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Introduction

I Last time we saw an almost orthogonality principle, due to
Cotlar and Stein.

I This time we will introduce paraproducts, study Carleson
measures and understand the connections of these to BMO.

I All these will come together in the proof of the celebrated
T (1) theorem of David and Journé, that characterizes when
certain (non-convolution) singular integrals are bounded
on L2.
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T (1) theorem: statement and applications

I Let T : S(Rn)→ S ′(Rn) be a continuous linear operator.

I Suppose there exists a kernel K0(x , y), defined for x 6= y , such
that

Tf (x) =

ˆ
Rn

f (y)K0(x , y)dy

whenever f ∈ C∞c (Rn) and x is not in the support of f .

I We assume
|K0(x , y)| . |x − y |−n

and that there exists a fixed δ > 0 such that

|K0(x , y)− K0(x ′, y)| . |x − x ′|δ

|x − y |n+δ
if |x − x ′| ≤ |x − y |/2

|K0(x , y)− K0(x , y ′)| . |y − y ′|δ

|x − y |n+δ
if |y − y ′| ≤ |x − y |/2.



I Question: When can such an operator T be extended to be a
bounded linear operator on L2(Rn)?

I If it were bounded on L2(Rn), then it is bounded on Lp(Rn)
for all 1 < p <∞, by the singular integral theorem.

I So we need T (1) ∈ BMO, in the sense that there exists a
BMO function a(x), such that for every g ∈ C∞c (Rn) with´
g = 0, if g is supported on a ball B(0,R) centered at the

origin, then whenever η ∈ C∞c and is identically 1 on
B(0, 2R), we have

〈T (η), g〉+

ˆ
Rn

T (1− η)(x)g(x)dx =

ˆ
Rn

a(x)g(x)dx

where for x ∈ B(0,R) we define

T (1− η)(x) :=

ˆ
Rn

(1− η(y))[K0(x , y)− K0(0, y)]dy .



I Moreover, if T : S(Rn)→ S ′(Rn) is continuous, linear, and
admits a kernel representation as above, then its adjoint
T ∗ : S(Rn)→ S ′(Rn) is also continuous, linear, and admits a
kernel representation

T ∗g(x) =

ˆ
Rn

K0(y , x)g(y)dy

whenever g ∈ C∞c (Rn) and x is not in the support of g .

I If T can be extended to be a bounded linear operator on
L2(Rn), then so can T ∗, so we must have T ∗(1) ∈ BMO, in
the same way we had T (1) ∈ BMO.



I Finally, if T can be extended to be a bounded linear operator
on L2(Rn), then T must be weakly bounded, in the sense that

〈T (φx0R ), ψx0
R 〉 ≤ AR−n

whenever x0 ∈ Rn, R > 0 and φx0R , ψ
x0
R are normalized bump

functions adapted to the ball B(x0,R); here a normalized
bump function adapted to B(x0,R) is a function of the form

x 7→ 1

Rn
φ

(
x − x0
R

)
,

where φ is a C∞ function supported in B(0, 1) with

‖∂αφ‖L∞ ≤ 1

for all α up to some large and fixed order N (whose exact
value will be irrelevant for us).

I What is remarkable is that the above 3 conditions are already
sufficient.



Theorem (T (1) theorem)

Let T : S(Rn)→ S ′(Rn) be a continuous linear operator. Suppose
T can be represented by a kernel K0 as before, where K0 satisfies

|K0(x , y)| . |x − y |−n,

|K0(x , y)− K0(x ′, y)| . |x − x ′|δ

|x − y |n+δ
if |x − x ′| ≤ |x − y |/2, and

|K0(x , y)− K0(x , y ′)| . |y − y ′|δ

|x − y |n+δ
if |y − y ′| ≤ |x − y |/2;

here δ > 0 is some fixed constant. If

(a) T (1) ∈ BMO,

(b) T ∗(1) ∈ BMO and

(c) T is weakly bounded,

then T extends to a bounded linear operator on L2(Rn).



I A classical application of the T (1) theorem is to establish the
L2 boundedness of the Calderón commutators

Ck f (x) = lim
ε→0

ˆ
|x−y |>ε

(
A(x)− A(y)

x − y

)k f (y)

x − y
dy

where A is a Lipschitz function on R and k ≥ 0 is an integer.
Indeed, there exists a constant C such that

‖Ck‖L2→L2 ≤ C k‖A′‖kL∞ for all k ≥ 0.

