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Real interpolation

I In this lecture we study real and complex interpolation.

I These are methods of deducing boundedness of certain linear
or quasi-additive operators on certain “intermediate” function
spaces, from the boundedness of these operators on some
other “endpoint” function spaces.

I We begin with the real method of interpolation, following
Marcinkiewicz.

I We have already seen a version of it in the study of maximal
functions and singular integrals in Lectures 3 and 4.

I We will sometimes encounter Lebesgue spaces Lp with p < 1,
and the statement of Marcinkiewicz interpolation theorem is
best formulated using Lorentz spaces Lp,r .

I We introduce these in the next few slides.



Lebesgue spaces for p < 1
I Let (X , µ) be a measure space, and f : X → C be measurable.

I For p ∈ (0, 1), we still say f ∈ Lp if

‖f ‖Lp :=

(ˆ
X
|f |pdµ

)1/p

<∞.

I Note that ‖ · ‖Lp does not define a norm when p ∈ (0, 1); the
triangle inequality is not satisfied.

I The following is often a useful substitute:

‖f + g‖pLp ≤ ‖f ‖
p
Lp + ‖g‖pLp

which holds for all f , g ∈ Lp, p ∈ (0, 1].

I From this we deduce a quasi-triangle inequality: for all
p ∈ (0, 1), there exists some finite constant Cp such that

‖f + g‖Lp ≤ Cp(‖f ‖Lp + ‖g‖Lp)

for all f , g ∈ Lp.



Lorentz spaces Lp,r

I Next we introduce Lorentz spaces.

I Let (X , µ) be a measure space, and f : X → C be measurable.

I Let p ∈ (0,∞), r ∈ (0,∞]. f is said to be in the Lorentz
space Lp,r , if |||f |||Lp,r <∞, where

|||f |||Lp,r :=

(
p

ˆ ∞
0

[
αµ{|f | > α}1/p

]r dα
α

)1/r

if r ∈ (0,∞);

|||f |||Lp,r := sup
α>0

[
αµ{|f | > α}1/p

]
if r =∞.

I Note that Lp,∞ is the weak-Lp space introduced in Lecture 3.

I By convention, L∞,∞ is L∞, and L∞,r is undefined for r <∞.

I Observe also |||f |||Lp,p = ‖f ‖Lp by Fubini for all p ∈ (0,∞].

I It is often convenient to note that

|||f |||Lp,r ' ‖2
kµ{|f | > 2k}1/p‖`r (Z)

for all measurable f and all p ∈ (0,∞), r ∈ (0,∞].



I In general |||·|||Lp,r defines only a quasi-norm on Lp,r , and not a
norm. In other words, the triangle inequality is not satisfied,
but we have

|||f + g |||Lp,r ≤ Cp,r (|||f |||Lp,r + |||g |||Lp,r )

for some finite constant Cp,r ≥ 1.

I But Lp,r does admit a comparable norm if p ∈ (1,∞) and
r ∈ [1,∞]; indeed when p ∈ (1,∞) and r ∈ (1,∞], Lp,r is the
dual space of Lp

′,r ′ , so it admits a dual norm

‖f ‖Lp,r := sup

{∣∣∣∣ˆ
X
fg dµ

∣∣∣∣ : |||g |||Lp′,r′ ≤ 1

}
.

The same construction works when p ∈ (1,∞) and r = 1. See
Homework 8 for details, and Stein and Weiss’ Introduction to
Fourier Analysis, Chapter V.3, for an alternative approach of
norming Lp,r .



I To formulate the Marcinkiewicz interpolation theorem, let
(X , µ), (Y , ν) be measure spaces.

I Let T be an operator defined on a subspace Dom(T ) of
measurable functions on X , that maps each element in
Dom(T ) to a measurable function on Y .

I We say T is subadditive if

|T (f + g)| ≤ |Tf |+ |Tg |

for all f , g ∈ Dom(T ).

