Topics in Harmonic Analysis
 Lecture 7: Paraproducts, Carleson measures, and the $T(1)$ theorem

Po-Lam Yung

The Chinese University of Hong Kong

Introduction

- Last time we saw an almost orthogonality principle, due to Cotlar and Stein.
- This time we will introduce paraproducts, study Carleson measures and understand the connections of these to BMO.
- All these will come together in the proof of the celebrated $T(1)$ theorem of David and Journé, that characterizes when certain (non-convolution) singular integrals are bounded on L^{2}.

Outline

- $T(1)$ theorem: statement and applications
- Paraproducts
- Carleson measures and Carleson embedding
- The proof of $T(1)$ theorem
$T(1)$ theorem: statement and applications
- Let $T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ be a continuous linear operator.
- Suppose there exists a kernel $K_{0}(x, y)$, defined for $x \neq y$, such that

$$
T f(x)=\int_{\mathbb{R}^{n}} f(y) K_{0}(x, y) d y
$$

whenever $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and x is not in the support of f.

- We assume

$$
\left|K_{0}(x, y)\right| \lesssim|x-y|^{-n}
$$

and that there exists a fixed $\delta>0$ such that

$$
\begin{aligned}
& \left|K_{0}(x, y)-K_{0}\left(x^{\prime}, y\right)\right| \lesssim \frac{\left|x-x^{\prime}\right|^{\delta}}{|x-y|^{n+\delta}} \quad \text { if }\left|x-x^{\prime}\right| \leq|x-y| / 2 \\
& \left|K_{0}(x, y)-K_{0}\left(x, y^{\prime}\right)\right| \lesssim \frac{\left|y-y^{\prime}\right|^{\delta}}{|x-y|^{n+\delta}} \quad \text { if }\left|y-y^{\prime}\right| \leq|x-y| / 2
\end{aligned}
$$

- Question: When can such an operator T be extended to be a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$?
- If it were bounded on $L^{2}\left(\mathbb{R}^{n}\right)$, then it is bounded on $L^{p}\left(\mathbb{R}^{n}\right)$ for all $1<p<\infty$, by the singular integral theorem.
- So we need $T(1) \in B M O$, in the sense that there exists a BMO function $a(x)$, such that for every $g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ with $\int g=0$, if g is supported on a ball $B(0, R)$ centered at the origin, then whenever $\eta \in C_{c}^{\infty}$ and is identically 1 on $B(0,2 R)$, we have

$$
\langle T(\eta), g\rangle+\int_{\mathbb{R}^{n}} T(1-\eta)(x) g(x) d x=\int_{\mathbb{R}^{n}} a(x) g(x) d x
$$

where for $x \in B(0, R)$ we define

$$
T(1-\eta)(x):=\int_{\mathbb{R}^{n}}(1-\eta(y))\left[K_{0}(x, y)-K_{0}(0, y)\right] d y .
$$

- Moreover, if $T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is continuous, linear, and admits a kernel representation as above, then its adjoint $T^{*}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is also continuous, linear, and admits a kernel representation

$$
T^{*} g(x)=\int_{\mathbb{R}^{n}} \overline{K_{0}(y, x)} g(y) d y
$$

whenever $g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and x is not in the support of g.

- If T can be extended to be a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$, then so can T^{*}, so we must have $T^{*}(1) \in B M O$, in the same way we had $T(1) \in B M O$.
- Finally, if T can be extended to be a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$, then T must be weakly bounded, in the sense that

$$
\left\langle T\left(\phi_{R}^{x_{0}}\right), \psi_{R}^{x_{0}}\right\rangle \leq A R^{-n}
$$

whenever $x_{0} \in \mathbb{R}^{n}, R>0$ and $\phi_{R}^{x_{0}}, \psi_{R}^{x_{0}}$ are normalized bump functions adapted to the ball $B\left(x_{0}, R\right)$; here a normalized bump function adapted to $B\left(x_{0}, R\right)$ is a function of the form

$$
x \mapsto \frac{1}{R^{n}} \phi\left(\frac{x-x_{0}}{R}\right)
$$

where ϕ is a C^{∞} function supported in $B(0,1)$ with

$$
\left\|\partial^{\alpha} \phi\right\|_{L^{\infty}} \leq 1
$$

for all α up to some large and fixed order N (whose exact value will be irrelevant for us).

- What is remarkable is that the above 3 conditions are already sufficient.

Theorem ($T(1)$ theorem)

Let $T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ be a continuous linear operator. Suppose T can be represented by a kernel K_{0} as before, where K_{0} satisfies

$$
\begin{gathered}
\left|K_{0}(x, y)\right| \lesssim|x-y|^{-n} \\
\left|K_{0}(x, y)-K_{0}\left(x^{\prime}, y\right)\right| \lesssim \frac{\left|x-x^{\prime}\right|^{\delta}}{|x-y|^{n+\delta}} \quad \text { if }\left|x-x^{\prime}\right| \leq|x-y| / 2, \text { and } \\
\left|K_{0}(x, y)-K_{0}\left(x, y^{\prime}\right)\right| \lesssim \frac{\left|y-y^{\prime}\right|^{\delta}}{|x-y|^{n+\delta}} \quad \text { if }\left|y-y^{\prime}\right| \leq|x-y| / 2
\end{gathered}
$$

here $\delta>0$ is some fixed constant. If
(a) $T(1) \in B M O$,
(b) $T^{*}(1) \in B M O$ and
(c) T is weakly bounded,
then T extends to a bounded linear operator on $L^{2}\left(\mathbb{R}^{n}\right)$.

