right)$; also

$$
\left\|\partial_{x} K(x)\right\|_{\operatorname{End}\left(B_{1}, B_{2}\right)}=\left(\sum_{j \in \mathbb{Z}}\left|\partial_{x} \Phi_{j}(x)\right|^{2}\right)^{1 / 2}
$$

is bounded by $C|x|^{-(n+1)}$ whenever $x \neq 0$.

- Thus the vector-valued singular integral theorem says that

$$
\left\|\sum_{j \in \mathbb{Z}} \Delta_{j} g_{j}\right\|_{L^{p^{\prime}\left(\mathbb{R}^{n}\right)}} \lesssim n, p\| \| g_{j}\left\|_{\ell^{2}(\mathbb{Z})}\right\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)}
$$

for $1<p^{\prime} \leq 2$, i.e. for $2 \leq p<\infty$, as desired.

- Theorem' can also be proved using Klintchine's inequality, without using vector-valued singular integrals.
- For $j \geq 1$, define the j-th Rademacher function r_{j} by

$$
r_{j}(t)= \begin{cases}+1 & \text { if } t \in\left[k 2^{-j},(k+1) 2^{-j}\right) \text { for some odd integer } k \\ -1 & \text { if } t \in\left[k 2^{-j},(k+1) 2^{-j}\right) \text { for some even integer } k\end{cases}
$$

Theorem (Klintchine)

For every $p \in(0, \infty)$, there exist constants A_{p} and B_{p} that depend only on p (but not on N), such that for every sequence of complex numbers $\left\{a_{j}\right\}_{1 \leq j \leq N}$, we have
$A_{p}\left(\sum_{j=1}^{N}\left|a_{j}\right|^{2}\right)^{p / 2} \leq \int_{0}^{1}\left|\sum_{j=1}^{N} a_{j} r_{j}(t)\right|^{p} d t \leq B_{p}\left(\sum_{j=1}^{N}\left|a_{j}\right|^{2}\right)^{p / 2}$.

- A more general version is given in Homework 4.
- We are now ready to give a second proof of Theorem'.
- Let $\left\{\varepsilon_{j}(t)\right\}_{j \in \mathbb{Z}}$ be an enumeration of $\left\{r_{j}(t)\right\}_{j \geq 1}$.

Proposition

Let $\Phi \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ with $\int_{\mathbb{R}^{n}} \Phi=0$. For $j \in \mathbb{Z}$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, let

$$
\Delta_{j} f(x)=f * \Phi_{j}(x) \quad \text { where } \Phi_{j}(x)=2^{j n} \Phi\left(2^{j} x\right)
$$

Then for every $1<p<\infty$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
\sup _{N \in \mathbb{N}} \sup _{t \in[0,1]}\left\|\sum_{\| j \mid \leq N} \varepsilon_{j}(t) \Delta_{j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim_{n, p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

- If the proposition were true, then applying Klintchine, we have

$$
\sup _{N \in \mathbb{N}}\left\|\left(\sum_{|j| \leq N}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim_{n, p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

for $1<p<\infty$ and $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

- The same holds for $f \in L^{p}\left(\mathbb{R}^{n}\right)$ by density, which gives our desired conclusion.
- To prove the proposition, for every $t \in[0,1]$, and every $N \in \mathbb{N}$, let

$$
K_{N, t}(x)=\sum_{|j| \leq N} \varepsilon_{j}(t) \Phi_{j}(x)
$$

so that

$$
\sum_{|j| \leq N} \varepsilon_{j}(t) \Delta_{j} f=f * K_{N, t}
$$

- One checks that $K_{N, t}$ is a Calderon-Zygmund kernel uniformly in N and t.
- The (scalar-valued) singular integral theorem then gives the claim of the proposition.
- To recap, we proved half of part (a) of the Littlewood-Paley theorem. It says that for every $1<p<\infty, f \in L^{p}\left(\mathbb{R}^{n}\right)$, we have

$$
\left\|\left(\sum_{j=0}^{\infty}\left|P_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim_{n, p}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

- We remark that the smoothness of the multipliers for P_{j} is important here; for instance, if we defined P_{0} instead by

$$
P_{0} f=\mathcal{F}^{-1}\left(\chi_{B(0,1)}(\xi) \widehat{f}(\xi)\right)
$$

where $\chi_{B(0,1)}$ is the characteristic function of the unit ball, then P_{0} is not bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ whenever $n \geq 2$ and $p \neq 2$.