I This in turn allows one to bound the Cauchy integral along
Lipschitz curves with sufficiently small Lipschitz constants:
If A is a Lipschitz function on R with sufficiently small
Lipschitz norm, then

Tf (x) := − 1

2πi
lim
ε→0

ˆ
|x−y |>ε

f (y)(1 + iA′(y))

x − y + i(A(x)− A(y))
dy

is bounded on L2(R).
I See Stein’s Harmonic Analysis for details and further reference

(in particular, to T (b) theorem that refines T (1) theorem).



Paraproducts

I The proof of the T (1) theorem consists of two parts: one
about reduction to a special case T (1) = T ∗(1) = 0, and
another about the proof of L2 boundedness in this special
case.

I We first carry out the reduction to the special case.

I To do so, we use the following proposition:

Proposition

If a ∈ BMO(Rn), then there exists a standard Calderón-Zygmund
operator La : S(Rn)→ S ′(Rn), such that when appropriately
extended as above, we have

La(1) = a, L∗a(1) = 0.



I Assuming this proposition, then we are led to consider

T̃ := T − LT (1) − L∗T∗(1).

Indeed T̃ satisfies all the hypothesis of T , and additionally

T̃ (1) = 0, T̃ ∗(1) = 0.

The goal is then to prove the L2 boundedness of T̃ ; since
LT (1) and L∗T∗(1) are Calderón-Zygmund operators, they are

bounded on L2. This would prove the L2 boundedness of T .

I So let’s first prove the proposition. Given a ∈ BMO(Rn), we
construct La using paraproducts.



I Let ψ(ξ) be a smooth function with compact support on the
unit ball B(0, 2), with ψ(ξ) ≡ 1 on B(0, 1).

I Let ϕ(ξ) = ψ(ξ)− ψ(2ξ) so that ψ is supported on the
annulus {1/2 ≤ |ξ| ≤ 2}, and∑

j∈Z
ϕ(2−jξ) = 1 for every ξ 6= 0.

I Let Ψ and Φ be the inverse Fourier transforms of ψ and ϕ.

I For j ∈ Z, let Ψj(x) = 2jnΨ(2jx), Φj(x) = 2jnΦ(2jx).

I For f ∈ S ′(Rn), let
Sj f = f ∗Ψj ;

for f ∈ S ′(Rn)/{constants}, let

∆j f = f ∗ Φj .

Note that Sj − Sj−1 = ∆j , and

∆k∆j = 0 whenever |j − k| ≥ 2.



I If a, f ∈ S(Rn), we have

a · f = lim
J→+∞

(SJ+3a · SJ f − S−J+3a · S−J f )

= lim
J→+∞

J∑
j=−J+1

(Sj+3a · Sj f − Sj+2a · Sj−1f )

=
∑
j∈Z

∆j+3a · Sj f +
∑
j∈Z

Sj+2a ·∆j f

(with convergence in say S ′ or L2).

I So each sum on the right hand side is like half of the product
of a and f ; these are called paraproducts.

I We focus on the first term, and let

La(f ) =
∑
j∈Z

∆j+3a · Sj f .



La(f ) =
∑
j∈Z

∆j+3a · Sj f

I The Fourier support of ∆j+3a is in {2j+2 ≤ |ξ| ≤ 2j+4}, and
that of Sj f is in {|ξ| ≤ 2j+1}.

I Thus the Fourier support of ∆j+3a · Sj f is in

{2j+1 ≤ |ξ| ≤ 2j+5},

and the sum defining La(f ) is an almost orthogonal sum.
(This is why we had chosen to write j + 3 in place of j in the
first place.)

I We will now extend the domain of definition of La(f ): we
define La(f ) as an element of S ′(Rn) by the above formula
whenever a ∈ BMO and f ∈ S.



La(f ) =
∑
j∈Z

∆j+3a · Sj f

I First note that if a ∈ BMO, then

‖∆j+3a‖L∞ . ‖a‖BMO uniformly in j .

Hence if f ∈ S, then

‖∆j+3a · Sj f ‖L2 . ‖a‖BMO‖f ‖L2 uniformly in j .

I Next note that ∆j+3a · Sj f has frequency support in |ξ| ' 2j .