- A classical application of the $T(1)$ theorem is to establish the L^{2} boundedness of the Calderón commutators

$$
C_{k} f(x)=\lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon}\left(\frac{A(x)-A(y)}{x-y}\right)^{k} \frac{f(y)}{x-y} d y
$$

where A is a Lipschitz function on \mathbb{R} and $k \geq 0$ is an integer. Indeed, there exists a constant C such that

$$
\left\|C_{k}\right\|_{L^{2} \rightarrow L^{2}} \leq C^{k}\left\|A^{\prime}\right\|_{L^{\infty}}^{k} \quad \text { for all } k \geq 0
$$

- This in turn allows one to bound the Cauchy integral along Lipschitz curves with sufficiently small Lipschitz constants: If A is a Lipschitz function on \mathbb{R} with sufficiently small Lipschitz norm, then

$$
T f(x):=-\frac{1}{2 \pi i} \lim _{\varepsilon \rightarrow 0} \int_{|x-y|>\varepsilon} \frac{f(y)\left(1+i A^{\prime}(y)\right)}{x-y+i(A(x)-A(y))} d y
$$

is bounded on $L^{2}(\mathbb{R})$.

- See Stein's Harmonic Analysis for details and further reference (in particular, to $T(b)$ theorem that refines $T(1)$ theorem).

Paraproducts

- The proof of the $T(1)$ theorem consists of two parts: one about reduction to a special case $T(1)=T^{*}(1)=0$, and another about the proof of L^{2} boundedness in this special case.
- We first carry out the reduction to the special case.
- To do so, we use the following proposition:

Proposition

If $a \in B M O\left(\mathbb{R}^{n}\right)$, then there exists a standard Calderón-Zygmund operator $L_{a}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, such that when appropriately extended as above, we have

$$
L_{a}(1)=a, \quad L_{a}^{*}(1)=0 .
$$

- Assuming this proposition, then we are led to consider

$$
\tilde{T}:=T-L_{T(1)}-L_{T^{*}(1)}^{*} .
$$

Indeed \tilde{T} satisfies all the hypothesis of T, and additionally

$$
\tilde{T}(1)=0, \quad \tilde{T}^{*}(1)=0
$$

The goal is then to prove the L^{2} boundedness of \tilde{T}; since $L_{T(1)}$ and $L_{T^{*}(1)}^{*}$ are Calderón-Zygmund operators, they are bounded on L^{2}. This would prove the L^{2} boundedness of T.

- So let's first prove the proposition. Given $a \in B M O\left(\mathbb{R}^{n}\right)$, we construct L_{a} using paraproducts.
- Let $\psi(\xi)$ be a smooth function with compact support on the unit ball $B(0,2)$, with $\psi(\xi) \equiv 1$ on $B(0,1)$.
- Let $\varphi(\xi)=\psi(\xi)-\psi(2 \xi)$ so that ψ is supported on the annulus $\{1 / 2 \leq|\xi| \leq 2\}$, and

$$
\sum_{j \in \mathbb{Z}} \varphi\left(2^{-j} \xi\right)=1 \quad \text { for every } \xi \neq 0
$$

- Let Ψ and Φ be the inverse Fourier transforms of ψ and φ.
- For $j \in \mathbb{Z}$, let $\Psi_{j}(x)=2^{j n} \Psi\left(2^{j} x\right), \Phi_{j}(x)=2^{j n} \Phi\left(2^{j} x\right)$.
- For $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, let

$$
S_{j} f=f * \Psi_{j}
$$

for $f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right) /\{$ constants $\}$, let

$$
\Delta_{j} f=f * \Phi_{j}
$$

Note that $S_{j}-S_{j-1}=\Delta_{j}$, and

$$
\Delta_{k} \Delta_{j}=0 \quad \text { whenever }|j-k| \geq 2
$$

- If $a, f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we have

$$
\begin{aligned}
a \cdot f & =\lim _{J \rightarrow+\infty}\left(S_{J+3} a \cdot S_{J} f-S_{-J+3} a \cdot S_{-J} f\right) \\
& =\lim _{J \rightarrow+\infty} \sum_{j=-J+1}^{J}\left(S_{j+3} a \cdot S_{j} f-S_{j+2} a \cdot S_{j-1} f\right) \\
& =\sum_{j \in \mathbb{Z}} \Delta_{j+3} a \cdot S_{j} f+\sum_{j \in \mathbb{Z}} S_{j+2} a \cdot \Delta_{j} f
\end{aligned}
$$

(with convergence in say \mathcal{S}^{\prime} or L^{2}).

- So each sum on the right hand side is like half of the product of a and f; these are called paraproducts.
- We focus on the first term, and let

$$
L_{a}(f)=\sum_{j \in \mathbb{Z}} \Delta_{j+3} a \cdot S_{j} f
$$

$$
L_{a}(f)=\sum_{j \in \mathbb{Z}} \Delta_{j+3} a \cdot S_{j} f
$$

- The Fourier support of Δ_{j+3} a is in $\left\{2^{j+2} \leq|\xi| \leq 2^{j+4}\right\}$, and that of $S_{j} f$ is in $\left\{|\xi| \leq 2^{j+1}\right\}$.
- Thus the Fourier support of $\Delta_{j+3} a \cdot S_{j} f$ is in

$$
\left\{2^{j+1} \leq|\xi| \leq 2^{j+5}\right\}
$$

and the sum defining $L_{a}(f)$ is an almost orthogonal sum. (This is why we had chosen to write $j+3$ in place of j in the first place.)