I Suppose Dom(T ) is stable under truncations, i.e. if
f ∈ Dom(T ) then f χE is in Dom(T ) for all measurable
subsets E of X , where χE is the characteristic function of E .

I Let p, q ∈ (0,∞]. If p 6=∞, then we say that T is of
restricted weak-type (p, q), if

‖Tf ‖Lq,∞ . ‖f ‖Lp,1 for all f ∈ Dom(T ) ∩ Lp,1;

if p =∞, then we say that T is of restricted weak-type (p, q),
if the same holds with Lp,1 replaced by L∞.



Theorem (Marcinkiewicz interpolation theorem)

Let p0, p1, q0, q1 ∈ (0,∞] with p0 6= p1 and q0 6= q1. Let p, q be
such that

1

p
=

1− θ
p0

+
θ

p1
and

1

q
=

1− θ
q0

+
θ

q1

for some θ ∈ (0, 1). If a subadditive operator T is of restricted
weak-types (p0, q0) and (p1, q1), then for any r ∈ (0,∞], we have

‖Tf ‖Lq,r . ‖f ‖Lp,r

for all f in Dom(T ) ∩ Lp,r ; in particular, if p ≤ q, then
‖Tf ‖Lq . ‖f ‖Lp for all f in Dom(T ) ∩ Lp.

I In applications usually we have both p0 ≤ q0 and p1 ≤ q1,
from which it follows that p ≤ q.



I Here we mention a related observation:

Proposition

Let p0, p1, q0, q1 ∈ (0,∞] with p0 = p1 and q0 6= q1. Let p, q be
as in the previous theorem with θ ∈ (0, 1). If a subadditive
operator T is of weak-types (p0, q0) and (p1, q1) (not just
restricted weak-types), then for all r ∈ (0,∞], we have

‖Tf ‖Lq,r . ‖f ‖Lp,r

for all f in Dom(T ) ∩ Lp,r .

I The proposition follows just from the inclusions Lp,r ⊆ Lp,∞

and Lq0,∞∩Lq1,∞ ⊆ Lq,r . But the condition q0 6= q1 is crucial.

I Combining the theorem (the case where p0 ≤ q0 and p1 ≤ q1)
with the proposition, we obtain the following corollary:



Corollary (weak-type case of Marcinkiewicz interpolation)

Let p0, p1, q0, q1 ∈ (0,∞] with q0 6= q1, p0 ≤ q0 and p1 ≤ q1. Let
p, q be such that

1

p
=

1− θ
p0

+
θ

p1
and

1

q
=

1− θ
q0

+
θ

q1

for some θ ∈ (0, 1). If a subadditive operator T is of weak-types
(p0, q0) and (p1, q1), then

‖Tf ‖Lq . ‖f ‖Lp

for all f in Dom(T ) ∩ Lp.



I We now turn to the proof of the theorem.

I We will only prove the case when p0, p1, q0, q1 are all finite;
the cases where one of the pi ’s is infinite, and/or where one of
the qi ’s is infinite, is left as an exercise (see Homework 8).

I Let p0, p1, q0, q1 ∈ (0,∞) with p0 6= p1 and q0 6= q1. Let
θ ∈ (0, 1), and define p, q as in the theorem.

I It will be convenient to write

α = p

(
1

p0
− 1

p1

)
, β = q

(
1

q0
− 1

q1

)
,

x0 = q0θ, x1 = −q1(1− θ).

I We have α 6= 0 and β 6= 0 by assumption.

I Let r ∈ (0,∞), f ∈ Lp,r with |||f |||Lp,r = 1. We will show that

‖Tf ‖Lq,r . 1.



I Decompose

f =
∑
k∈Z

fk

where fk = f χ2k<|f |≤2k+1 . Write Wk = µ(suppfk), so that∑
k∈Z

2krW
r/p
k . 1.

