Topics in Harmonic Analysis
 Lecture 6: Pseudodifferential calculus and almost orthogonality

Po-Lam Yung

The Chinese University of Hong Kong

Introduction

- While multiplier operators are very useful in studying constant coefficient partial differential equations, one often encounters variable coefficient partial differential equations.
- Thus we consider a variable coefficient generalization of multiplier operators, namely pseudodifferential operators.
- We study compositions and mapping properties of pseudodifferential operators.
- These in turn allow one to construct paramatrices to variable coefficient elliptic PDEs.
- We close this lecture with a beautiful almost orthogonality principle, due to Cotlar and Stein, which will play a crucial role in the proof of the $T(1)$ theorem in the next lecture.

Outline

- Symbols of pseudodifferential operators
- Kernel representations
- Mapping properties on L^{2}
- Compound symbols
- Closure under adjoints and compositions
- Parametrix construction
- Cotlar-Stein lemma (almost orthogonality)

Symbols of pseudodifferential operators

- Given a smooth function $a(x, \xi)$ on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ (which we think of as the cotangent bundle of \mathbb{R}^{n}), a pseudodifferential operator with symbol a is by definition

$$
T_{a} f(x)=\int_{\mathbb{R}^{n}} a(x, \xi) \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
$$

- We will consider only symbols a that satisfy the following differential inequalities:

$$
\left|\partial_{x}^{\alpha} \partial_{\xi}^{\beta} a(x, \xi)\right| \lesssim(1+|\xi|)^{m-|\beta| \gamma+|\alpha| \delta}
$$

for all multiindices α and β, where $m \in \mathbb{R}$ and $\gamma, \delta \in[0,1]$ are three fixed parameters.

- Following Hörmander, a symbol a is said to be of class $S_{\gamma, \delta}^{m}$, if the above differential inequalities are satisfied for all α and β.
- Usually we consider only the case $\gamma=1, \delta=0$, in which case we write S^{m} in place of $S_{1,0}^{m}$.
- m is called the order of the symbol (or the order of the associated operator).
- Example: If $p(\xi)$ is a polynomial of degree m, and

$$
a(x, \xi)=p(2 \pi i \xi)
$$

then $a \in S^{m}$, and

$$
T_{a} f(x)=p\left(\partial_{x}\right) f(x)
$$

is a constant coefficient differential operator of order m.

- More generally, if $m \in \mathbb{N}$ and

$$
a(x, \xi)=\sum_{|\beta| \leq m} A_{\beta}(x)(2 \pi i \xi)^{\beta}
$$

where the A_{β} 's are all C_{c}^{∞} on \mathbb{R}^{n}, then we have $a \in S^{m}$ with

$$
T_{a} f(x)=\sum_{|\beta| \leq m} A_{\beta}(x) \partial_{x}^{\beta} f(x)
$$

is a variable coefficient partial differential operator of order m.

- It is easy to see that if $a \in S_{\gamma, \delta}^{m}$ for some $m \in \mathbb{R}, \gamma, \delta \in[0,1]$, then T_{a} is a linear map from $\mathcal{S}\left(R^{n}\right)$ into itself, and the map

$$
T_{a}: \mathcal{S}\left(R^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

is continuous.

- One typical use of pseudodifferential operators is to construct paramatrices (i.e. approximate solutions) to partial differential equations.
- For those we usually need pseudodifferential operators of non-positive orders, which are typically integral operators.
- As before, let $\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)^{*}$ be $\mathbb{R}^{n} \times \mathbb{R}^{n}$ with the diagonal $\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x=y\right\}$ removed.

Kernel estimates

Theorem
Let $-n<m \leq 0$, and $a \in S^{m}$. Then there exists a function $K_{0} \in C^{\infty}\left(\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)^{*}\right)$ such that

$$
T_{a} f(x)=\int_{\mathbb{R}^{n}} K_{0}(x, y) f(y) d y
$$

for all $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and all x not in the support of f. Furthermore,

$$
\left|\partial_{x, y}^{\lambda} K_{0}(x, y)\right| \lesssim \frac{1}{|x-y|^{n+m+|\lambda|}}
$$

for all multiindices λ and all $x \neq y$.

