Topics in Harmonic Analysis Lecture 8: Interpolation

$$
\text { Po-Lam Yung }{ }^{1}
$$

The Chinese University of Hong Kong
${ }^{1}$ It's my pleasure to thank Tongou Yang for very useful comments on this set of notes.

Real interpolation

- In this lecture we study real and complex interpolation.
- These are methods of deducing boundedness of certain linear or quasi-additive operators on certain "intermediate" function spaces, from the boundedness of these operators on some other "endpoint" function spaces.
- We begin with the real method of interpolation, following Marcinkiewicz.
- We have already seen a version of it in the study of maximal functions and singular integrals in Lectures 3 and 4.
- We will sometimes encounter Lebesgue spaces L^{p} with $p<1$, and the statement of Marcinkiewicz interpolation theorem is best formulated using Lorentz spaces $L^{p, r}$.
- We introduce these in the next few slides.

Lebesgue spaces for $p<1$

- Let (X, μ) be a measure space, and $f: X \rightarrow \mathbb{C}$ be measurable.
- For $p \in(0,1)$, we still say $f \in L^{p}$ if

$$
\|f\|_{L^{p}}:=\left(\int_{X}|f|^{p} d \mu\right)^{1 / p}<\infty
$$

- Note that $\|\cdot\|_{L^{p}}$ does not define a norm when $p \in(0,1)$; the triangle inequality is not satisfied.
- The following is often a useful substitute:

$$
\|f+g\|_{L^{p}}^{p} \leq\|f\|_{L^{p}}^{p}+\|g\|_{L^{p}}^{p}
$$

which holds for all $f, g \in L^{p}, p \in(0,1]$.

- From this we deduce a quasi-triangle inequality: for all $p \in(0,1)$, there exists some finite constant C_{p} such that

$$
\|f+g\|_{L^{p}} \leq C_{p}\left(\|f\|_{L^{p}}+\|g\|_{L^{p}}\right)
$$

for all $f, g \in L^{p}$.

Lorentz spaces $L^{p, r}$

- Next we introduce Lorentz spaces.
- Let (X, μ) be a measure space, and $f: X \rightarrow \mathbb{C}$ be measurable.
- Let $p \in(0, \infty), r \in(0, \infty] . f$ is said to be in the Lorentz space $L^{p, r}$, if $\|f\|_{L^{p, r}}<\infty$, where

$$
\begin{gathered}
\|f\|_{L^{p, r}}:=\left(p \int_{0}^{\infty}\left[\alpha \mu\{|f|>\alpha\}^{1 / p}\right]^{r} \frac{d \alpha}{\alpha}\right)^{1 / r} \quad \text { if } r \in(0, \infty) ; \\
\|f\|_{L^{p, r}}:=\sup _{\alpha>0}\left[\alpha \mu\{|f|>\alpha\}^{1 / p}\right] \quad \text { if } r=\infty
\end{gathered}
$$

- Note that $L^{p, \infty}$ is the weak- L^{p} space introduced in Lecture 3.
- By convention, $L^{\infty, \infty}$ is L^{∞}, and $L^{\infty, r}$ is undefined for $r<\infty$.
- Observe also $\|f\|_{L^{p, p}}=\|f\|_{L^{p}}$ by Fubini for all $p \in(0, \infty]$.
- It is often convenient to note that

$$
\|f\|_{L^{p, r}} \simeq\left\|2^{k} \mu\left\{|f|>2^{k}\right\}^{1 / p}\right\|_{\ell^{r}(\mathbb{Z})}
$$

for all measurable f and all $p \in(0, \infty), r \in(0, \infty]$.

- In general $\|\mid \cdot\|_{L^{p, r}}$ defines only a quasi-norm on $L^{p, r}$, and not a norm. In other words, the triangle inequality is not satisfied, but we have

$$
\|f+g\|_{L^{p, r}} \leq C_{p, r}\left(\| \| f\left\|_{L^{p, r}}+\right\| g \|_{L^{p, r}}\right)
$$

for some finite constant $C_{p, r} \geq 1$.

- But $L^{p, r}$ does admit a comparable norm if $p \in(1, \infty)$ and $r \in[1, \infty]$; indeed when $p \in(1, \infty)$ and $r \in(1, \infty], L^{p, r}$ is the dual space of $L^{p^{\prime}, r^{\prime}}$, so it admits a dual norm

$$
\|f\|_{L^{p, r}}:=\sup \left\{\left|\int_{X} f g d \mu\right|:\|g\|_{L^{p^{\prime}, r^{\prime}}} \leq 1\right\}
$$

The same construction works when $p \in(1, \infty)$ and $r=1$. See Homework 8 for details, and Stein and Weiss' Introduction to Fourier Analysis, Chapter V.3, for an alternative approach of norming $L^{p, r}$.

- To formulate the Marcinkiewicz interpolation theorem, let $(X, \mu),(Y, \nu)$ be measure spaces.
- Let T be an operator defined on a subspace $\operatorname{Dom}(T)$ of measurable functions on X, that maps each element in $\operatorname{Dom}(T)$ to a measurable function on Y.
- We say T is subadditive if

$$
|T(f+g)| \leq|T f|+|T g|
$$

for all $f, g \in \operatorname{Dom}(T)$.

- Suppose $\operatorname{Dom}(T)$ is stable under truncations, i.e. if $f \in \operatorname{Dom}(T)$ then $f_{\chi_{E}}$ is in $\operatorname{Dom}(T)$ for all measurable subsets E of X, where χ_{E} is the characteristic function of E.
- Let $p, q \in(0, \infty]$. If $p \neq \infty$, then we say that T is of restricted weak-type (p, q), if

$$
\|T f\|_{L^{q, \infty}} \lesssim\|f\|_{L^{p, 1}} \quad \text { for all } f \in \operatorname{Dom}(T) \cap L^{p, 1}
$$

if $p=\infty$, then we say that T is of restricted weak-type (p, q), if the same holds with $L^{p, 1}$ replaced by L^{∞}.