- We will now extend the domain of definition of $L_{a}(f)$: we define $L_{a}(f)$ as an element of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ by the above formula whenever $a \in B M O$ and $f \in \mathcal{S}$.

$$
L_{a}(f)=\sum_{j \in \mathbb{Z}} \Delta_{j+3} a \cdot S_{j} f
$$

- First note that if $a \in B M O$, then

$$
\left\|\Delta_{j+3} a\right\|_{L^{\infty}} \lesssim\|a\|_{B M O} \quad \text { uniformly in } j .
$$

Hence if $f \in \mathcal{S}$, then

$$
\left\|\Delta_{j+3} a \cdot S_{j} f\right\|_{L^{2}} \lesssim\|a\|_{B M O}\|f\|_{L^{2}} \quad \text { uniformly in } j .
$$

- Next note that $\Delta_{j+3} a \cdot S_{j} f$ has frequency support in $|\xi| \simeq 2^{j}$.
- Also, if $g \in \mathcal{S}$, then $\left\|\Delta_{j} g\right\|_{L^{2}} \lesssim 2^{-|j| n}$ uniformly in j.
- Thus if $g \in \mathcal{S}$, then

$$
\sum_{M<|j|<M^{\prime}}\left|\left\langle\Delta_{j+3} a \cdot S_{j} f, g\right\rangle\right| \lesssim 2^{-M n} \rightarrow 0
$$

as $M, M^{\prime} \rightarrow \infty$. Thus the sum defining $L_{a}(f)$ converges in \mathcal{S}^{\prime}.

- From now on, let $a \in B M O\left(\mathbb{R}^{n}\right)$.
- We have just defined $L_{a}: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, and it is easy to check that this map is continuous.
- Also, one can check that L_{a} has a kernel representation

$$
L_{a} f(x)=\int_{\mathbb{R}^{n}} f(y) K_{0}(x, y) d y
$$

whenever $f \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ and x is not in the support of f, where

$$
K_{0}(x, y):=\sum_{j \in \mathbb{Z}}\left(\Delta_{j+3} a\right)(x) \Psi_{j}(x-y) \quad \text { for } x \neq y
$$

- Since $\left\|\Delta_{j+3} a\right\|_{L^{\infty}} \lesssim\|a\|_{B M O}$ uniformly in j, it is easy to check that

$$
\left|K_{0}(x, y)\right| \lesssim|x-y|^{-n} .
$$

Similarly, $\left|\partial_{x, y}^{\lambda} K_{0}(x, y)\right| \lesssim|x-y|^{-n-|\lambda|}$ for all multiindices λ.

- Chasing through the definitions, we see that $L_{a}(1)=a$ and $L_{a}^{*}(1)=0$.
- For instance, suppose $g \in C_{c}^{\infty}(B(0, R))$ with $\int g=0$, and $\eta \in C_{c}^{\infty}$ is identically 1 on $B(0,2 R)$. Then

$$
\begin{aligned}
& \left\langle L_{a} \eta, g\right\rangle+\int_{\mathbb{R}^{n}} L_{a}(1-\eta)(x) g(x) d x \\
= & \lim _{J \rightarrow \infty} \sum_{|j| \leq J}\left\langle\Delta_{j+3} a \cdot S_{j} \eta, g\right\rangle \\
& +\lim _{J \rightarrow \infty} \sum_{|j| \leq J} \iint(1-\eta)(y) \Delta_{j+3} a(x) \Psi_{j}(x-y) g(x) d y d x,
\end{aligned}
$$

where we used Fubini to evaluate $\int_{\mathbb{R}^{n}} L_{a}(1-\eta)(x) g(x) d x$; this is possible because the supports of $(1-\eta)$ and g are disjoint.

- The sum of the above two limits is equal to

$$
\lim _{J \rightarrow \infty} \sum_{|j| \leq J} \int \Delta_{j+3} a(x) g(x) d x
$$

and we want to show that it is equal to $\int a(x) g(x) d x$.

- But

$$
\sum_{|j| \leq J} \int \Delta_{j+3} a(x) g(x) d x=\int a(x)\left[S_{J+3} g(x)-S_{-J+2} g(x)\right] d x
$$ and $S_{J+3} g(x) \rightarrow g(x)$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$ as $J \rightarrow+\infty$. So it remains to show that

$$
\int a(x) S_{-J+2} g(x) d x \rightarrow 0 \quad \text { as } J \rightarrow \infty
$$

- Now since $\int_{\mathbb{R}^{n}} g(y) d y=0$, we have

$$
\begin{aligned}
& \int a(x) S_{-J+2} g(x) d x \\
= & \int\left[a(x)-a_{B\left(0,2^{\jmath}\right)}\right] S_{-J+2} g(x) d x \\
= & \iint\left[a(x)-a_{B\left(0,2^{J}\right)}\right]\left[\Psi_{-J+2}(x-y)-\Psi_{-J+2}(x)\right] g(y) d y d x
\end{aligned}
$$

- Since g has compact support and Ψ is Schwartz, using the mean-value theorem, we have

$$
\left|\Psi_{-J+2}(x-y)-\Psi_{-J+2}(x)\right| \lesssim 2^{-J} \frac{2^{-J n}}{\left(1+2^{-J}|x|\right)^{n+1}}
$$

for any y in the support of g and any $x \in \mathbb{R}^{n}$, where the implicit constant depends on the support of g.