- Indeed pick a smooth function η with compact support on \mathbb{R}^{n} with $\eta(0)=1$. For $x \neq y$ and $\varepsilon>0$, let

$$
K_{\varepsilon}(x, y):=\int_{\mathbb{R}^{n}} a(x, \xi) \eta(\varepsilon \xi) e^{2 \pi i(x-y) \cdot \xi} d \xi
$$

- We claim that $K_{\varepsilon}(x, y) \in C^{\infty}\left(\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)^{*}\right)$ for all $\varepsilon>0$, with

$$
\left|\partial_{x, y}^{\lambda} K_{\varepsilon}(x, y)\right| \lesssim \frac{1}{|x-y|^{n+m+|\lambda|}}
$$

for all multiindices λ and all $x \neq y$, where the constants are uniform in $\varepsilon>0$.

- One sees this by splitting the integral depending on whether $|\xi| \leq|x-y|^{-1}$ or not; when $|\xi|>|x-y|^{-1}$, we integrate by parts using

$$
e^{2 \pi i(x-y) \cdot \xi}=\frac{1}{-4 \pi^{2}|x-y|^{2}} \Delta_{\xi} e^{2 \pi i(x-y) \cdot \xi}
$$

sufficiently many times to gain enough decay in $|\xi|$. This shows

$$
\left|K_{\varepsilon}(x, y)\right| \lesssim \frac{1}{|x-y|^{n+m}}
$$

when $x \neq y$, and similarly one can estimate $\partial_{x, y}^{\lambda} K_{\varepsilon}(x, y)$.

- Furthermore, by a similar argument, $K_{\varepsilon}(x, y)$ converges locally uniformly on $\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)^{*}$ as $\varepsilon \rightarrow 0^{+}$, and so do $\partial_{x, y}^{\lambda} K_{\varepsilon}(x, y)$ for all multiindices λ.
- For $x \neq y$, let

$$
K_{0}(x, y):=\lim _{\varepsilon \rightarrow 0^{+}} K_{\varepsilon}(x, y) \in C^{\infty}\left(\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)^{*}\right)
$$

- Now note that if $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and $x \in \mathbb{R}^{n}$, then

$$
\begin{aligned}
T_{a} f(x) & =\lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} a(x, \xi) \eta(\varepsilon \xi) \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} a(x, \xi) \eta(\varepsilon \xi) f(y) e^{2 \pi i(x-y) \cdot \xi} d y d \xi \\
& =\lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} f(y) K_{\varepsilon}(x, y) d y .
\end{aligned}
$$

- If in addition $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, and x is not in the support of f, then the last line is equal to

$$
T_{a} f(x)=\int_{\mathbb{R}^{n}} f(y) K_{0}(x, y) d y
$$

by the dominated convergence theorem.

- This establishes the desired kernel representation formula for $T_{a} f(x)$.
- The estimates for $\partial_{x, y}^{\lambda} K_{0}(x, y)$ on $\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)^{*}$ follow from the corresponding uniform estimates for $\partial_{x, y}^{\lambda} K_{\varepsilon}(x, y)$.
- We remark that if $|x-y| \gtrsim 1$, the above proof also shows that

$$
\left|\partial_{x, y}^{\lambda} K_{0}(x, y)\right| \lesssim|x-y|^{-N}
$$

for any multiindices λ and any $N \in \mathbb{N}$ (i.e. we get rapid decay as $|x-y| \rightarrow+\infty)$.

- This is closely tied to the pseudolocality of psuedodifferential operators: indeed a linear operator $T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is local, if the support of $T f$ is contained in the support of f for every $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. This is the case if the Schwartz kernel of T is supported on the diagonal $\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x=y\right\}$.
- While $K_{0}(x, y)$ is not supported on the diagonal $\left\{(x, y) \in \mathbb{R}^{n} \times \mathbb{R}^{n}: x=y\right\}$, the above decay of $K_{0}(x, y)$ away from the diagonal is a close substitute for it.

Mapping properties on L^{2}

- We now focus on pseudodifferential operators of order 0 .

Theorem
Let $a \in S^{0}$. Then T_{a} extends to a bounded operator on $L^{2}\left(\mathbb{R}^{n}\right)$.

- In view of the kernel representation theorem above, and the variable coefficient singular integral theorem from Lecture 4, this establishes the following corollary.

Corollary
Let $a \in S^{0}$. Then T_{a} extends to a bounded operator on $L^{p}\left(\mathbb{R}^{n}\right)$ for all $1<p<\infty$.