I Also, if g ∈ S, then ‖∆jg‖L2 . 2−|j |n uniformly in j .

I Thus if g ∈ S, then∑
M<|j |<M′

|〈∆j+3a · Sj f , g〉| . 2−Mn → 0

as M,M ′ →∞. Thus the sum defining La(f ) converges in S ′.



I From now on, let a ∈ BMO(Rn).

I We have just defined La : S(Rn)→ S ′(Rn), and it is easy to
check that this map is continuous.

I Also, one can check that La has a kernel representation

Laf (x) =

ˆ
Rn

f (y)K0(x , y)dy

whenever f ∈ C∞c (Rn) and x is not in the support of f , where

K0(x , y) :=
∑
j∈Z

(∆j+3a)(x)Ψj(x − y) for x 6= y .

I Since ‖∆j+3a‖L∞ . ‖a‖BMO uniformly in j , it is easy to check
that

|K0(x , y)| . |x − y |−n.

Similarly, |∂λx ,yK0(x , y)| . |x − y |−n−|λ| for all multiindices λ.



I Chasing through the definitions, we see that La(1) = a and
L∗a(1) = 0.

I For instance, suppose g ∈ C∞c (B(0,R)) with
´
g = 0, and

η ∈ C∞c is identically 1 on B(0, 2R). Then

〈Laη, g〉+

ˆ
Rn

La(1− η)(x)g(x)dx

= lim
J→∞

∑
|j |≤J

〈∆j+3a · Sjη, g〉

+ lim
J→∞

∑
|j |≤J

ˆ ˆ
(1− η)(y)∆j+3a(x)Ψj(x − y)g(x)dydx ,

where we used Fubini to evaluate
´
Rn La(1− η)(x)g(x)dx ; this

is possible because the supports of (1− η) and g are disjoint.
I The sum of the above two limits is equal to

lim
J→∞

∑
|j |≤J

ˆ
∆j+3a(x)g(x)dx ,

and we want to show that it is equal to
´
a(x)g(x)dx .



I But∑
|j |≤J

ˆ
∆j+3a(x)g(x)dx =

ˆ
a(x)[SJ+3g(x)− S−J+2g(x)]dx ,

and SJ+3g(x)→ g(x) in S(Rn) as J → +∞. So it remains to
show that ˆ

a(x)S−J+2g(x)dx → 0 as J →∞.

I Now since
´
Rn g(y)dy = 0, we have

ˆ
a(x)S−J+2g(x)dx

=

ˆ
[a(x)− aB(0,2J)]S−J+2g(x)dx

=

ˆ ˆ
[a(x)− aB(0,2J)][Ψ−J+2(x − y)−Ψ−J+2(x)]g(y)dydx



I Since g has compact support and Ψ is Schwartz, using the
mean-value theorem, we have

|Ψ−J+2(x − y)−Ψ−J+2(x)| . 2−J
2−Jn

(1 + 2−J |x |)n+1

for any y in the support of g and any x ∈ Rn, where the
implicit constant depends on the support of g .

I Thus ∣∣∣∣ˆ a(x)S−J+2g(x)dx

∣∣∣∣
≤2−J

ˆ ˆ ∣∣∣a(x)− aB(0,2J)

∣∣∣ 2−Jn

(1 + 2−J |x |)n+1
|g(y)| dydx

.2−J‖a‖BMO‖g‖L1 → 0

as J → +∞. This proves La(1) = a. Similarly L∗a(1) = 0.



I To finish the proof of the proposition, we just need to show
that La extends to a bounded linear operator on L2.

I By almost orthogonality between the summands defining
La(f ), it suffices to prove the following claim:∑

j∈Z
‖∆j+3a · Sj f ‖2L2 . ‖f ‖

2
L2 whenever f ∈ S.

I One may be tempted to prove the above claim by bounding
‖∆j+3a‖L∞ . ‖a‖BMO , and summing

∑
j∈Z ‖Sj f ‖2L2 ;

unfortunately this does not work, for the latter sum is usually
divergent.

I So the proof of the claim must proceed differently. It will rely
on the notion of Carleson measures.



Carleson measures and Carleson embedding

I A measure dµ on the upper half space Rn+1
+ is said to be a

Carleson measure, if there exists a constant C , such that

dµ(B(x , r)× (0, r)) ≤ C |B(x , r)|

for every ball B(x , r) ⊂ Rn.