- Thus

$$
\begin{aligned}
& \left|\int a(x) S_{-J+2} g(x) d x\right| \\
\leq & 2^{-J} \iint\left|a(x)-a_{B\left(0,2^{J}\right)}\right| \frac{2^{-J n}}{\left(1+2^{-J}|x|\right)^{n+1}}|g(y)| d y d x \\
& 2^{-J}\|a\|_{B M O}\|g\|_{L^{1}} \rightarrow 0
\end{aligned}
$$

as $J \rightarrow+\infty$. This proves $L_{a}(1)=a$. Similarly $L_{a}^{*}(1)=0$.

- To finish the proof of the proposition, we just need to show that L_{a} extends to a bounded linear operator on L^{2}.
- By almost orthogonality between the summands defining $L_{a}(f)$, it suffices to prove the following claim:

$$
\sum_{j \in \mathbb{Z}}\left\|\Delta_{j+3} a \cdot S_{j} f\right\|_{L^{2}}^{2} \lesssim\|f\|_{L^{2}}^{2} \quad \text { whenever } f \in \mathcal{S}
$$

- One may be tempted to prove the above claim by bounding $\left\|\Delta_{j+3} a\right\|_{L^{\infty}} \lesssim\|a\|_{B M O}$, and summing $\sum_{j \in \mathbb{Z}}\left\|S_{j} f\right\|_{L^{2}}^{2}$; unfortunately this does not work, for the latter sum is usually divergent.
- So the proof of the claim must proceed differently. It will rely on the notion of Carleson measures.

Carleson measures and Carleson embedding

- A measure $d \mu$ on the upper half space \mathbb{R}_{+}^{n+1} is said to be a Carleson measure, if there exists a constant C, such that

$$
d \mu(B(x, r) \times(0, r)) \leq C|B(x, r)|
$$

for every ball $B(x, r) \subset \mathbb{R}^{n}$.

- We think of the smallest such C as the norm of the Carleson measure, written $\|d \mu\|_{\mathcal{C}}$.
- We will need two lemmas, one connecting BMO functions to Carleson measures, and another for estimating integrals involving Carleson measures.

Lemma (Carleson embedding)

If $a \in B M O\left(\mathbb{R}^{n}\right)$, then

$$
d \mu:=\sum_{j \in \mathbb{Z}} \delta_{2-j}(y)\left|\Delta_{j+3} a(x)\right|^{2} d x
$$

is a Carleson measure on \mathbb{R}_{+}^{n+1}, with $\|d \mu\|_{\mathcal{C}} \lesssim\|a\|_{\text {BMO }}^{2}$.
Lemma
If $d \mu$ is a Carleson measure on \mathbb{R}_{+}^{n+1}, and $F(x, y)$ is a measurable function on \mathbb{R}_{+}^{n+1}, then

$$
\int_{\mathbb{R}_{+}^{n+1}}|F(x, y)|^{p} d \mu \leq 3^{n}\left\|F^{*}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p}\|d \mu\|_{\mathcal{C}}
$$

for all $1 \leq p<\infty$. Here F^{*} is the non-tangential maximal function

$$
F^{*}(x)=\sup _{y>0} \sup _{z \in B(x, y)}|F(z, y)| .
$$

- Apply the second lemma with $d \mu$ being the Carleson measure from the first lemma, $F\left(x, 2^{-j}\right)=S_{j} f(x)$ with $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, and $p=2$, we see that

$$
\int_{\mathbb{R}^{n}} \sum_{j \in \mathbb{Z}}\left|\Delta_{j+3} a(x) \cdot S_{j} f(x)\right|^{2} d x \lesssim\|M f\|_{L^{2}}^{2}\|a\|_{B M O}^{2}
$$

where M is the Hardy-Littlewood maximal function. Thus by the L^{2} boundedness of M, our earlier claim follows.

- It remains to prove the lemmas.
- We will give the proof of the lemmas beginning next slide; let us just pause to mention that there is a converse to the Carleson embedding lemma characterizing BMO. For details, see Stein's Harmonic Analysis, Chapter IV, Section 4.3.
- We begin with the proof of the second lemma.
- Let $d \mu$ be a Carleson measure on \mathbb{R}_{+}^{n+1}, and $F(x, y)$ be measurable on \mathbb{R}_{+}^{n+1}. We want to prove

$$
\int_{\mathbb{R}_{+}^{n+1}}|F(x, y)|^{p} d \mu \leq 3^{n}\left\|F^{*}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)}^{p}\|d \mu\|_{\mathcal{C}}
$$

for all $1 \leq p<\infty$.

- Since $\left(F^{*}\right)^{p}=\left(|F|^{p}\right)^{*}$, we may assume that $p=1$.
- By monotone convergence, we may also assume that F is supported on $B(0, R) \times(0, R)$ for some $R>0$.
- For $t>0$, let $O_{t}=\left\{(x, y) \in \mathbb{R}_{+}^{n+1}:|F(x, y)|>t\right\}$. It suffices to show that

$$
d \mu\left(O_{t}\right) \leq 3^{n}\|d \mu\|_{\mathcal{C}}\left|\left\{x \in \mathbb{R}^{n}: F^{*}(x)>t\right\}\right|
$$

(because one gets the desired inequality by integrating in t).