- One direct proof of the theorem proceeds via pseudolocality.
- For $j \in \mathbb{Z}^{n}$, let B_{j} be the open ball of radius 2 centered at j. Then $\left\{B_{j}\right\}_{j \in \mathbb{Z}^{n}}$ covers \mathbb{R}^{n}.
- Let $1=\sum_{j} \phi_{j}^{2}$ be a smooth partition of unity subordinate to the above cover, so that $\phi_{j} \in C_{c}^{\infty}\left(B_{j}\right)$ for every j.
- Then

$$
\begin{aligned}
\left\|T_{a} f\right\|_{L^{2}}^{2} & =\sum_{j}\left\|\phi_{j} T_{a} f\right\|_{L^{2}}^{2} \\
& =\sum_{j}\left\|\phi_{j} T_{a}\left(\chi_{2 B_{j}} f\right)\right\|_{L^{2}}^{2}+\sum_{j}\left\|\phi_{j} T_{a}\left(\chi_{\left(2 B_{j}\right)}{ }^{c} f\right)\right\|_{L^{2}}^{2}
\end{aligned}
$$

- From our earlier kernel estimates when $|x-y| \gtrsim 1$, we get

$$
\left|\phi_{j}(x) T_{a}\left(\chi_{\left(2 B_{j}\right)^{c}} f\right)(x)\right| \lesssim \chi_{B_{j}}(x) \int_{y \notin 2 B_{j}}|f(y)||x-y|^{-N} d y
$$

so choosing $N>n$ and using Cauchy-Schwarz, we get

$$
\left|\phi_{j}(x) T_{a}\left(\chi_{\left(2 B_{j}\right) c} f\right)(x)\right|^{2} \lesssim \chi_{B_{j}}(x) \int_{y \notin 2 B_{j}}|f(y)|^{2}|x-y|^{-N} d y
$$

Integrating both sides gives

$$
\left\|\phi_{j} T_{a}\left(\chi_{\left(2 B_{j}\right) c} f\right)\right\|_{L^{2}}^{2} \lesssim \int_{|y-j| \gtrsim 1}|f(y)|^{2}|j-y|^{-N} d y
$$

so summing over j gives

$$
\sum_{j}\left\|\phi_{j} T_{a}\left(\chi_{\left(2 B_{j}\right) c} f\right)\right\|_{L^{2}}^{2} \lesssim \sum_{j} \int_{|y-j| \gtrsim 1}|f(y)|^{2}|j-y|^{-N} d y \lesssim\|f\|_{L^{2}}^{2}
$$

- It remains to show

$$
\sum_{j}\left\|\phi_{j} T_{a}\left(\chi_{2 B_{j}} f\right)\right\|_{L^{2}}^{2} \lesssim\|f\|_{L^{2}}^{2}
$$

This follows if we can show

$$
\left\|\phi_{j} T_{a}\right\|_{L^{2} \rightarrow L^{2}} \lesssim 1
$$

since $\sum_{j}\left\|\chi_{2 B_{j}} f\right\|_{L^{2}}^{2} \lesssim\|f\|_{L^{2}}^{2}$.

- But $\phi_{j} T_{a}$ is a pseudodifferential operator with symbol $\phi_{j}(x) a(x, \xi)$. The latter is just another symbol in S^{m}, except now it has compact x-support inside some ball of radius 2 .
- Hence it remains to prove our theorem for $a \in S^{0}$, under the additional assumption that $a(x, \xi)$ has compact x-support inside some unit cube.
- This we obtain by expanding $a(x, \xi)$ as Fourier series in x.
- Without loss of generality, suppose $a(x, \xi) \in S^{0}$ and has compact x-support on the unit cube B centered at 0 . Then

$$
a(x, \xi)=\sum_{\eta \in \mathbb{Z}^{n}} \widehat{a}(\eta, \xi) e^{2 \pi i \eta \cdot x}
$$

where \hat{a} is the Fourier transform of a in the first variable. Thus

$$
\begin{aligned}
T_{a} f(x) & =\sum_{\eta \in \mathbb{Z}^{n}} e^{2 \pi i \eta \cdot x} \int_{\mathbb{R}^{n}} \widehat{a}(\eta, \xi) \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi \\
& =\sum_{\eta \in \mathbb{Z}^{n}} \frac{e^{2 \pi i \eta \cdot x}}{\left(1+4 \pi^{2}|\eta|^{2}\right)^{n}} \int_{\mathbb{R}^{n}} \widehat{\Delta_{x}^{n}} a(\eta, \xi) \widehat{f}(\xi) e^{2 \pi i x \cdot \xi} d \xi
\end{aligned}
$$

- But $\widehat{\Delta_{x}^{n}} a(\eta, \xi)$ is a bounded multiplier on L^{2} uniformly in η.
- Thus triangle inequality gives

$$
\left\|T_{a} f\right\|_{L^{2}} \lesssim \sum_{\eta \in \mathbb{Z}^{n}}(1+|\eta|)^{-2 n}\|f\|_{L^{2}} \lesssim\|f\|_{L^{2}}
$$

which finishes the proof of the Theorem.