Theorem (Marcinkiewicz interpolation theorem)

Let $p_{0}, p_{1}, q_{0}, q_{1} \in(0, \infty]$ with $p_{0} \neq p_{1}$ and $q_{0} \neq q_{1}$. Let p, q be such that

$$
\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} \quad \text { and } \quad \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}
$$

for some $\theta \in(0,1)$. If a subadditive operator T is of restricted weak-types $\left(p_{0}, q_{0}\right)$ and $\left(p_{1}, q_{1}\right)$, then for any $r \in(0, \infty]$, we have

$$
\|T f\|_{L_{q, r}} \lesssim\|f\|_{L^{p, r}}
$$

for all f in $\operatorname{Dom}(T) \cap L^{p, r}$; in particular, if $p \leq q$, then $\|T f\|_{L^{q}} \lesssim\|f\|_{L^{p}}$ for all f in $\operatorname{Dom}(T) \cap L^{p}$.

- In applications usually we have both $p_{0} \leq q_{0}$ and $p_{1} \leq q_{1}$, from which it follows that $p \leq q$.
- Here we mention a related observation:

Proposition

Let $p_{0}, p_{1}, q_{0}, q_{1} \in(0, \infty]$ with $p_{0}=p_{1}$ and $q_{0} \neq q_{1}$. Let p, q be as in the previous theorem with $\theta \in(0,1)$. If a subadditive operator T is of weak-types $\left(p_{0}, q_{0}\right)$ and (p_{1}, q_{1}) (not just restricted weak-types), then for all $r \in(0, \infty]$, we have

$$
\|T f\|_{L^{q}, r} \lesssim\|f\|_{L^{p, r}}
$$

for all f in $\operatorname{Dom}(T) \cap L^{p, r}$.

- The proposition follows just from the inclusions $L^{p, r} \subseteq L^{p, \infty}$ and $L^{q_{0}, \infty} \cap L^{q_{1}, \infty} \subseteq L^{q, r}$. But the condition $q_{0} \neq q_{1}$ is crucial.
- Combining the theorem (the case where $p_{0} \leq q_{0}$ and $p_{1} \leq q_{1}$) with the proposition, we obtain the following corollary:

Corollary (weak-type case of Marcinkiewicz interpolation)
Let $p_{0}, p_{1}, q_{0}, q_{1} \in(0, \infty]$ with $q_{0} \neq q_{1}, p_{0} \leq q_{0}$ and $p_{1} \leq q_{1}$. Let p, q be such that

$$
\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}} \quad \text { and } \quad \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}}
$$

for some $\theta \in(0,1)$. If a subadditive operator T is of weak-types $\left(p_{0}, q_{0}\right)$ and $\left(p_{1}, q_{1}\right)$, then

$$
\|T f\|_{L^{q}} \lesssim\|f\|_{L^{p}}
$$

for all f in $\operatorname{Dom}(T) \cap L^{p}$.

- We now turn to the proof of the theorem.
- We will only prove the case when $p_{0}, p_{1}, q_{0}, q_{1}$ are all finite; the cases where one of the p_{i} 's is infinite, and/or where one of the q_{i} 's is infinite, is left as an exercise (see Homework 8).
- Let $p_{0}, p_{1}, q_{0}, q_{1} \in(0, \infty)$ with $p_{0} \neq p_{1}$ and $q_{0} \neq q_{1}$. Let $\theta \in(0,1)$, and define p, q as in the theorem.
- It will be convenient to write

$$
\begin{gathered}
\alpha=p\left(\frac{1}{p_{0}}-\frac{1}{p_{1}}\right), \quad \beta=q\left(\frac{1}{q_{0}}-\frac{1}{q_{1}}\right), \\
x_{0}=q_{0} \theta, \quad x_{1}=-q_{1}(1-\theta) .
\end{gathered}
$$

- We have $\alpha \neq 0$ and $\beta \neq 0$ by assumption.
- Let $r \in(0, \infty), f \in L^{p, r}$ with $\|f f\|_{L^{p, r}}=1$. We will show that

$$
\|T f\|_{L^{q}, r} \lesssim 1
$$

- Decompose

$$
f=\sum_{k \in \mathbb{Z}} f_{k}
$$

where $f_{k}=f \chi_{2^{k}<|f| \leq 2^{k+1}}$. Write $W_{k}=\mu\left(\operatorname{supp} f_{k}\right)$, so that

$$
\sum_{k \in \mathbb{Z}} 2^{k r} W_{k}^{r / p} \lesssim 1
$$

- For $k \in \mathbb{Z}$, we define

$$
a_{k}=\sum_{\ell \in \mathbb{Z}} 2^{-|k-\ell| \varepsilon} 2^{\ell r} W_{\ell}^{r / p}
$$

where $\varepsilon>0$ is a small parameter to be determined. Then

$$
W_{k} \leq 2^{-k p} a_{k}^{p / r} \quad \text { for all } k \in \mathbb{Z} \quad \text { and } \quad \sum_{k \in \mathbb{Z}} a_{k} \lesssim 1
$$

(and these would also hold if we had simply defined a_{k} to be $\left.2^{k r} W_{k}^{r / p}\right)$, but the additional sup over ℓ in the definition of a_{k} guarantees that a_{k} does not vary too rapidly, in the sense that

$$
a_{k} \leq 2^{|k-\ell| \varepsilon} a_{\ell} \quad \text { for all } k, \ell \in \mathbb{Z}
$$

- In particular, since $a_{\ell} \lesssim 1$ for all ℓ, taking $\ell \simeq \frac{j \beta}{\alpha}$, we have

$$
a_{k}^{\frac{\alpha-\beta}{r}} \lesssim 2^{|j \beta-k \alpha| C \varepsilon}
$$

for some finite constant $C=C_{\alpha, \beta, r}$.

- For $k, j \in \mathbb{Z}$, let

$$
c_{k, j}:=2^{-|j \beta-k \alpha| \varepsilon} .
$$

- Then since $\alpha \neq 0, \sum_{k \in \mathbb{Z}} c_{k, j} \lesssim \varepsilon 1$, so by subadditivity of T,

$$
\mu\left\{|T f|>2^{j}\right\} \leq \sum_{k \in \mathbb{Z}} \mu\left\{\left|T f_{k}\right| \gtrsim \varepsilon c_{k, j} 2^{j}\right\}
$$

which by the restricted weak-type properties of T is bounded above by

$$
\lesssim \varepsilon \sum_{k \in \mathbb{Z}} \min _{i=0,1}\left(c_{k, j}^{-1} 2^{-j} 2^{k} W_{k}^{1 / p_{i}}\right)^{q_{i}}
$$

(We used the finiteness of $p_{0}, p_{1}, q_{0}, q_{1}$ here.)