- To do so, let \mathcal{B}_{t} be a collection of balls in \mathbb{R}^{n}, defined by

$$
\mathcal{B}_{t}=\left\{B(x, y):(x, y) \in O_{t}\right\}
$$

- We claim that there exists a countable collection of pairwise disjoint balls $\left\{B_{i}\right\}_{B_{i} \in \mathcal{B}_{t}}$, such that if $B_{i}=B\left(x_{i}, y_{i}\right)$, then

$$
\bigcup_{i} B\left(x_{i}, 3 y_{i}\right) \times\left(0,3 y_{i}\right) \quad \text { covers } O_{t}
$$

- Indeed, the supremum of the radii of all balls in \mathcal{B}_{t} is finite, since F is supported on $B(0, R) \times(0, R)$. Choose B_{1} to be a ball in \mathcal{B}_{t} so that the radius of B_{1} is at least half of the supremum of the radii of all balls in \mathcal{B}_{t}. Remove all balls in \mathcal{B}_{t} that intersects B_{1}, and select B_{2} in the remaining collection so that the radius of B_{2} is at least half of the supremum of the radii of all balls that remained. Repeat, stopping only if there are no balls left.
- If the process never stops, then the supremum of the radii of all remaining balls after the j-th step tends to zero as $j \rightarrow \infty$, since F is supported on $B(0, R) \times(0, R)$ for some $R>0$.
- If $(x, y) \in O_{t}$, then $B(x, y) \in \mathcal{B}_{t}$, so $B(x, y)$ intersects one of the chosen B_{i} 's, with $y \leq 2 y_{i}$ where y_{i} is the radius of B_{i}. So if $B_{i}=B\left(x_{i}, y_{i}\right)$, then $x \in B\left(x_{i}, 3 y_{i}\right)$ and $y \in\left(0,3 y_{i}\right)$. This proves the claim.
- From the claim, we have

$$
\begin{aligned}
d \mu\left(O_{t}\right) & \leq \sum_{i} d \mu\left(B\left(x_{i}, 3 y_{i}\right) \times\left(0,3 y_{i}\right)\right) \\
& \leq\|d \mu\|_{\mathcal{C}} \sum_{i}\left|B\left(x_{i}, 3 y_{i}\right)\right| \\
& \leq 3^{n}\|d \mu\|_{\mathcal{C}}\left|\bigcup_{i} B\left(x_{i}, y_{i}\right)\right|
\end{aligned}
$$

The latter is

$$
\leq 3^{n}\|d \mu\|_{\mathcal{C}}\left|\left\{x \in \mathbb{R}^{n}: F^{*}(x)>t\right\}\right|
$$

as promised, since from $\left(x_{i}, y_{i}\right) \in O_{t}$, we get $\left|F\left(x_{i}, y_{i}\right)\right|>t$, so for any $x \in \bigcup_{i} B\left(x_{i}, y_{i}\right)$, we have $F^{*}(x)>t$.

- This finishes the proof of the second lemma.
- We now prove the Carleson embedding lemma.
- Let $a \in B M O\left(\mathbb{R}^{n}\right)$, and

$$
d \mu=\sum_{j \in \mathbb{Z}} \delta_{2^{-j}}(y)\left|\Delta_{j+3} a(x)\right|^{2} d x
$$

- We need to show that $d \mu$ is a Carleson measure on \mathbb{R}_{+}^{n+1}, with $\|d \mu\|_{\mathcal{C}} \lesssim\|a\|_{B M O}^{2}$. This will follow if we show that

$$
\int_{B\left(x_{0}, r\right)} \sum_{2^{-j} \leq r}\left|\Delta_{j} a(x)\right|^{2} d x \lesssim r^{n}\|a\|_{B M O}^{2}
$$

for any $x_{0} \in \mathbb{R}^{n}$ and any $r>0$.

- By translation and dilation invariance, we may assume

$$
x_{0}=0, \quad r=1 \quad \text { and } \quad\|a\|_{B M O}=1 .
$$

Write $B=B\left(x_{0}, r\right)=B(0,1)$, and $B^{*}=B(0,2)$.

- Since $\Delta_{j} c=0$ for any constant c, by further subtracting a constant, we may assume $f_{B^{*}} a=0$.
- Our goal now is to prove that

$$
\int_{B} \sum_{j \geq 0}\left|\Delta_{j} a(x)\right|^{2} d x \lesssim 1
$$

under the above assumptions.

- Let $a=a_{1}+a_{2}$, where $a_{1}=a \chi_{B^{*}}$ and $a_{2}=a \chi_{\left(B^{*}\right)^{c}}$.
- Since $f_{B^{*}} a=0$, by John-Nirenberg inequality, we have

$$
\left\|a_{1}\right\|_{L^{2}}^{2}=\int_{B^{*}}|a(y)|^{2} d y \lesssim\left|B^{*}\right|\|a\|_{B M O}^{2} \lesssim 1
$$

Hence by Plancherel,

$$
\int_{B} \sum_{j \geq 0}\left|\Delta_{j} a_{1}(x)\right|^{2} d x \lesssim \int_{\mathbb{R}^{n}} \sum_{j \in \mathbb{Z}}\left|\Delta_{j} a_{1}(x)\right|^{2} d x \lesssim\left\|a_{1}\right\|_{L^{2}}^{2} \lesssim 1
$$