Compound symbols

- We will turn soon to the adjoints and compositions of pseudodifferential operators whose symbols are in S^{m} for some $m \in \mathbb{R}$.
- A convenient tool is the concept of compound symbols.
- Let $m \in \mathbb{R}, \gamma \in[0,1], \delta \in[0,1)$. A compound symbol of class $C S_{\gamma, \delta}^{m}$ is a smooth function $c(x, y, \xi)$ on $\mathbb{R}^{n} \times \mathbb{R}^{n} \times \mathbb{R}^{n}$ where

$$
\left|\partial_{x, y}^{\alpha} \partial_{\xi}^{\beta} c(x, y, \xi)\right| \lesssim(1+|\xi|)^{m-|\beta| \gamma+|\alpha| \delta}
$$

for all multiindices α and β.

- To every $c \in C S_{\gamma, \delta}^{m}$, we associate an operator $T_{[c]}$ on $\mathcal{S}\left(\mathbb{R}^{n}\right)$ by

$$
\begin{gathered}
T_{[c]} f(x)=\lim _{\varepsilon \rightarrow 0^{+}} T_{[c], \varepsilon} f(x), \text { where } \\
T_{[c], \varepsilon} f(x):=\int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} c(x, y, \xi) \eta(\varepsilon \xi) f(y) e^{2 \pi i(x-y) \cdot \xi} d \xi d y
\end{gathered}
$$

and η is a fixed function in $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\eta(0)=1$.

- Since $\delta<1$, one can show that for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right), T_{[c], \varepsilon} f$ defines a Schwartz function on \mathbb{R}^{n} for every $\varepsilon>0$, and that $T_{[c], \varepsilon} f$ converges in the topology of $\mathcal{S}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \rightarrow 0^{+}$. Indeed this follows from multiple integrating by parts via

$$
e^{2 \pi i(x-y) \cdot \xi}=\frac{\left(I-\Delta_{y}\right) e^{2 \pi i(x-y) \cdot \xi}}{1+4 \pi^{2}|\xi|^{2}}
$$

- Thus $T_{[c]}$ defines a linear mapping

$$
T_{[c]}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

it is easy to check that this map is also continuous.

- We are mainly interested in $C S_{\gamma, \delta}^{m}$ when $\gamma=1$ and $\delta=0$.
- We write $C S^{m}$ for $C S_{1,0}^{m}$ if $m \in \mathbb{R}$.
- The main theorem about compound symbols is the following:

Theorem
If $c \in C S^{m}$ for some $m \in \mathbb{R}$, then there exists $a \in S^{m}$ such that

$$
T_{[c]} f=T_{a} f
$$

for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Also, we have the asymptotic expansion

$$
\left.a(x, \xi) \sim \sum_{\gamma} \frac{(2 \pi i)^{-|\gamma|}}{\gamma!} \partial_{y}^{\gamma} \partial_{\xi}^{\gamma} c(x, y, \xi)\right|_{y=x},
$$

in the sense that the sum of those terms with $|\gamma|<N$ on the right hand side differ from $a(x, \xi)$ by a symbol in S^{m-N} for all $N \in \mathbb{N}$.

- A proof is outlined in Homework 6.
- We note that different compound symbols c may give rise to the same symbol a in the above theorem.
- In particular, the map $c \mapsto T_{[c]}$ is not injective.
- We will use this non-injectivity to our advantage in what follows.

Closure under adjoints and compositions

- We will prove two theorems using compound symbols.