- Hence to show that $\|T f\|_{L q, r} \lesssim 1$, it suffices to show that

$$
\sum_{j \in \mathbb{Z}} 2^{j r}\left[\sum_{k \in \mathbb{Z}} \min _{i=0,1}\left(c_{k, j}^{-1} 2^{-j} 2^{k} W_{k}^{1 / p_{i}}\right)^{q_{i}}\right]^{\frac{r}{q}} \lesssim 1
$$

- Now using $W_{k} \leq 2^{-k p} a_{k}^{p / r}$, we just need to show

$$
\sum_{j \in \mathbb{Z}}\left[\sum_{k \in \mathbb{Z}} \min _{i=0,1}\left(c_{k, j}^{-1} 2^{j q\left(\frac{1}{q_{i}}-\frac{1}{q}\right)} 2^{-k p\left(\frac{1}{p_{i}}-\frac{1}{p}\right)} a_{k}^{\frac{p}{p_{i}}}\right)^{q_{i}}\right]^{\frac{r}{q}}
$$

- Since

$$
p q_{i}\left(\frac{1}{p_{i}}-\frac{1}{p}\right)=\alpha x_{i} \quad \text { and } \quad q q_{i}\left(\frac{1}{q_{i}}-\frac{1}{q}\right)=\beta x_{i}
$$

the above is just

$$
\sum_{j \in \mathbb{Z}}\left[\sum_{k \in \mathbb{Z}} \min _{i=0,1}\left(c_{k, j}^{-q_{i}} 2^{(j \beta-k \alpha) x_{i}} a_{k}^{\frac{p q_{i}}{r p_{i}}}\right)\right]^{\frac{r}{q}}
$$

- Now factor our $a_{k}^{q / r}$ from the minimum in the sum. Since

$$
\frac{p q_{i}}{p_{i}}-q=p q_{i}\left(\frac{1}{p_{i}}-\frac{1}{p}\right)+q_{i}-q=\alpha x_{i}-q q_{i}\left(\frac{1}{q_{i}}-\frac{1}{q}\right)
$$

which equals $(\alpha-\beta) x_{i}$, the above is just

$$
\sum_{j \in \mathbb{Z}}\left[\sum_{k \in \mathbb{Z}} a_{k}^{\frac{q}{r}} \min _{i=0,1}\left(c_{k, j}^{-q_{i}} 2^{(j \beta-k \alpha) x_{i}} a_{k}^{\frac{(\alpha-\beta) x_{i}}{r}}\right)\right]^{\frac{r}{q}}
$$

- In view of our earlier bound for $a_{k}^{\frac{\alpha-\beta}{r}}$ and $c_{k, j}$, this is bounded by

$$
\begin{equation*}
\sum_{j \in \mathbb{Z}}\left[\sum_{k \in \mathbb{Z}} a_{k}^{\frac{q}{r}} \min _{i=0,1}\left(2^{(j \beta-k \alpha) x_{i}} 2^{j \beta-k \alpha \mid c \varepsilon}\right)\right]^{\frac{r}{q}} \tag{1}
\end{equation*}
$$

for some finite constant c.

- We now choose $\varepsilon>0$ sufficiently small, so that

$$
c \varepsilon<\min \left\{\left|x_{0}\right|,\left|x_{1}\right|\right\}
$$

- If $\frac{r}{q} \leq 1$, then we use $\left[\sum_{k} \ldots\right]^{r / q} \leq \sum_{k}[\ldots]^{r / q}$, and bound (1) by

$$
\sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} a_{k} \min _{i=0,1}\left(2^{(j \beta-k \alpha) x_{i}} 2^{|j \beta-k \alpha| c \varepsilon}\right)^{\frac{r}{q}} .
$$

Since x_{0}, x_{1} are non-zero, of opposite signs, and $\beta \neq 0$, in view of our earlier choice of ε, we have

$$
\sum_{j \in \mathbb{Z}} \min _{i=0,1}\left(2^{(j \beta-k \alpha) x_{i}} 2^{|j \beta-k \alpha| c \varepsilon}\right)^{\frac{r}{q}} \lesssim 1
$$

uniformly in k, so

$$
(1) \lesssim \sum_{k \in \mathbb{Z}} a_{k} \lesssim 1
$$

- If $\frac{r}{q} \geq 1$, we use the observation that

$$
\sum_{k \in \mathbb{Z}} \min _{i=0,1}\left(2^{(j \beta-k \alpha) x_{i}} 2^{|j \beta-k \alpha| c \varepsilon}\right) \lesssim 1
$$

uniformly in j. Jensen's inequality then shows

$$
\begin{aligned}
& {\left[\sum_{k \in \mathbb{Z}} a_{k}^{\frac{q}{r}} \min _{i=0,1}\left(2^{(j \beta-k \alpha) x_{i}} 2^{|j \beta-k \alpha| c \varepsilon}\right)\right]^{\frac{r}{q}} } \\
\lesssim & \sum_{k \in \mathbb{Z}} a_{k} \min _{i=0,1}\left(2^{(j \beta-k \alpha) x_{i}} 2^{|j \beta-k \alpha| c \varepsilon}\right)
\end{aligned}
$$

which we then sum over j to yield

$$
(1) \lesssim \sum_{k \in \mathbb{Z}} a_{k} \sum_{j \in \mathbb{Z}} \min _{i=0,1}\left(2^{(j \beta-k \alpha) x_{i}} 2^{|j \beta-k \alpha| c \varepsilon}\right) \lesssim 1 .
$$

(We used again $\beta \neq 0$ to evaluate the last sum over j.)