- We claim that

$$
\int_{B} \sum_{j \geq 0}\left|\Delta_{j} a_{2}(x)\right|^{2} d x \lesssim 1
$$

Indeed it suffices to show that

$$
\sum_{j \geq 0}\left|\Delta_{j} a_{2}(x)\right|^{2} \lesssim 1 \quad \text { for all } x \in B
$$

- But for each $j \geq 0$ and each $x \in B$, we have

$$
\Delta_{j} a_{2}(x)=\int_{y \in\left(B^{*}\right)^{c}} a(y) \Phi\left(2^{j}(x-y)\right)^{j n} d y
$$

Since $\left|\Phi\left(2^{j}(x-y)\right)\right| \lesssim\left(2^{j}|y|\right)^{-(n+1)}$, we have

$$
\left|\Delta_{j} a_{2}(x)\right| \lesssim 2^{-j} \int_{|y| \geq 2}|a(y)| \frac{d y}{|y|^{n+1}}
$$

$$
\left|\Delta_{j} a_{2}(x)\right| \lesssim 2^{-j} \int_{|y| \geq 2}|a(y)| \frac{d y}{|y|^{n+1}}
$$

- By decomposing $\{|y| \geq 2\}$ into dyadic annuli and noting that $\left|a_{B\left(0,2^{k}\right)}-a_{B\left(0,2^{k+1}\right)}\right| \lesssim 1$ uniformly in k, we see that

$$
\int_{|y| \geq 2}|a(y)| \frac{d y}{|y|^{n+1}} \lesssim\|a\|_{B M O} \lesssim 1
$$

(c.f. Question 8(d) of Homework 5.)

- Altogether, this shows

$$
\sum_{j \geq 0}\left|\Delta_{j} a_{2}(x)\right|^{2} \lesssim \sum_{j \geq 0} 2^{-2 j} \lesssim 1 \quad \text { for all } x \in B
$$

as desired.

- This completes the proof of the Carleson embedding lemma.

The proof of $T(1)$ theorem

- Let's recap what we have so far.
- For $a \in B M O\left(\mathbb{R}^{n}\right), f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we defined the paraproduct

$$
L_{a}(f)=\sum_{j \in \mathbb{Z}} \Delta_{j+3} a \cdot S_{j} f
$$

and the above showed that L_{a} extends as a bounded linear operator on L^{2}.

- Earlier we also saw that the integral kernel of L_{a} satisfies appropriate differential inequalities, so that L_{a} is a standard Calderón-Zygmund operator on \mathbb{R}^{n}.
- We also have $L_{a}(1)=a, L_{a}^{*}(1)=0$.
- This shows that in proving the $T(1)$ theorem, we may assume in addition that $T(1)=T^{*}(1)=0$.
- To do so we decompose T into almost orthogonal pieces, and use Cotlar-Stein; indeed when $T(1)=T^{*}(1)=0, T$ will be shown to be similar enough to a translation-invariant singular integral, so that almost orthogonality works.
- Let's modify our earlier definitions of S_{j} and Δ_{j} as follows.
- Let $\psi \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ be supported on $B(0,1)$, with $\Psi \equiv 1$ on $B(0,1 / 2)$, and $\int_{\mathbb{R}^{n}} \Psi(x) d x=1$. Let

$$
\Phi(x)=\Psi(x)-\frac{1}{2^{n}} \Psi(x / 2)
$$

so that $\int_{\mathbb{R}^{n}} \Phi(x) d x=0$.

- For $j \in \mathbb{Z}$, write $\Psi_{j}(x)=2^{j n} \Psi\left(2^{j} x\right)$ and $\Phi_{j}(x)=2^{j n} \Phi\left(2^{j} x\right)$. For $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, also let

$$
S_{j} f:=f * \Psi_{j}, \quad \Delta_{j} f:=f * \Phi_{j}
$$

so that $\Delta_{j}=S_{j}-S_{j-1}$.

- While $S_{j} f$ and $\Delta_{j} f$ does not have compact Fourier support, morally speaking they are frequency localized to a ball of radius 2^{j} and an annulus of size 2^{j} respectively.
- If $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, we claim that

$$
T f=\lim _{J \rightarrow+\infty} S_{J} T S_{J} f \quad \text { and } \quad \lim _{J \rightarrow+\infty} S_{-J} T S_{-J} f=0
$$

where convergence are in the topology of $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.

- To prove this claim, first note that since $T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ is continuous and linear, by the Schwartz kernel theorem, there exists a tempered distribution K on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ such that

$$
\langle T f, g\rangle=\langle K, f \otimes g\rangle \quad \text { for all } f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)
$$

here the pairing on the left is a pairing of $T f \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$ with $g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, while the pairing on the right is between $K \in \mathcal{S}^{\prime}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ with $f \otimes g(x, y):=f(x) g(y) \in \mathcal{S}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$.

- Since $S_{J} f \otimes S_{J} g \rightarrow f \otimes g$ in the topology of $\mathcal{S}\left(\mathbb{R}^{n} \times \mathbb{R}^{n}\right)$ as $J \rightarrow \infty$, it follows that

$$
\left\langle S_{J} T S_{J} f, g\right\rangle=\left\langle K, S_{J} f \otimes S_{J} g\right\rangle \rightarrow\langle K, f \otimes g\rangle=\langle T f, g\rangle
$$

as $J \rightarrow \infty$.