Theorem

Let $m \in \mathbb{R}$. If $a \in S^{m}$, then there exists a symbol $a^{*} \in S^{m}$, such that the formal adjoint of T_{a} is $T_{a^{*}}$, in the sense that

$$
\int_{\mathbb{R}^{n}} T_{a} f(x) \overline{g(x)} d x=\int_{\mathbb{R}^{n}} f(x) \overline{T_{a^{*}} g(x)} d x \quad \text { for all } f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

Also, we have the asymptotic expansion

$$
\left.a^{*}(x, \xi) \sim \sum_{\gamma} \frac{(2 \pi i)^{-|\gamma|}}{\gamma!} \partial_{y}^{\gamma} \partial_{\xi}^{\gamma} \overline{a(y, \xi)}\right|_{y=x}
$$

In particular,

$$
a^{*}(x, \xi)=\overline{a(x, \xi)} \quad\left(\bmod S^{m-1}\right)
$$

Theorem

Let $m_{1}, m_{2} \in \mathbb{R}$. If $a_{1} \in S^{m_{1}}$ and $a_{2} \in S^{m_{2}}$, then there exists a symbol $a \in S^{m_{1}+m_{2}}$, such that

$$
T_{a_{1}} T_{a_{2}} f=T_{a} f \quad \text { for all } f \in \mathcal{S}\left(\mathbb{R}^{n}\right) .
$$

Also, we have the asymptotic expansion

$$
a(x, \xi) \sim \sum_{\gamma} \frac{(2 \pi i)^{-|\gamma|}}{\gamma!} \partial_{\xi}^{\gamma} a_{1}(x, \xi) \partial_{x}^{\gamma} a_{2}(x, \xi)
$$

In particular,

$$
a(x, \xi)=a_{1}(x, \xi) a_{2}(x, \xi) \quad\left(\bmod S^{m_{1}+m_{2}-1}\right) .
$$

- Indeed, let $m \in \mathbb{R}, a \in S^{m}$ and $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. Let $\eta \in C_{c}^{\infty}$ on \mathbb{R}^{n} with $\eta(0)=1$. Then by dominated convergence,

$$
\int_{\mathbb{R}^{n}} T_{a} f(x) \overline{g(x)} d x=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} a(x, \xi) \eta(\varepsilon \xi) \widehat{f}(\xi) \overline{g(x)} e^{2 \pi i x \cdot \xi} d \xi d x
$$

- Writing $c(x, y, \xi):=\overline{a(y, \xi)}$, the above limit is equal to

$$
\begin{aligned}
& \lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} a(x, \xi) \eta(\varepsilon \xi) f(y) \overline{g(x)} e^{2 \pi i(x-y) \cdot \xi} d y d \xi d x \\
= & \lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} f(y) \overline{T_{[c], \varepsilon} g(y)} d y .
\end{aligned}
$$

- Since $T_{[c], \varepsilon} g$ converges to $T_{[c]} g$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ as $\varepsilon \rightarrow 0^{+}$, the above limit is just

$$
\int_{\mathbb{R}^{n}} f(y) \overline{T_{[c]} g(y)} d y
$$

- It remains to write $T_{[c]}$ as $T_{a^{*}}$ for some $a^{*} \in S^{m}$, using our previous theorem about compound symbols.
- Next, let $m_{1}, m_{2} \in \mathbb{R}, a_{1} \in S^{m_{1}}, a_{2} \in S^{m_{2}}$.
- By the previous theorem, there exists $a_{2}^{*} \in S^{m_{2}}$, such that the formal adjoint of $T_{a_{2}^{*}}$ is $T_{a_{2}}$, which in view of the computation on the previous page implies

$$
T_{a_{2}} f(x)=\lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \overline{a_{2}^{*}(y, \xi)} \eta(\varepsilon \xi) f(y) e^{2 \pi i(x-y) \cdot \xi} d y d \xi
$$

for all $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$ and all $x \in \mathbb{R}^{n}$ (limit taken in $\mathcal{S}\left(\mathbb{R}^{n}\right)$).

- Hence $T_{a_{1}} T_{a_{2}} f(x)$ is given by

$$
\lim _{\varepsilon \rightarrow 0^{+}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} \int_{\mathbb{R}^{n}} a_{1}(x, \xi) \overline{a_{2}^{*}(y, \xi)} \eta(\varepsilon \xi) f(y) e^{2 \pi i(x-y) \cdot \xi} d y d \xi
$$

- The latter is $\lim _{\varepsilon \rightarrow 0^{+}} T_{[c], \varepsilon} f(x)$ if

$$
c(x, y, \xi):=a_{1}(x, \xi) \overline{a_{2}(y, \xi)}
$$

Since such $c \in C S^{m_{1}+m_{2}}$, by the previous theorem about compound symbols, there exists $a \in S^{m_{1}+m_{2}}$, such that the above limit is equal to $T_{a} f(x)$.

Parametrix construction

- Let $m \in \mathbb{N}$. Let

$$
P(D)=\sum_{|\alpha| \leq m} p_{\alpha}(x) \partial_{x}^{\alpha}
$$

be a differential operator of order m with C^{∞} coefficients.