- This completes the proof of the Marcinkiewicz interpolation theorem when $r \in(0, \infty)$.
- When $r=\infty$ the proof is easier.
- Indeed, let $f \in L^{p, \infty}$ with $\|f\|_{L^{p, \infty}}=1$, and let $\lambda>0$.
- To estimate $\mu\{|T f|>\lambda\}$, we decompose $f=f_{0}+f_{1}$, where $f_{0}=f \chi_{|f|>\gamma}$ and $f_{1}=f \chi_{|f| \leq \gamma}$.
- We have

$$
\left\|f_{0}\right\|_{L^{p_{0}, 1}} \lesssim \sum_{2^{k}>\gamma} 2^{k} \mu\left\{|f|>2^{k}\right\}^{\frac{1}{p_{0}}} \lesssim \sum_{2^{k}>\gamma} 2^{k} 2^{-\frac{k p}{p_{0}}}=\gamma^{-p\left(\frac{1}{p_{0}}-\frac{1}{p}\right)}
$$

and similarly

$$
\left\|f_{1}\right\|_{L^{p_{1}, 1}} \lesssim \gamma^{-p\left(\frac{1}{p_{1}}-\frac{1}{p}\right)}
$$

- As a result,

$$
\begin{aligned}
\mu\{|T f|>\lambda\} & \leq \mu\left\{\left|T f_{0}\right|>\lambda / 2\right\}+\mu\left\{\left|T f_{1}\right|>\lambda / 2\right\} \\
& \lesssim \lambda^{-q_{0}}\left\|f_{0}\right\|_{L^{p_{0}, 1}}^{q_{0}}+\lambda^{-q_{1}}\left\|f_{1}\right\|_{L^{p_{1}, 1}}^{q_{1}}
\end{aligned}
$$

which is bounded by

$$
\begin{aligned}
& \lambda^{-q}\left(\lambda^{q q_{0}\left(\frac{1}{q_{0}}-\frac{1}{q}\right)} \gamma^{-p q_{0}\left(\frac{1}{p_{0}}-\frac{1}{p}\right)}+\lambda^{q q_{1}\left(\frac{1}{q_{1}}-\frac{1}{q}\right)} \gamma^{-p q_{1}\left(\frac{1}{p_{1}}-\frac{1}{p}\right)}\right) \\
= & \lambda^{-q}\left(\lambda^{\beta x_{0}} \gamma^{-\alpha x_{0}}+\lambda^{\beta x_{1}} \gamma^{-\alpha x_{1}}\right) .
\end{aligned}
$$

- Choosing $\gamma=\lambda^{\beta / \alpha}$ gives

$$
\mu\{|T f|>\lambda\} \lesssim \lambda^{-q}
$$

as desired.

Complex interpolation

- Next we turn to the complex method of interpolation, following Riesz, Thorin and Stein.
- The key is the following three lines lemma, which is a variant of the maximum principle for holomorphic functions on a strip (whose proof we defer to Homework 8):

Lemma

Let S be the strip $\{0<\operatorname{Re} z<1\}$, and \bar{S} be its closure. Suppose f is a holomorphic function on the strip S that extends continuously to \bar{S}. Assume $|f(z)| \leq A_{0}$ when $\operatorname{Re} z=0$, and $|f(z)| \leq A_{1}$ when $\operatorname{Re} z=1$. If there exist $\alpha<1$, and constants C, c, such that

$$
|f(z)| \leq C e^{c e^{\pi \alpha|z|}}
$$

for all $z \in \bar{S}$, then $|f(z)| \leq A_{0}^{1-\operatorname{Rez}} A_{1}^{\operatorname{Rez}}$ on \bar{S}.

- The condition $|f(z)| \leq C e^{c e^{\pi \alpha|z|}}$ would be satisfied, if say $|f|$ is bounded on the strip.
- To proceed further, if (X, μ) is a measure space, and $p_{0}, p_{1} \in[1, \infty]$, then we denote by $L^{p_{0}}+L^{p_{1}}$ the space of all functions f on X such that $f=f_{0}+f_{1}$ for some $f_{0} \in L^{p_{0}}$ and $f_{1} \in L^{p_{1}}$. This can be made a Banach space with norm

$$
\|f\|_{L^{p_{0}}+L^{p_{1}}}:=\inf \left\{\left\|f_{0}\right\|_{L^{p_{0}}}+\left\|f_{1}\right\|_{L^{p_{1}}}: f=f_{0}+f_{1}, f_{0} \in L^{p_{0}}, f_{1} \in L^{p_{1}}\right\} .
$$

Note that L^{p} embeds continuously into $L^{p_{0}}+L^{p_{1}}$ if p is between p_{0} and p_{1}.

- We will also need the Banach space $L^{p_{0}} \cap L^{p_{1}}$, where $p_{0}, p_{1} \in[1, \infty]$. Indeed, this is equipped with norm

$$
\|g\|_{L^{p_{0}} \cap L^{p_{1}}}:=\max \left\{\|g\|_{L^{p_{0}}},\|g\|_{L^{p_{1}}}\right\}
$$

$L^{p_{0}} \cap L^{p_{1}}$ embeds continuously into L^{p} if p is between p_{0} and p_{1}.

Theorem (Riesz-Thorin)

Let $(X, \mu),(Y, \nu)$ be measure spaces. Let $p_{0}, p_{1}, q_{0}, q_{1} \in[1, \infty]$, and $T:\left(L^{p_{0}}+L^{p_{1}}\right)(X) \rightarrow\left(L^{q_{0}}+L^{q_{1}}\right)(Y)$ be a linear operator. Suppose there exist constants A_{0}, A_{1} such that

$$
\begin{array}{ll}
\|T f\|_{L^{q_{0}}} \leq A_{0}\|f\|_{L^{p_{0}}} \quad \text { for all } f \in L^{p_{0}}(X), \\
\|T f\|_{L^{q_{1}}} \leq A_{1}\|f\|_{L^{p_{1}}} \quad \text { for all } f \in L^{p_{1}}(X) .
\end{array}
$$

Then for any $\theta \in(0,1)$, we have

$$
\|T f\|_{L^{q}} \leq A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}}
$$

for $f \in L^{p}(X)$, where

$$
\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \quad \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}} .
$$

- Before we prove the theorem, recall that a simple function on X is a function of the form

$$
\sum_{j=1}^{J} a_{j} \chi_{E_{j}}
$$

where $J \in \mathbb{N}, a_{1}, \ldots, a_{J} \in \mathbb{C}$ and E_{1}, \ldots, E_{J} are measurable subsets of X of finite measures.