- The second part of the claim amounts to saying that

$$
\lim _{J \rightarrow+\infty}\left\langle T S_{-J} f, S_{-J}^{*} g\right\rangle=0
$$

for all $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$. By our previous argument and the density of $C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$ in $\mathcal{S}\left(\mathbb{R}^{n}\right)$, we assume $f, g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$.

- In that case, for J large enough, $S_{-J} f$ is a normalized bump function on $B\left(0,2^{J+1}\right)$, and so is $S_{-J}^{*} g$.
- Since T is weakly bounded, this shows

$$
\left|\left\langle T S_{-J} f, S_{-J}^{*} g\right\rangle\right| \lesssim 2^{-n J} \rightarrow 0
$$

as $J \rightarrow+\infty$, as desired.

- So we have proved that for $f \in \mathcal{S}\left(\mathbb{R}^{n}\right)$

$$
\begin{aligned}
T f & =\lim _{J \rightarrow+\infty}\left(S_{J} T S_{J} f-S_{-J-1} T S_{-J-1} f\right) \\
& =\lim _{J \rightarrow+\infty} \sum_{|j| \leq J}\left(\Delta_{j} T S_{j} f+S_{j-1} T \Delta_{j} f\right)
\end{aligned}
$$

where the convergence is in $\mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$.

- Using $T(1)=0$ and Cotlar-Stein, we will show that

$$
\left|\left\langle\sum_{|j| \leq J} \Delta_{j} T S_{j} f, g\right\rangle\right| \lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}
$$

for any $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, uniformly in $J \in \mathbb{N}$; similarly, using $T^{*}(1)=0$ instead, one has a corresponding estimate for $\left|\left\langle\sum_{|j| \leq J} S_{j-1} T \Delta_{j} f, g\right\rangle\right|$. This would prove that

$$
|\langle T f, g\rangle| \lesssim\|f\|_{L^{2}}\|g\|_{L^{2}}
$$

for all $f, g \in \mathcal{S}\left(\mathbb{R}^{n}\right)$, completing the proof of $T(1)$ theorem.

- For $j \in \mathbb{Z}$, let $T_{j}:=\Delta_{j} T S_{j}$. Our goal is to show that

$$
\left|\left\langle T^{(J)} f, g\right\rangle\right| \lesssim\|f\|_{L^{2}}\|g\|_{L^{2}} \quad \text { for any } f, g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)
$$

uniformly in $J \in \mathbb{N}$, where $T^{(J)}:=\sum_{|j| \leq J} T_{j}$.

- First we determine the integral kernel of the operator T_{j}. Let

$$
\Psi_{j}^{y}(w)=2^{j n} \Psi\left(2^{j}(w-y)\right) \quad \text { and } \quad \Phi_{j}^{x}(v)=2^{j n} \Phi\left(2^{j}(x-v)\right) .
$$

These are normalized bump functions in $B\left(y, 2^{-j}\right)$ and $B\left(x, 2^{-j}\right)$. Define, for $x, y \in \mathbb{R}^{n}$,

$$
k_{j}(x, y):=\left\langle T\left(\Psi_{j}^{y}\right), \Phi_{j}^{x}\right\rangle
$$

Then using the continuity of $T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, one can check that for $f, g \in C_{c}^{\infty}\left(\mathbb{R}^{n}\right)$, we have

$$
\left\langle T_{j} f, g\right\rangle=\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} k_{j}(x, y) f(y) g(x) d x d y .
$$

- Let δ be the Hölder exponent in the assumed estimates for the kernel K_{0} of T. We claim

$$
\begin{align*}
\left|k_{j}(x, y)\right| & \lesssim \frac{2^{j n}}{\left(1+2^{j}|x-y|\right)^{n+\delta}} \tag{1}\\
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} k_{j}(x, y)\right| & \lesssim \frac{2^{j(n+|\alpha|+|\beta|)}}{\left(1+2^{j}|x-y|\right)^{n+\delta}} \tag{2}\\
\int_{\mathbb{R}^{n}} k_{j}(x, y) d y & =0 \quad \text { for all } x \in \mathbb{R}^{n} \tag{3}\\
\int_{\mathbb{R}^{n}} k_{j}(x, y) d x & =0 \quad \text { for all } y \in \mathbb{R}^{n} \tag{4}
\end{align*}
$$

- Indeed (1) and (2) will follow from the weak boundedness of T and the kernel estimates for K_{0}, while (3) will follow from the assumption $T(1)=0$ and kernel estimates for K_{0}.
- (4) is similar to (3) except that it is easier; one will not need the assumption on $T(1)$.
- The above claims in turn allow us to invoke a proposition from the end of the last lecture, which shows that Cotlar-Stein applies, and $T^{(J)}$ is uniformly bounded on L^{2}, as desired.
- It remains to prove the claims. Recall

$$
k_{j}(x, y):=\left\langle T\left(\Psi_{j}^{y}\right), \Phi_{j}^{x}\right\rangle .
$$

- First, to prove

$$
\left|k_{j}(x, y)\right| \lesssim \frac{2^{j n}}{\left(1+2^{j}|x-y|\right)^{n+\delta}}
$$

note that this follows from weak boundedness of T if $|x-y| \lesssim 2^{-j}$. Otherwise the supports of Ψ_{j}^{y} and Φ_{j}^{x} are at a distance $\gtrsim 2^{-j}$. In that case $k_{j}(x, y)$ can be written as

$$
\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} K_{0}(v, w) \Psi_{j}^{y}(w) \Phi_{j}^{\times}(v) d v d w .
$$