- $P(D)$ is a pseudodifferential operator with symbol

$$
p(x, \xi):=\sum_{|\alpha| \leq m} p_{\alpha}(x)(2 \pi i \xi)^{\alpha}
$$

- It is said to be elliptic, if there exists a constant $C>0$, such that

$$
|p(x, \xi)| \geq C|\xi|^{m}
$$

for all $x \in \mathbb{R}^{n}$ and all ξ with $|\xi| \geq 1$.

- We use the following theorem to construct parametrices of such elliptic partial differential operators.

Theorem
Let $m \in \mathbb{R}$. Given a sequence of symbols a_{0}, a_{1}, \ldots, with

$$
a_{k} \in S^{m-k} \quad \text { for every } k \geq 0
$$

then there exists a symbol $a \in S^{m}$, such that for every $N \in \mathbb{N}$, there exists $e_{N} \in S^{m-N}$ with

$$
a(x, \xi)=\sum_{k=0}^{N-1} a_{k}(x, \xi)+e_{N}(x, \xi)
$$

- See Homework 6 for its proof.
- Let $P(D)$ be an elliptic partial differential operator of order m with C^{∞} coefficients. Let $p(x, \xi)$ be its symbol.
- Let $\varphi(\xi)$ be a smooth function that is identically 0 on $B(0,1)$, and identically 1 outside $B(0,2)$.
- Let $T_{a_{0}}$ be the pseudodifferential operator of order $-m$ with symbol

$$
a_{0}(x, \xi):=\frac{\varphi(\xi)}{p(x, \xi)}
$$

- Then the composition theorem shows that

$$
P(D) T_{a_{0}}=I-E_{-1}
$$

for some pseudodifferential operator of order -1 .

- We compose both sides on the right by E_{-1}^{k} (where $k \in \mathbb{N}$), and get

$$
P(D) T_{a_{0}} E_{-1}^{k}=E_{-1}^{k}-E_{-1}^{k+1} .
$$

- Summing over k and telescoping, we get

$$
P(D)\left[T_{a_{0}}+T_{a_{0}} E_{-1}+\cdots+T_{a_{0}} E_{-1}^{N}\right]=I-E_{-1}^{N+1}
$$

for any $N \in \mathbb{N}$.

- Using the composition theorem again, for any $k \in \mathbb{N}$, there exists a symbol $a_{k} \in S^{-m-k}$, such that

$$
T_{a_{0}} E_{-1}^{k}=T_{a_{k}} .
$$

- From the previous theorem, there exists a symbol $a \in S^{-m}$, such that for every $N \in \mathbb{N}$, there exists $e_{N} \in S^{-m-N}$ such that

$$
T_{a}=\sum_{k=0}^{N-1} T_{a_{k}}+T_{e_{N}}
$$

- Let T_{e} be the pseudodifferential operator defined by

$$
P(D) T_{a}=I+T_{e} .
$$

- The calculation on the previous slide shows that $e \in S^{-m-N}$ for any $N \in \mathbb{N}$.
- In this sense T_{a} is an approximate solution to $P(D)$, aka a parametrix for $P(D)$.

Cotlar-Stein lemma (almost orthogonality)

- Earlier we proved L^{2} boundedness of psuedodifferential operators with symbols in S^{0} by using the Fourier transform.
- We now describe another important tool about establishing L^{2} boundedness of linear operators, namely Cotlar-Stein lemma.
- This can be used to prove a theorem of Calderón and Vaillaincourt, namely T_{a} is bounded on L^{2} whenever $a \in S_{\gamma, \gamma}^{0}$ for all $\gamma \in[0,1)$ (see Homework 6); in particular, this recovers the L^{2} boundedenss of psuedodifferential operators with symbols in S^{0}.
- The Cotlar-Stein lemma also plays a key role in the proof of many celebrated theorems.
- We will prove a proposition this time, which will play a crucial role in the proof of the $T(1)$ theorem in the next lecture.

Theorem (Cotlar-Stein)

Suppose $\left\{T_{j}\right\}$ is a sequence of bounded linear operators between two Hilbert spaces. If there exist constants A and B such that

$$
\sup _{j} \sum_{i}\left\|T_{j} T_{i}^{*}\right\|^{1 / 2} \leq A \quad \text { and } \quad \sup _{i} \sum_{j}\left\|T_{i}^{*} T_{j}\right\|^{1 / 2} \leq B
$$

for all i, j, then $\sum_{j} T_{j}$ converges strongly to a bounded linear operator T between the two Hilbert spaces, with $\|T\| \leq \sqrt{A B}$.