- Note that if $p \in(0, \infty)$, the set of simple functions on X is dense in L^{p} (the same is true for $p=\infty$ if in addition X is σ-finite, but we will not need this).
- The key to the proof of the theorem is the following proposition (where as before $S=\{0<\operatorname{Re} z<1\}$):

Proposition

Let (X, μ) be a measure space. Let $p_{0}, p_{1} \in(0, \infty]$ and $\theta \in(0,1)$. Let p be the exponent given by $1 / p=(1-\theta) / p_{0}+\theta / p_{1}$. Let f be any simple function on X. Then for any $z \in \bar{S}$, there exists a simple function f_{z} on X, such that the (vector-valued) map $z \mapsto f_{z}$ is holomorphic on S, continuous on \bar{S}, bounded on \bar{S}, and satisfies

$$
\left\|f_{z}\right\|_{L^{p_{j}}} \leq\|f\|_{L^{p}} \quad \text { when } \operatorname{Re} z=j, \text { for } j=0,1
$$

with $f_{\theta}=f$.

- Indeed, it suffices to take

$$
f_{z}(x)=\frac{f(x)}{|f(x)|} \frac{|f(x)|^{p\left(\frac{1-z}{p_{0}}+\frac{z}{p_{1}}\right)}}{\|f\|_{L^{p}}^{p\left(\frac{1-z}{p_{0}}+\frac{z}{p_{1}}\right)}}\|f\|_{L^{p}} .
$$

- To prove the theorem, let $p_{0}, p_{1}, q_{0}, q_{1} \in[1, \infty], \theta \in(0,1)$, and define p, q as in the statement of the theorem.
- Suppose $p \neq \infty$. We claim that it suffices to show that

$$
\begin{equation*}
\|T f\|_{L^{q}} \leq A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}} \tag{2}
\end{equation*}
$$

for all simple functions f on X.

- Indeed, then given a general $f \in L^{p}(X)$, we take a sequence $\left\{f_{n}\right\}$ of simple functions such that $f_{n} \rightarrow f$ in $L^{p}(X)$ as $n \rightarrow \infty$.
- Under the hypothesis of the theorem, the map $T:\left(L^{p_{0}}+L^{p_{1}}\right)(X) \rightarrow\left(L^{q_{0}}+L^{q_{1}}\right)(Y)$ is continuous.
- By continuity of the inclusion of $L^{p}(X)$ into $\left(L^{p_{0}}+L^{p_{1}}\right)(X)$, it follows that $T f_{n} \rightarrow T f$ in $\left(L^{q_{0}}+L^{q_{1}}\right)(Y)$.
- But by (2), $\left\{T f_{n}\right\}$ is Cauchy in $L^{q}(Y)$, so it converges in L^{q}.
- Since convergence in L^{q} implies convergence in $L^{q_{0}}+L^{q_{1}}$, we see that $T f \in L^{q}(Y)$, and that $T f_{n} \rightarrow T f$ in $L^{q}(Y)$, so (2) holds for this general $f \in L^{p}(X)$ as well.
- Let now f be a simple function on X. We establish (2) for f.
- We consider two cases, namely $q \neq 1$ and $q=1$.
- Assume first $q \neq 1$. By density of simple functions in $L^{q^{\prime}}(Y)$, it suffices to show that

$$
\begin{equation*}
\left|\int_{Y} T f \cdot g d \nu\right| \leq A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}}\|g\|_{L^{q^{\prime}}} \tag{3}
\end{equation*}
$$

for all simple functions g on Y.

- So fix two simple functions f and g on X and Y respectively.
- We apply the earlier proposition to f, p_{0}, p_{1}, θ and $g, q_{0}^{\prime}, q_{1}^{\prime}, \theta$, and obtain a holomorphic family f_{z} and g_{z}, where the key properties are that

$$
\left\|f_{z}\right\|_{L^{p_{j}}} \leq\|f\|_{L^{p}} \quad \text { and } \quad\left\|g_{z}\right\|_{L^{q_{j}^{\prime}}} \leq\|g\|_{L^{q^{\prime}}}
$$

when $\operatorname{Re} z=j$, for $j=0,1$, and that $f_{\theta}=f, g_{\theta}=g$.

- Let now

$$
F(z)=\int_{Y} T f_{Z} \cdot g_{z} d \nu
$$

We see that $F(z)$ is holomorphic on the strip S, continuous on \bar{S}, and bounded on \bar{S}. Also, the assumed bound of T on $L^{p_{0}}$ and $L^{p_{1}}$ shows that

$$
|F(z)| \leq A_{j}\|f\|_{L^{p}}\|g\|_{L^{q^{\prime}}} \quad \text { when } \operatorname{Re} z=j, \text { for } j=0,1
$$

- So the three lines lemma imply $|F(\theta)| \leq A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}}\|g\|_{L^{q^{\prime}}}$, which is the desired conclusion (3) since $f_{\theta}=f$ and $g_{\theta}=g$.
- On the other hand, if $q=1$, we will show directly that

$$
\begin{equation*}
\left|\int_{Y} T f \cdot g d \nu\right| \leq A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}}\|g\|_{L^{q^{\prime}}} \tag{4}
\end{equation*}
$$

for all $g \in L^{q^{\prime}}(Y)$.

- So fix a simple function f on X, and a general $g \in L^{q^{\prime}}(Y)$.
- Note that since $q=1$, we have $q_{0}=q_{1}=q$, so we already have $g \in\left(L^{q_{0}{ }^{\prime}} \cap L^{q_{1}{ }^{\prime}}\right)(Y)$.
- We apply the earlier proposition to f, p_{0}, p_{1}, θ only, and obtain a holomorphic family f_{z}; then consider

$$
F(z)=\int_{Y} T f_{Z} \cdot g d \nu
$$

- Since $g \in\left(L^{q_{0}{ }^{\prime}} \cap L^{q_{1}}\right)(Y)$, our assumptions imply that $F(z)$ is holomorphic on the strip S, continuous on \bar{S}, and bounded on \bar{S}. Also, the assumed bound of T on $L^{p_{0}}$ and $L^{p_{1}}$ shows that

$$
|F(z)| \leq A_{j}\|f\|_{L^{p}}\|g\|_{L^{q^{\prime}}} \quad \text { when } \operatorname{Re} z=j, \text { for } j=0,1
$$

- So the three lines lemma imply $|F(\theta)| \leq A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}}\|g\|_{L^{q^{\prime}}}$, which is the desired conclusion (4) since $f_{\theta}=f$.
- This completes the proof of the theorem when $p \neq \infty$.
- When $p=\infty$, we simply show directly that

$$
\begin{equation*}
\|T f\|_{L^{q}} \leq A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}} \tag{5}
\end{equation*}
$$

for all $f \in L^{p}(X)$.