Since $\int_{\mathbb{R}^{n}} \Phi_{j}^{\times}(w) d w=0$, this shows

$$
k_{j}(x, y)=\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left(K_{0}(v, w)-K_{0}(x, w)\right) \Psi_{j}^{y}(w) \Phi_{j}^{x}(v) d v d w
$$

- Since on the supports of the integral, we have $|v-x| \lesssim 2^{-j}$ and $|v-w| \simeq|x-w| \simeq|x-y|$, we have, by our assumption on K_{0}, that

$$
\left|k_{j}(x, y)\right| \lesssim 2^{-j \delta}|x-y|^{-n-\delta}=\frac{2^{j n}}{\left(2^{j}|x-y|\right)^{n+\delta}}
$$

as desired. This proves (1).

- (2) follows by observing that

$$
\left|\partial_{x}^{\alpha} \partial_{y}^{\beta} k_{j}(x, y)\right|=\left|\left\langle T\left(\partial^{\beta} \Psi_{j}^{y}\right), \partial^{\alpha} \Phi_{j}^{x}\right\rangle\right|
$$

and modifying the argument that proved (1); the key is that $2^{-j|\beta|} \partial^{\beta} \Psi_{j}^{y}(w)$ and $2^{-j|\alpha|} \partial^{\alpha} \Phi_{j}^{x}(v)$ are also normalized bump functions on $B\left(y, 2^{-j}\right)$ and $B\left(x, 2^{-j}\right)$ respectively.

- To prove (3), it suffices to prove that

$$
\lim _{R \rightarrow+\infty} \int_{|y| \leq R} k_{j}(x, y) d y=0
$$

But since $k_{j}(x, y)=\left\langle T\left(\Psi_{j}^{y}\right), \Phi_{j}^{x}\right\rangle$, by continuity of $T: \mathcal{S}\left(\mathbb{R}^{n}\right) \rightarrow \mathcal{S}^{\prime}\left(\mathbb{R}^{n}\right)$, we have

$$
\int_{|y| \leq R} k_{j}(x, y) d y=\left\langle T\left(h_{j, R}\right), \Phi_{j}^{x}\right\rangle
$$

where

$$
h_{j, R}(w):=\int_{|y| \leq R} \Psi_{j}^{y}(w) d y=2^{j n} \int_{|y| \leq R} \Psi\left(2^{j}(w-y)\right) d y
$$

- Clearly

$$
h_{j, R}(w)=0 \quad \text { whenever }|w| \leq R+2^{-j} .
$$

We also have

$$
h_{j, R}(w)=1 \quad \text { whenever }|w| \leq R-2^{-j}
$$

- This suggests one to use the condition $T(1)=0$, and write

$$
\int_{|y| \leq R} k_{j}(x, y) d y=\left\langle T\left(h_{j, R}-1\right), \Phi_{j}^{x}\right\rangle
$$

- If $R-2^{-j} \geq 2\left(|x|+2^{-j}\right)$, then $h_{j, R}-1$ and Φ_{j}^{\times}have disjoint supports, so

$$
\begin{aligned}
& \left|\left\langle T\left(h_{j, R}-1\right), \Phi_{j}^{\times}\right\rangle\right| \\
= & \left|\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}}\left[K_{0}(v, w)-K_{0}(x, w)\right]\left(h_{j, R}-1\right)(w) \Phi_{j}^{\times}(v) d v d w\right| \\
\leq & \int_{|w| \geq R-2^{-j}} \int_{|v-x| \leq 2^{-j}}\left|K_{0}(v, w)-K_{0}(x, w)\right|\left|\Phi_{j}^{x}(v)\right| d v d w \\
\lesssim & 2^{-j \delta}\left(R-2^{-j}\right)^{-\delta} \rightarrow 0
\end{aligned}
$$

as $R \rightarrow+\infty$. This completes the proof of (3).

- Similarly,

$$
\int_{|x| \leq R} k_{j}(x, y) d x=\left\langle T\left(\Psi_{j}^{y}\right), H_{j, R}\right\rangle
$$

where

$$
H_{j, R}(v):=\int_{|x| \leq R} \Phi_{j}^{\times}(w) d x=2^{j n} \int_{|x| \leq R} \Phi\left(2^{j}(x-v)\right)
$$

- $H_{j, R}(v)$ is supported on the annulus $R-2^{-j} \leq|v| \leq R+2^{-j}$.
- If $R-2^{-j} \geq 2\left(|y|+2^{-j}\right)$, then $H_{j, R}$ and Ψ_{j}^{y} have disjoint supports, so

$$
\begin{aligned}
& \left|\left\langle T\left(\Psi_{j}^{y}\right), H_{j, R}\right\rangle\right| \\
= & \left|\int_{\mathbb{R}^{n} \times \mathbb{R}^{n}} K_{0}(v, w) \Psi_{j}^{y}(w) H_{j, R}(v) d v d w\right| \\
\leq & \int_{R-2^{-j} \leq|v| \leq R+2^{-j}} \int_{|w-y| \leq 2^{-j}}\left|K_{0}(v, w)\right|\left|\Psi_{j}^{y}(w)\right| d v d w \\
\lesssim & 2^{-j} R^{n-1}\left(R-2^{-j}\right)^{-n} \rightarrow 0
\end{aligned}
$$

as $R \rightarrow+\infty$. This completes the proof of (4).