- This is called an almost orthogonality lemma, because one situation where the hypothesis are fulfilled are when all $\left\|T_{j}\right\| \leq B$, the images of the different T_{j} 's are orthogonal, and the images of the different T_{i}^{*} 's are orthogonal. (Indeed then $T_{i}^{*} T_{j}=0$ and $T_{j} T_{i}^{*}=0$ whenever $j \neq i$.)
- The proof of Cotlar-Stein involves a classic application of the tensor power trick.
- To prove Cotlar-Stein, suppose first $\left\{T_{j}\right\}$ is a finite sequence (say J terms). Then for any positive integer N,

$$
\|T\|^{2 N}=\left\|\left(T T^{*}\right)^{N}\right\|=\sum_{j_{1}, \ldots, j_{2 N}}\left\|T_{j_{1}} T_{j_{2}}^{*} T_{j_{3}} T_{j_{4}}^{*} \ldots T_{j_{2 N-1}} T_{j_{2 N}}^{*}\right\|
$$

- But the summand is bounded by both

$$
\left\|T_{j_{1}} T_{j_{2}}^{*}\right\|\left\|T_{j_{3}} T_{j_{4}}^{*}\right\| \ldots\left\|T_{j_{2 N-1}} T_{j_{2 N}}^{*}\right\|
$$

and

$$
\left\|T_{j_{1}}\right\|\left\|T_{j_{2}}^{*} T_{j_{3}}\right\| \ldots\left\|T_{j_{2 N-2}}^{*} T_{j_{2 N-1}}\right\|\left\|T_{j_{2 N}}^{*}\right\| .
$$

- So taking geometric average, the sum is bounded by

$$
\begin{aligned}
& \sum_{j_{1}, \ldots, j_{2 N}}\left\|T_{j_{1}}\right\|^{1 / 2}\left\|T_{j_{1}} T_{j_{2}}^{*}\right\|^{1 / 2}\left\|T_{j_{2}}^{*} T_{j_{3}}\right\|^{1 / 2} \ldots\left\|T_{j_{2 N-1}} T_{j_{2 N}}^{*}\right\|^{1 / 2}\left\|T_{j_{2 N}}^{*}\right\|^{1 / 2} \\
& \leq J \max _{j_{1}}\left\|T_{j_{1}}\right\|^{1 / 2} A^{N} B^{N-1} \max _{j_{2 N}}\left\|T_{j_{2 N}}\right\|^{1 / 2}
\end{aligned}
$$

- Taking $2 N$-th root and letting $N \rightarrow+\infty$ yields $\|T\| \leq \sqrt{A B}$.
- The general case when we have infinitely many operators T_{j} follows once we have the following lemma:

Lemma

Let $\left\{f_{j}\right\}$ be a sequence in a Hilbert space, and $A \in \mathbb{R}$. Suppose for any sequence $\left\{\varepsilon_{j}\right\}$ that has only finitely many non-zero terms, and that satisfies $\left|\varepsilon_{j}\right| \leq 1$ for all j, we have

$$
\left\|\sum_{j} \varepsilon_{j} f_{j}\right\| \leq A
$$

Then $\sum_{j} f_{j}$ converges in the Hilbert space.

- See Homework 6 for the proof of this lemma.
- We close this lecture by the following application of Cotlar-Stein.

Proposition

Suppose $\delta>0$. Let $\left\{k_{j}(x, y)\right\}_{j \in \mathbb{Z}}$ be a sequence of C^{∞} kernels on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ that satisfies

$$
\begin{gather*}
\left|k_{j}(x, y)\right| \lesssim \frac{2^{j n}}{\left(1+2^{j}|x-y|\right)^{n+\delta}} \tag{1}\\
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} k_{j}(x, y)\right| \lesssim \frac{2^{j(n+|\alpha|+|\beta|)}}{\left(1+2^{j}|x-y|\right)^{n+\delta}} \quad \text { for all } \alpha, \beta \tag{2}\\
\int_{\mathbb{R}^{n}} k_{j}(x, y) d y=0 \quad \text { for all } x \in \mathbb{R}^{n} \tag{3}\\
\int_{\mathbb{R}^{n}} k_{j}(x, y) d x=0 \quad \text { for all } y \in \mathbb{R}^{n} . \tag{4}
\end{gather*}
$$

For each $j \in \mathbb{Z}$, let $T_{j} f(x)=\int_{\mathbb{R}^{n}} f(y) k_{j}(x, y) d y$. Then

$$
\left\|T_{j} T_{i}^{*}\right\|_{L^{2} \rightarrow L^{2}}+\left\|T_{i}^{*} T_{j}\right\|_{L^{2} \rightarrow L^{2}} \lesssim 2^{-\delta|i-j|}
$$

so $\sum_{j} T_{j}$ converges strongly to a bounded linear operator T on L^{2}.