- The latter is the famous ball multiplier theorem of Fefferman, to which we will return in Lecture 11.
- We still need to prove the other half of part (a), and also part (b), of the Littlewood-Paley theorem.
- For that we use duality.
- For $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, let $P_{j} f$ be the Littlewood-Paley projection of f defined earlier, for $j \geq 0$.
- We need to prove the following: If $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and

$$
\left\|\left(\sum_{j=0}^{\infty}\left|P_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}<\infty
$$

for some $1<p<\infty$, then f can be identified with an L^{p} function on \mathbb{R}^{n}, and that $\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}$ is controlled by the above quantity.

- Indeed, it suffices to show that

$$
\langle f, g\rangle \lesssim_{n, p}\left\|\left(\sum_{j=0}^{\infty}\left|P_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)}
$$

for all $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$.

- To do so, let $\tilde{\psi}$ be a smooth function with compact support on the unit ball $B(0,4)$, with $\tilde{\psi} \equiv 1$ on the support of ψ.
- Let $\tilde{\varphi}$ be a smooth function with compact support on the annulus $\{1 / 4 \leq|\xi| \leq 4\}$, with $\tilde{\varphi} \equiv 1$ on the support of φ.
- For $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, let

$$
\begin{gathered}
\tilde{P}_{0} g=\mathcal{F}^{-1}[\tilde{\psi}(\xi) \widehat{g}(\xi)], \quad \text { and } \\
\tilde{P}_{j} g=\mathcal{F}^{-1}\left[\tilde{\varphi}\left(2^{-j} \xi\right) \widehat{g}(\xi)\right] \quad \text { for } j \geq 1 .
\end{gathered}
$$

- Note that if $j \geq 1$, then $\tilde{P}_{j} g=g * \tilde{\Phi}_{2-j}$ for some Schwartz function $\tilde{\Phi}$ with $\int_{\mathbb{R}^{n}} \tilde{\Phi}=0$, so the forward Littlewood-Paley inequality applies. Also $P_{j}=P_{j} \tilde{P}_{j}$.
- Hence for $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{aligned}
\langle f, g\rangle & =\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left\langle f, P_{j} g\right\rangle=\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left\langle f, P_{j} \tilde{P}_{j} g\right\rangle \\
& =\lim _{N \rightarrow \infty} \sum_{j=0}^{N}\left\langle P_{j} f, \tilde{P}_{j} g\right\rangle \\
& \leq\left\|\left(\sum_{j=0}^{\infty}\left|P_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L\left(\mathbb{R}^{n}\right)}\left\|\left(\sum_{j=0}^{\infty}\left|\tilde{P}_{j} g\right|^{2}\right)^{1 / 2}\right\|_{L^{p^{\prime}\left(\mathbb{R}^{n}\right)}} \\
& \lesssim_{n, p}\left\|\left(\sum_{j=0}^{\infty}\left|P_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}\|g\|_{L^{p^{\prime}}\left(\mathbb{R}^{n}\right)} .
\end{aligned}
$$

This concludes the proof of the other half of part (a), and also part (b), of the Littlewood-Paley theorem we stated earlier.

- To close this lecture, we remark that if $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ and

$$
\left\|\left(\sum_{j \in \mathbb{Z}}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}<\infty
$$

for some $1<p<\infty$, it does NOT necessarily follow that f can be identified with an L^{p} function on \mathbb{R}^{n}. This is because Δ_{j} does not capture the Fourier transform of f at 0 .

- Nonetheless, if $1<p<\infty$, and if we already know that $f \in L^{p}\left(\mathbb{R}^{n}\right)$, then we do have

$$
\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim\left\|\left(\sum_{j \in \mathbb{Z}}\left|\Delta_{j} f\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

- This is because for $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we do have $\sum_{|j| \leq N} \Delta_{j} g \rightarrow g$ in $L^{p^{\prime}}\left(\mathbb{R}^{n}\right)$ as $N \rightarrow \infty$, when $1<p^{\prime}<\infty$, so that we can run our previous argument. c.f. Homework 4 for the former fact.