I We think of the smallest such C as the norm of the Carleson
measure, written ‖dµ‖C .

I We will need two lemmas, one connecting BMO functions to
Carleson measures, and another for estimating integrals
involving Carleson measures.



Lemma (Carleson embedding)

If a ∈ BMO(Rn), then

dµ :=
∑
j∈Z

δ2−j (y)|∆j+3a(x)|2dx

is a Carleson measure on Rn+1
+ , with ‖dµ‖C . ‖a‖2BMO .

Lemma
If dµ is a Carleson measure on Rn+1

+ , and F (x , y) is a measurable
function on Rn+1

+ , then

ˆ
Rn+1
+

|F (x , y)|pdµ ≤ 3n‖F ∗‖pLp(Rn)‖dµ‖C

for all 1 ≤ p <∞. Here F ∗ is the non-tangential maximal function

F ∗(x) = sup
y>0

sup
z∈B(x ,y)

|F (z , y)|.



I Apply the second lemma with dµ being the Carleson measure
from the first lemma, F (x , 2−j) = Sj f (x) with f ∈ S(Rn), and
p = 2, we see that

ˆ
Rn

∑
j∈Z
|∆j+3a(x) · Sj f (x)|2dx . ‖Mf ‖2L2‖a‖

2
BMO

where M is the Hardy-Littlewood maximal function. Thus by
the L2 boundedness of M, our earlier claim follows.

I It remains to prove the lemmas.

I We will give the proof of the lemmas beginning next slide;
let us just pause to mention that there is a converse to the
Carleson embedding lemma characterizing BMO. For details,
see Stein’s Harmonic Analysis, Chapter IV, Section 4.3.



I We begin with the proof of the second lemma.

I Let dµ be a Carleson measure on Rn+1
+ , and F (x , y) be

measurable on Rn+1
+ . We want to prove

ˆ
Rn+1
+

|F (x , y)|pdµ ≤ 3n‖F ∗‖pLp(Rn)‖dµ‖C

for all 1 ≤ p <∞.

I Since (F ∗)p = (|F |p)∗, we may assume that p = 1.

I By monotone convergence, we may also assume that F is
supported on B(0,R)× (0,R) for some R > 0.



I For t > 0, let Ot = {(x , y) ∈ Rn+1
+ : |F (x , y)| > t}. It suffices

to show that

dµ(Ot) ≤ 3n‖dµ‖C |{x ∈ Rn : F ∗(x) > t}| .

(because one gets the desired inequality by integrating in t).

I To do so, let Bt be a collection of balls in Rn, defined by

Bt = {B(x , y) : (x , y) ∈ Ot}.

I We claim that there exists a countable collection of pairwise
disjoint balls {Bi}Bi∈Bt , such that if Bi = B(xi , yi ), then⋃

i

B(xi , 3yi )× (0, 3yi ) covers Ot .



I Indeed, the supremum of the radii of all balls in Bt is finite,
since F is supported on B(0,R)× (0,R). Choose B1 to be a
ball in Bt so that the radius of B1 is at least half of the
supremum of the radii of all balls in Bt . Remove all balls in Bt
that intersects B1, and select B2 in the remaining collection so
that the radius of B2 is at least half of the supremum of the
radii of all balls that remained. Repeat, stopping only if there
are no balls left.

I If the process never stops, then the supremum of the radii of
all remaining balls after the j-th step tends to zero as j →∞,
since F is supported on B(0,R)× (0,R) for some R > 0.

I If (x , y) ∈ Ot , then B(x , y) ∈ Bt , so B(x , y) intersects one of
the chosen Bi ’s, with y ≤ 2yi where yi is the radius of Bi . So
if Bi = B(xi , yi ), then x ∈ B(xi , 3yi ) and y ∈ (0, 3yi ). This
proves the claim.



I From the claim, we have

dµ(Ot) ≤
∑
i

dµ(B(xi , 3yi )× (0, 3yi ))

≤ ‖dµ‖C
∑
i

|B(xi , 3yi )|

≤ 3n‖dµ‖C

∣∣∣∣∣⋃
i

B(xi , yi )

∣∣∣∣∣
The latter is

≤ 3n‖dµ‖C |{x ∈ Rn : F ∗(x) > t}|

as promised, since from (xi , yi ) ∈ Ot , we get |F (xi , yi )| > t, so
for any x ∈

⋃
i B(xi , yi ), we have F ∗(x) > t.