- One can use this to prove, for instance, that the Hilbert transform is bounded on L^{2}; see Homework 6.
- Indeed, morally speaking, (1) to (4) says that $\sum_{j} T_{j}$ is almost like a translation-invariant singular integral we studied in Lecture 4.
- Next time we use this proposition to prove the $T(1)$ theorem.
- We prove this proposition as follows.
- We will only show that

$$
\left\|T_{j} T_{i}^{*}\right\|_{L^{2} \rightarrow L^{2}} \lesssim 2^{-\delta|i-j|}
$$

since the bound for $\left\|T_{i}^{*} T_{j}\right\|_{L^{2} \rightarrow L^{2}}$ is similar.

- The kernel for $T_{j} T_{i}^{*}$ is

$$
K_{j, i}(x, y):=\int_{\mathbb{R}^{n}} k_{j}(x, z) \overline{k_{i}}(y, z) d z
$$

and if $i \geq j$, then we rewrite this using (3) as

$$
K_{j, i}(x, y)=\int_{\mathbb{R}^{n}}\left(k_{j}(x, z)-k_{j}(x, y)\right) \overline{k_{i}}(y, z) d z
$$

- From (1) and (2), we get

$$
\begin{aligned}
& \left|k_{j}(x, z)-k_{j}(x, y)\right| \\
\lesssim & \left(2^{j}|z-y|\right)^{\frac{\delta}{2}}\left(\frac{2^{j n}}{\left(1+2^{j}|x-z|\right)^{n+\delta}}+\frac{2^{j n}}{\left(1+2^{j}|x-y|\right)^{n+\delta}}\right) ;
\end{aligned}
$$

indeed if $2^{j}|y-z| \geq 1$, this follows by estimating

$$
\left|k_{j}(x, z)-k_{j}(x, y)\right| \leq\left|k_{j}(x, z)\right|+\left|k_{j}(x, y)\right|
$$

and using (1), whereas if $2^{j}|y-z| \leq 1$, then we use (2) and the mean-value theorem, noting that if u is on the straight line segment connecting y and z, then

$$
\min \{|x-y|,|x-z|\} \lesssim 2^{-j}+|x-u|
$$

which implies
$\frac{2^{j n}}{\left(1+2^{j}|x-u|\right)^{n+\delta}} \lesssim \frac{2^{j n}}{\left(1+2^{j}|x-z|\right)^{n+\delta}}+\frac{2^{j n}}{\left(1+2^{j}|x-y|\right)^{n+\delta}}$.

- Now we invoke an elementary inequality, which says

$$
\int_{\mathbb{R}^{n}} \frac{2^{j n}}{\left(1+2^{j}|x-z|\right)^{n+\frac{\delta}{2}}} \frac{2^{i n}}{\left(1+2^{i}|z|\right)^{n+\frac{\delta}{2}}} d z \lesssim \frac{2^{j n}}{\left(1+2^{j}|x|\right)^{n+\frac{\delta}{2}}}
$$

if $i \geq j$ (this can be proved by rescaling to $j=0$, and then dividing the domain of integration into 2 parts, depending on whether $|z-x| \geq \frac{|x|}{2}$ or $\left.|z-x| \leq \frac{|x|}{2}\right)$.

- Hence if $i \geq j$, then

$$
\left|K_{j, i}(x, y)\right| \lesssim 2^{-(i-j) \frac{\delta}{2}} \frac{2^{j n}}{\left(1+2^{j}|x-y|\right)^{n+\frac{\delta}{2}}}
$$

similarly if $j \geq i$, then

$$
\left|K_{j, i}(x, y)\right| \lesssim 2^{-(j-i) \frac{\delta}{2}} \frac{2^{i n}}{\left(1+2^{i}|x-y|\right)^{n+\frac{\delta}{2}}}
$$

- From Young's inequality, it follows that

$$
\left\|T_{j} T_{i}^{*}\right\|_{L^{2} \rightarrow L^{2}} \lesssim 2^{-|i-j| \frac{\delta}{2}}
$$