- Indeed, let f be a general function in $L^{p}(X)$. Then since $p=\infty$, we have $p_{0}=p_{1}=p$, so we have $f \in\left(L^{p_{0}} \cap L^{p_{1}}\right)(X)$.
- If $q \neq 1$, then we show that

$$
\left|\int_{Y} T f \cdot g d \nu\right| \leq A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}}\|g\|_{L^{q^{\prime}}}
$$

for all simple functions g on Y, by considering $\int_{Y} T f \cdot g_{z} d \nu$ for a suitable holomorphic extension of the simple function g; if $q=1$, we show that the same holds for all $g \in L^{q^{\prime}}(Y)$ directly.

- This completes the proof of the Riesz-Thorin theorem. (The cases $p=\infty$ or $q=1$ would not require a separate treatment if we assume both X and Y are σ-finite.)
- Coming up next is a remarkably useful observation of Stein, namely that the Riesz-Thorin theorem also works for an analytic family of operators.
- As before, denote by S the strip $\{0<\operatorname{Re} z<1\}$, and \bar{S} the closure of S.

Theorem (Stein)

Let $(X, \mu),(Y, \nu)$ be measure spaces. Let $p_{0}, p_{1}, q_{0}, q_{1} \in[1, \infty]$. Suppose $\left\{T_{z}\right\}_{z \in \bar{S}}$ is a family of bounded linear operators from $\left(L^{p_{0}} \cap L^{p_{1}}\right)(X)$ to $\left(L^{q_{0}}+L^{q_{1}}\right)(Y)$, analytic in the sense that for every $f \in\left(L^{p_{0}} \cap L^{p_{1}}\right)(X)$ and $g \in\left(L^{q_{0}} \cap L^{q_{1}}\right)(Y)$, the map $z \mapsto \int_{Y} T_{z} f \cdot g d \nu$ is holomorphic on S, continuous up to \bar{S} and bounded on \bar{S}. Assume for all $f \in\left(L^{p_{0}} \cap L^{p_{1}}\right)(X)$, we have

$$
\left\|T_{z} f\right\|_{L^{q_{j}}} \leq A_{j}\|f\|_{L^{p_{j}}} \quad \text { whenever } \operatorname{Re} z=j, \text { for } j=0,1
$$

Then for any $\theta \in(0,1)$, we have

$$
\left\|T_{\theta} f\right\|_{L^{q}} \leq A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}} \quad \text { for all } f \in\left(L^{p_{0}} \cap L^{p_{1}}\right)(X)
$$

where

$$
\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \quad \frac{1}{q}=\frac{1-\theta}{q_{0}}+\frac{\theta}{q_{1}} .
$$

In particular, T_{θ} extends to a bounded linear map from $L^{p}(X)$ to $L^{q}(Y)$, with norm $\leq A_{0}^{1-\theta} A_{1}^{\theta}$.

- The ability to vary the operator involved makes this theorem way more powerful than the original theorem of Riesz-Thorin.
- One particularly striking aspect of this theorem is that its proof can be obtained from that of the Riesz-Thorin theorem simply "by adding a single letter of the alphabet" (i.e. by replacing T everywhere by T_{z}).
- Indeed, suppose $p \neq \infty$ and $q \neq 1$. By considering $F(z)=\int_{Y} T_{z} f_{z} \cdot g_{z} d \nu$ instead, we see that

$$
\left\|T_{\theta} f\right\|_{L^{q}} \leq A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}}
$$

for all simple functions f on X. The continuity of $T_{\theta}:\left(L^{p_{0}} \cap L^{p_{1}}\right)(X) \rightarrow\left(L^{q_{0}}+L^{q_{1}}\right)(Y)$, together with the density of simple functions in $\left(L^{p_{0}} \cap L^{p_{1}}\right)(X)$, shows that the same inequality is true for $f \in\left(L^{p_{0}} \cap L^{p_{1}}\right)(X)$. Similarly one can adapt the previous argument if $p=\infty$ or $q=1$.

- This proof shows that one can relax the assumption that $\int_{Y} T_{z} f \cdot g d \nu$ is bounded on S for every $f \in\left(L^{p_{0}} \cap L^{p_{1}}\right)(X)$ and $g \in\left(L^{q_{0}{ }^{\prime}} \cap L^{q_{1}}\right)(Y)$, to the assumption that for every such f and g, there exist $\alpha<1$ and constants C, c such that

$$
\left|\int_{Y} T_{z} f \cdot g d \nu\right| \leq C e^{c e^{\pi \alpha|z|}} \quad \text { for all } z \in S .
$$

- We remark that the above proofs of complex interpolation rely crucially on the duality between L^{q} and $L^{q^{\prime}}$ when $q \in[1, \infty]$; this gives rise to the assumption $p_{0}, p_{1}, q_{0}, q_{1} \in[1, \infty]$.
- But one can modify the above proof, so that the conditions on the exponents can be relaxed to $p_{0}, p_{1}, q_{0}, q_{1} \in(0, \infty]$.
- The key is to first take appropriate 'square root' of the functions involved, and to use the maximum principle for subharmonic functions instead of that for holomorphic functions. See Homework 8 for details.
- Also see Homework 8 for a complex interpolation theorem for bilinear operators.

Complex interpolation involving BMO

- We specialize now to the case when $X=Y=\mathbb{R}^{n}$ with the usual Lebesgue measure.
- One can also use complex interpolation for operators that map into BMO instead of L^{∞}.
- Recall that a locally integrable function h on \mathbb{R}^{n} is said to be in BMO, if the sharp maximal function $M^{\sharp} h$ is in L^{∞}, where

$$
M^{\sharp} h(x):=\sup _{x \in B} f_{B}\left|h(y)-h_{B}\right| d y,
$$

the supremum taken over all balls B containing x.