I This finishes the proof of the second lemma.



I We now prove the Carleson embedding lemma.

I Let a ∈ BMO(Rn), and

dµ =
∑
j∈Z

δ2−j (y)|∆j+3a(x)|2dx .

I We need to show that dµ is a Carleson measure on Rn+1
+ ,

with ‖dµ‖C . ‖a‖2BMO . This will follow if we show that
ˆ
B(x0,r)

∑
2−j≤r

|∆ja(x)|2dx . rn‖a‖2BMO

for any x0 ∈ Rn and any r > 0.

I By translation and dilation invariance, we may assume

x0 = 0, r = 1 and ‖a‖BMO = 1.

Write B = B(x0, r) = B(0, 1), and B∗ = B(0, 2).

I Since ∆jc = 0 for any constant c , by further subtracting a
constant, we may assume

ffl
B∗ a = 0.



I Our goal now is to prove that

ˆ
B

∑
j≥0
|∆ja(x)|2dx . 1

under the above assumptions.

I Let a = a1 + a2, where a1 = aχB∗ and a2 = aχ(B∗)c .

I Since
ffl
B∗ a = 0, by John-Nirenberg inequality, we have

‖a1‖2L2 =

ˆ
B∗
|a(y)|2dy . |B∗|‖a‖2BMO . 1.

Hence by Plancherel,

ˆ
B

∑
j≥0
|∆ja1(x)|2dx .

ˆ
Rn

∑
j∈Z
|∆ja1(x)|2dx . ‖a1‖2L2 . 1.



I We claim that ˆ
B

∑
j≥0
|∆ja2(x)|2dx . 1.

Indeed it suffices to show that∑
j≥0
|∆ja2(x)|2 . 1 for all x ∈ B.

I But for each j ≥ 0 and each x ∈ B, we have

∆ja2(x) =

ˆ
y∈(B∗)c

a(y)Φ(2j(x − y))2jndy .

Since |Φ(2j(x − y))| . (2j |y |)−(n+1), we have

|∆ja2(x)| . 2−j
ˆ
|y |≥2

|a(y)| dy

|y |n+1



|∆ja2(x)| . 2−j
ˆ
|y |≥2

|a(y)| dy

|y |n+1

I By decomposing {|y | ≥ 2} into dyadic annuli and noting that
|aB(0,2k ) − aB(0,2k+1)| . 1 uniformly in k , we see that

ˆ
|y |≥2

|a(y)| dy

|y |n+1
. ‖a‖BMO . 1.

(c.f. Question 8(d) of Homework 5.)

I Altogether, this shows∑
j≥0
|∆ja2(x)|2 .

∑
j≥0

2−2j . 1 for all x ∈ B,

as desired.

I This completes the proof of the Carleson embedding lemma.



The proof of T (1) theorem
I Let’s recap what we have so far.
I For a ∈ BMO(Rn), f ∈ S(Rn), we defined the paraproduct

La(f ) =
∑
j∈Z

∆j+3a · Sj f ,

and the above showed that La extends as a bounded linear
operator on L2.

I Earlier we also saw that the integral kernel of La satisfies
appropriate differential inequalities, so that La is a standard
Calderón-Zygmund operator on Rn.

I We also have La(1) = a, L∗a(1) = 0.
I This shows that in proving the T (1) theorem, we may assume

in addition that T (1) = T ∗(1) = 0.
I To do so we decompose T into almost orthogonal pieces, and

use Cotlar-Stein; indeed when T (1) = T ∗(1) = 0, T will be
shown to be similar enough to a translation-invariant singular
integral, so that almost orthogonality works.



I Let’s modify our earlier definitions of Sj and ∆j as follows.

I Let Ψ ∈ C∞c (Rn) be supported on B(0, 1), with Ψ ≡ 1 on
B(0, 1/2), and

´
Rn Ψ(x)dx = 1. Let

Φ(x) = Ψ(x)− 1

2n
Ψ(x/2)

so that
´
Rn Φ(x)dx = 0.

I For j ∈ Z, write Ψj(x) = 2jnΨ(2jx) and Φj(x) = 2jnΦ(2jx).
For f ∈ S(Rn), also let

Sj f := f ∗Ψj , ∆j f := f ∗ Φj

so that ∆j = Sj − Sj−1.