- Also recall that $L_{\text {loc }}^{1}$ is the space of all locally integrable functions on \mathbb{R}^{n}, and it is a topological vector space where $f_{n} \rightarrow f$ in $L_{\text {loc }}^{1}$, if and only if $\left\|f_{n}-f\right\|_{L^{1}(K)} \rightarrow 0$ for every compact subset K of \mathbb{R}^{n}.
- For convenience, let us write L_{0}^{∞} for the space of bounded, compactly supported measurable functions g on \mathbb{R}^{n}, with $\int_{\mathbb{R}^{n}} g d x=0$.

Theorem
Let $p_{0}, p_{1} \in[1, \infty]$. Suppose $\left\{T_{z}\right\}_{z \in \bar{S}}$ is a family of continuous linear operators from $\left(L^{p_{0}} \cap L^{p_{1}}\right)\left(\mathbb{R}^{n}\right)$ to $L_{\text {loc }}^{1}\left(\mathbb{R}^{n}\right)$, analytic in the sense that for every simple function f and every $g \in L_{0}^{\infty}$, the map $z \mapsto \int_{\mathbb{R}^{n}} T_{z} f \cdot g d x$ is holomorphic on S, continuous up to \bar{S} and bounded on \bar{S}. Let $q_{0} \in[1, \infty)$. Assume for all $f \in L^{p_{0}} \cap L^{p_{1}}$, we have $T_{z} f \in L^{q_{0}}$ for all $z \in \bar{S}$, with

$$
\begin{aligned}
&\left\|T_{z} f\right\|_{L q_{0}} \leq A_{0}\|f\|_{L^{p_{0}}} \quad \text { whenever } \operatorname{Re} z=0 \\
&\left\|T_{z} f\right\|_{B M O} \leq A_{1}\|f\|_{L^{p_{1}}} \quad \text { whenever } \operatorname{Re} z=1 .
\end{aligned}
$$

Then for any $\theta \in(0,1)$, we have

$$
\left\|T_{\theta} f\right\|_{L^{q}} \lesssim A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}} \quad \text { for all } f \in L^{p_{0}} \cap L^{p_{1}}
$$

where

$$
\frac{1}{p}=\frac{1-\theta}{p_{0}}+\frac{\theta}{p_{1}}, \quad \frac{1}{q}=\frac{1-\theta}{q_{0}} .
$$

In particular, T_{θ} extends to a bounded linear map from $L^{p}\left(\mathbb{R}^{n}\right)$ to $L^{q}\left(\mathbb{R}^{n}\right)$, with norm $\lesssim A_{0}^{1-\theta} A_{1}^{\theta}$.

- The key is the following proposition:

Proposition

Let $q_{0} \in[1, \infty)$. Suppose $\left\{h_{z}\right\}_{z \in \bar{S}}$ is an analytic family of $L_{\text {loc }}^{1}$ functions on \mathbb{R}^{n}, in the sense that for every $g \in L_{0}^{\infty}\left(\mathbb{R}^{n}\right)$, the map $z \mapsto \int_{\mathbb{R}^{n}} h_{z} \cdot g d x$ is holomorphic on S, continuous on \bar{S} and bounded on \bar{S}. Assume that $h_{z} \in L^{q_{0}}$ for all $z \in \bar{S}$, and that there exists constants A_{0}, A_{1} such that

$$
\begin{array}{r}
\left\|h_{z}\right\|_{L^{q_{0}}} \leq A_{0} \quad \text { whenever } \operatorname{Re} z=0 \\
\left\|h_{z}\right\|_{B M O} \leq A_{1} \quad \text { whenever } \operatorname{Re} z=1
\end{array}
$$

Then for any $\theta \in(0,1)$, we have $h_{\theta} \in L^{q}$ with

$$
\left\|h_{\theta}\right\|_{L^{q}} \lesssim A_{0}^{1-\theta} A_{1}^{\theta}, \quad \text { where } \quad \frac{1}{q}=\frac{1-\theta}{q_{0}} .
$$

- Assuming the proposition for the moment, we finish the proof of the theorem as follows.
- Let $p_{0}, p_{1}, q_{0} \in[1, \infty], \theta \in(0,1)$, and define p, q as in the statement of the theorem.
- Let first f be a simple function on \mathbb{R}^{n}.
- We apply our earlier proposition to f, p_{0}, p_{1}, θ, so that we have a holomorphic family f_{z}, with $\left\|f_{z}\right\|_{L^{p_{j}}} \leq\|f\|_{L^{p}}$ when $\operatorname{Re} z=j, j=0,1$, and $f_{\theta}=f$.
- Then $h_{z}:=T_{z} f_{z}$ satisfies the hypothesis of the proposition on the previous slide, so for any $\theta \in(0,1)$, we have $T_{\theta} f \in L^{q}$, with

$$
\left\|T_{\theta} f\right\|_{L^{q}} \lesssim A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}}
$$

- Now since simple functions are dense in $L^{p_{0}} \cap L^{p_{1}}$, if f is a general $L^{p_{0}} \cap L^{p_{1}}$ function on \mathbb{R}^{n}, we take a sequence of simple functions $\left\{f_{n}\right\}$ so that $f_{n} \rightarrow f$ in $L^{p_{0}} \cap L^{p_{1}}$.
- Then by continuity of $T_{\theta}: L^{p_{0}} \cap L^{p_{1}} \rightarrow L_{\text {loc }}^{1}$, we have $T_{\theta} f_{n} \rightarrow T_{\theta} f$ in $L_{\text {loc }}^{1}$, whereas our earlier estimate for simple functions show that $T_{\theta} f_{n}$ is Cauchy in L^{q}.
- Since convergence in L^{q} implies convergence in $L_{\text {loc }}^{1}$, this shows $T_{\theta} f \in L^{q}$, with $\left\|T_{\theta} f\right\|_{L^{q}} \lesssim A_{0}^{1-\theta} A_{1}^{\theta}\|f\|_{L^{p}}$ for this general $f \in L^{p_{0}} \cap L^{p_{1}}$ as well.
- This finishes the proof of the theorem.
- We now turn to the proof of the proposition. We use the following lemma:

Lemma

Suppose $h \in L^{q_{0}}\left(\mathbb{R}^{n}\right)$. If $M^{\sharp} h \in L^{q}\left(\mathbb{R}^{n}\right)$ for some $q \in\left[q_{0}, \infty\right)$, then $h \in L^{q}\left(\mathbb{R}^{n}\right)$ with

$$
\|h\|_{L^{q}} \lesssim\left\|M^{\sharp} h\right\|_{L^{q}} .
$$

- The proof of the lemma is based on a relative distributional inequality from Homework 3. See Homework 8 for details.
- In view of the lemma, to prove the proposition, we only need to show that $\left\|M^{\sharp} h_{\theta}\right\|_{L^{q}} \lesssim A_{0}^{1-\theta} A_{1}^{\theta}$ for all $\theta \in(0,1)$.
- Recall for $h \in L_{\text {loc }}^{1}, M^{\sharp} h(x)=\sup _{x \in B} f_{B}\left|h(y)-h_{B}\right| d y$, where the supremum is taken over all balls B containing x.
- But by dominated convergence, it suffices to take balls with center in \mathbb{Q}^{n} and radius in \mathbb{Q}.
- Now consider a collection of balls $\left\{B_{x}\right\}_{x \in \mathbb{R}^{n}}$ such that B_{x} contains x, the volume of B_{x} is bounded above and below independent of x, and the center and the radius of B_{x} depends measurably on x (such measurability could be guaranteed, if say the center and the radius takes value in a countable set like \mathbb{Q}^{n} and \mathbb{Q}).
- Also consider a measurable function $\eta(x, y)$ on $\mathbb{R}^{n} \times \mathbb{R}^{n}$ with $|\eta(x, y)| \leq 1$ for all $x, y \in \mathbb{R}^{n}$.
- If for a fixed $x \in \mathbb{R}^{n}$, we compute

$$
f_{B_{x}}\left[h(y)-h_{B_{x}}\right] \eta(x, y) d y
$$

and take supremum over all collections of balls and all functions η as above, then we obtain $M^{\sharp} h(x)$.

- We now return to the setting of the proposition.
- We want to estimate $\left\|M^{\sharp} h_{\theta}\right\|_{L^{q}}$.
- By duality, we fix a compactly supported simple function g with $\|g\|_{L q^{\prime}}=1$, and consider a holomorphic extension g_{z} of g such that g_{z} is a simple function for each $z \in \bar{S}$, the map $z \mapsto g_{z}$ is holomorphic on S, continuous on \bar{S}, bounded on \bar{S}, with

$$
\begin{gathered}
\left\|g_{z}\right\|_{L_{q_{0}}} \leq 1 \quad \text { when } \operatorname{Re} z=0 \\
\left\|g_{z}\right\|_{L^{1}} \leq 1 \quad \text { when } \operatorname{Re} z=1
\end{gathered}
$$

- We fix any collection of balls $\left\{B_{x}\right\}$ and bounded function η as on the previous slide.
- Now let

$$
F(z):=\int_{\mathbb{R}^{n}} f_{B_{x}}\left[h_{z}(y)-\left(h_{z}\right)_{B_{x}}\right] \eta(x, y) d y g_{z}(x) d x \quad z \in \bar{S}
$$

where $\left\{h_{z}\right\}_{z \in \bar{S}}$ is as in the proposition.

- Note that if $g=\sum_{j} b_{j} \chi_{F_{j}}$ where the F_{j} 's are disjoint bounded measurable subsets of \mathbb{R}^{n}, then

$$
g_{z}(x)=\sum_{j}\left|b_{j}\right|^{q^{\prime}\left(\frac{1-z}{q_{0}}+\frac{z}{1}\right)} \frac{b_{j}}{\left|b_{j}\right|} \chi_{F_{j}}
$$

- So $F(z)=\sum_{j}\left|b_{j}\right|^{q^{\prime}}\left(\frac{1-\theta}{q_{0}}+\frac{\theta}{1}\right) \frac{b_{j}}{\left|b_{j}\right|} \int_{\mathbb{R}^{n}} h_{z}(y) G_{j}(y) d y$, where $G_{j}(y)$ is given by

$$
\int_{\mathbb{R}^{n}} \chi_{F_{j}}(x)\left[\frac{\chi_{B_{x}}(y)}{\left|B_{x}\right|} \eta(x, y)-\frac{\chi_{B_{x}}(y)}{\left|B_{x}\right|} \int_{\mathbb{R}^{n}} \frac{\chi_{B_{x}}(w)}{\left|B_{x}\right|} \eta(x, w) d w\right] d x ;
$$

note $G_{j}(y)$ is in L_{0}^{∞} for every j.

- Our assumptions guarantee that F is holomorphic on S, continuous on \bar{S}, bounded on \bar{S}, and

$$
\begin{gathered}
|F(z)| \leq\left\|h_{z}\right\|_{B M O}\left\|g_{z}\right\|_{L^{1}} \leq A_{1} \quad \text { when } \operatorname{Re} z=1 \\
|F(z)| \leq 2\left\|M h_{z}\right\|_{L^{q_{0}}}\left\|g_{z}\right\|_{L^{q_{0}^{\prime}}} \lesssim A_{0} \quad \text { when } \operatorname{Re} z=0
\end{gathered}
$$

- So the three lines lemma implies that

$$
|F(\theta)| \lesssim A_{0}^{1-\theta} A_{1}^{\theta}
$$

which in turn implies

$$
\left\|M^{\sharp} h_{\theta}\right\|_{L^{q}} \lesssim A_{0}^{1-\theta} A_{1}^{\theta} .
$$

This completes the proof of the proposition.

- We remark that the hypothesis of the proposition can be weakened as before: it will suffice if for every $g \in L_{0}^{\infty}$, there exist $\alpha<1$ and C, c such that $\left|\int_{\mathbb{R}^{n}} h_{z} \cdot g d x\right| \leq C e^{c e^{\pi \alpha|z|}}$ for all $z \in S$. This yields a corresponding improvement of the complex interpolation theorem involving BMO.

Comparing the real and complex methods of interpolation

- To conclude, let us draw a comparison between the real and complex methods of interpolation.
- The real method of interpolation allows one to convert weak-type or restricted weak-type hypothesis into strong type conclusions (whereas the complex method doesn't).
- Indeed, the real method is less sensitive to the hypothesis given at the endpoints; it gives the same conclusion regardless of whether a strong-type and a (restricted) weak-type hypothesis is given (contrary to the complex method).
- The real method also allows one to work with subadditive operators (whereas the complex method requires the operator to be linear, or at least linearizable).
- On the other hand, the complex method allows one to vary an operator within an analytic family, a feature that is tremendously useful in practice.