I While Sj f and ∆j f does not have compact Fourier support,
morally speaking they are frequency localized to a ball of
radius 2j and an annulus of size 2j respectively.



I If f ∈ S(Rn), we claim that

Tf = lim
J→+∞

SJTSJ f and lim
J→+∞

S−JTS−J f = 0,

where convergence are in the topology of S ′(Rn).

I To prove this claim, first note that since T : S(Rn)→ S ′(Rn)
is continuous and linear, by the Schwartz kernel theorem,
there exists a tempered distribution K on Rn × Rn such that

〈Tf , g〉 = 〈K , f ⊗ g〉 for all f , g ∈ S(Rn);

here the pairing on the left is a pairing of Tf ∈ S ′(Rn) with
g ∈ S(Rn), while the pairing on the right is between
K ∈ S ′(Rn×Rn) with f ⊗ g(x , y) := f (x)g(y) ∈ S(Rn×Rn).

I Since SJ f ⊗ SJg → f ⊗ g in the topology of S(Rn × Rn) as
J →∞, it follows that

〈SJTSJ f , g〉 = 〈K ,SJ f ⊗ SJg〉 → 〈K , f ⊗ g〉 = 〈Tf , g〉

as J →∞.



I The second part of the claim amounts to saying that

lim
J→+∞

〈TS−J f , S∗−Jg〉 = 0

for all f , g ∈ S(Rn). By our previous argument and the
density of C∞c (Rn) in S(Rn), we assume f , g ∈ C∞c (Rn).

I In that case, for J large enough, S−J f is a normalized bump
function on B(0, 2J+1), and so is S∗−Jg .

I Since T is weakly bounded, this shows

|〈TS−J f , S∗−Jg〉| . 2−nJ → 0

as J → +∞, as desired.



I So we have proved that for f ∈ S(Rn)

Tf = lim
J→+∞

(SJTSJ f − S−J−1TS−J−1f )

= lim
J→+∞

∑
|j |≤J

(∆jTSj f + Sj−1T∆j f )

where the convergence is in S ′(Rn).

I Using T (1) = 0 and Cotlar-Stein, we will show that∣∣∣∣∣∣
〈∑
|j |≤J

∆jTSj f , g

〉∣∣∣∣∣∣ . ‖f ‖L2‖g‖L2
for any f , g ∈ S(Rn), uniformly in J ∈ N; similarly, using
T ∗(1) = 0 instead, one has a corresponding estimate for∣∣∣〈∑|j |≤J Sj−1T∆j f , g

〉∣∣∣. This would prove that

|〈Tf , g〉| . ‖f ‖L2‖g‖L2

for all f , g ∈ S(Rn), completing the proof of T (1) theorem.



I For j ∈ Z, let Tj := ∆jTSj . Our goal is to show that∣∣∣〈T (J)f , g
〉∣∣∣ . ‖f ‖L2‖g‖L2 for any f , g ∈ C∞c (Rn)

uniformly in J ∈ N, where T (J) :=
∑
|j |≤J Tj .

I First we determine the integral kernel of the operator Tj . Let

Ψy
j (w) = 2jnΨ(2j(w − y)) and Φx

j (v) = 2jnΦ(2j(x − v)).

These are normalized bump functions in B(y , 2−j) and
B(x , 2−j). Define, for x , y ∈ Rn,

kj(x , y) := 〈T (Ψy
j ),Φx

j 〉.

Then using the continuity of T : S(Rn)→ S ′(Rn), one can
check that for f , g ∈ C∞c (Rn), we have

〈Tj f , g〉 =

ˆ
Rn×Rn

kj(x , y)f (y)g(x)dxdy .



I Let δ be the Hölder exponent in the assumed estimates for
the kernel K0 of T . We claim

|kj(x , y)| . 2jn

(1 + 2j |x − y |)n+δ
(1)

|∂αx ∂βy kj(x , y)| . 2j(n+|α|+|β|)

(1 + 2j |x − y |)n+δ
(2)

ˆ
Rn

kj(x , y)dy = 0 for all x ∈ Rn (3)

ˆ
Rn

kj(x , y)dx = 0 for all y ∈ Rn (4)

I Indeed (1) and (2) will follow from the weak boundedness of
T and the kernel estimates for K0, while (3) will follow from
the assumption T (1) = 0 and kernel estimates for K0.

I (4) is similar to (3) except that it is easier; one will not need
the assumption on T (1).

I The above claims in turn allow us to invoke a proposition from
the end of the last lecture, which shows that Cotlar-Stein
applies, and T (J) is uniformly bounded on L2, as desired.



I It remains to prove the claims. Recall

kj(x , y) := 〈T (Ψy
j ),Φx

j 〉.

I First, to prove

|kj(x , y)| . 2jn

(1 + 2j |x − y |)n+δ
,

note that this follows from weak boundedness of T if
|x − y | . 2−j . Otherwise the supports of Ψy

j and Φx
j are at a

distance & 2−j . In that case kj(x , y) can be written as

ˆ
Rn×Rn

K0(v ,w)Ψy
j (w)Φx

j (v)dvdw .

Since
´
Rn Φx

j (w)dw = 0, this shows

kj(x , y) =

ˆ
Rn×Rn

(K0(v ,w)− K0(x ,w))Ψy
j (w)Φx

j (v)dvdw



I Since on the supports of the integral, we have |v − x | . 2−j

and |v − w | ' |x − w | ' |x − y |, we have, by our assumption
on K0, that

|kj(x , y)| . 2−jδ|x − y |−n−δ =
2jn

(2j |x − y |)n+δ
,

as desired. This proves (1).

I (2) follows by observing that

|∂αx ∂βy kj(x , y)| =
∣∣∣〈T (∂βΨy

j ), ∂αΦx
j 〉
∣∣∣

and modifying the argument that proved (1); the key is that
2−j |β|∂βΨy

j (w) and 2−j |α|∂αΦx
j (v) are also normalized bump

functions on B(y , 2−j) and B(x , 2−j) respectively.



I To prove (3), it suffices to prove that

lim
R→+∞

ˆ
|y |≤R

kj(x , y)dy = 0.

But since kj(x , y) = 〈T (Ψy
j ),Φx

j 〉, by continuity of
T : S(Rn)→ S ′(Rn), we haveˆ

|y |≤R
kj(x , y)dy = 〈T (hj ,R),Φx

j 〉

where

hj ,R(w) :=

ˆ
|y |≤R

Ψy
j (w)dy = 2jn

ˆ
|y |≤R

Ψ(2j(w − y))dy .

I Clearly

hj ,R(w) = 0 whenever |w | ≤ R + 2−j .

We also have

hj ,R(w) = 1 whenever |w | ≤ R − 2−j .



I This suggests one to use the condition T (1) = 0, and write

ˆ
|y |≤R

kj(x , y)dy = 〈T (hj ,R − 1),Φx
j 〉.

I If R − 2−j ≥ 2(|x |+ 2−j), then hj ,R − 1 and Φx
j have disjoint

supports, so

|〈T (hj ,R − 1),Φx
j 〉|

=

∣∣∣∣ˆ
Rn×Rn

[K0(v ,w)− K0(x ,w)](hj ,R − 1)(w)Φx
j (v)dvdw

∣∣∣∣
≤
ˆ
|w |≥R−2−j

ˆ
|v−x |≤2−j

|K0(v ,w)− K0(x ,w)||Φx
j (v)|dvdw

.2−jδ(R − 2−j)−δ → 0

as R → +∞. This completes the proof of (3).



I Similarly, ˆ
|x |≤R

kj(x , y)dx = 〈T (Ψy
j ),Hj ,R〉

where

Hj ,R(v) :=

ˆ
|x |≤R

Φx
j (w)dx = 2jn

ˆ
|x |≤R

Φ(2j(x − v)).

I Hj ,R(v) is supported on the annulus R − 2−j ≤ |v | ≤ R + 2−j .
I If R − 2−j ≥ 2(|y |+ 2−j), then Hj ,R and Ψy

j have disjoint
supports, so

|〈T (Ψy
j ),Hj ,R〉|

=

∣∣∣∣ˆ
Rn×Rn

K0(v ,w)Ψy
j (w)Hj ,R(v)dvdw

∣∣∣∣
≤
ˆ
R−2−j≤|v |≤R+2−j

ˆ
|w−y |≤2−j

|K0(v ,w)||Ψy
j (w)|dvdw

.2−jRn−1(R − 2−j)−n → 0

as R → +∞. This completes the proof of (4).