I For k ∈ Z, we define

ak =
∑
`∈Z

2−|k−`|ε2`rW
r/p
`

where ε > 0 is a small parameter to be determined. Then

Wk ≤ 2−kpa
p/r
k for all k ∈ Z and

∑
k∈Z

ak . 1,

(and these would also hold if we had simply defined ak to be

2krW
r/p
k ), but the additional sup over ` in the definition of ak

guarantees that ak does not vary too rapidly, in the sense that

ak ≤ 2|k−`|εa` for all k , ` ∈ Z.



I In particular, since a` . 1 for all `, taking ` ' jβ
α , we have

a
α−β

r
k . 2|jβ−kα|Cε

for some finite constant C = Cα,β,r .

I For k , j ∈ Z, let
ck,j := 2−|jβ−kα|ε.

I Then since α 6= 0,
∑

k∈Z ck,j .ε 1, so by subadditivity of T ,

µ{|Tf | > 2j} ≤
∑
k∈Z

µ{|Tfk | &ε ck,j2
j},

which by the restricted weak-type properties of T is bounded
above by

.ε

∑
k∈Z

min
i=0,1

(
c−1k,j 2−j2kW

1/pi
k

)qi
.

(We used the finiteness of p0, p1, q0, q1 here.)



I Hence to show that ‖Tf ‖Lq,r . 1, it suffices to show that

∑
j∈Z

2jr

[∑
k∈Z

min
i=0,1

(
c−1k,j 2−j2kW

1/pi
k

)qi] r
q

. 1.

I Now using Wk ≤ 2−kpa
p/r
k , we just need to show

∑
j∈Z

[∑
k∈Z

min
i=0,1

(
c−1k,j 2

jq
(

1
qi
− 1

q

)
2
−kp

(
1
pi
− 1

p

)
a

p
rpi
k

)qi
] r

q

.

I Since

pqi

(
1

pi
− 1

p

)
= αxi and qqi

(
1

qi
− 1

q

)
= βxi ,

the above is just

∑
j∈Z

[∑
k∈Z

min
i=0,1

(
c−qik,j 2(jβ−kα)xi a

pqi
rpi
k

)] r
q

.



I Now factor our a
q/r
k from the minimum in the sum. Since

pqi
pi
− q = pqi

(
1

pi
− 1

p

)
+ qi − q = αxi − qqi

(
1

qi
− 1

q

)
which equals (α− β)xi , the above is just

∑
j∈Z

[∑
k∈Z

a
q
r
k min

i=0,1

(
c−qik,j 2(jβ−kα)xi a

(α−β)xi
r

k

)] r
q

.

I In view of our earlier bound for a
α−β

r
k and ck,j , this is bounded

by ∑
j∈Z

[∑
k∈Z

a
q
r
k min

i=0,1

(
2(jβ−kα)xi 2|jβ−kα|cε

)] r
q

(1)

for some finite constant c .

I We now choose ε > 0 sufficiently small, so that

cε < min{|x0|, |x1|}.



I If r
q ≤ 1, then we use [

∑
k . . . ]

r/q ≤
∑

k [. . . ]r/q, and bound
(1) by ∑

j∈Z

∑
k∈Z

ak min
i=0,1

(
2(jβ−kα)xi 2|jβ−kα|cε

) r
q
.

Since x0, x1 are non-zero, of opposite signs, and β 6= 0, in
view of our earlier choice of ε, we have∑

j∈Z
min
i=0,1

(
2(jβ−kα)xi 2|jβ−kα|cε

) r
q
. 1

uniformly in k , so

(1) .
∑
k∈Z

ak . 1.



I If r
q ≥ 1, we use the observation that∑

k∈Z
min
i=0,1

(
2(jβ−kα)xi 2|jβ−kα|cε

)
. 1

uniformly in j . Jensen’s inequality then shows[∑
k∈Z

a
q
r
k min

i=0,1

(
2(jβ−kα)xi 2|jβ−kα|cε

)] r
q

.
∑
k∈Z

ak min
i=0,1

(
2(jβ−kα)xi 2|jβ−kα|cε

)
,

which we then sum over j to yield

(1) .
∑
k∈Z

ak
∑
j∈Z

min
i=0,1

(
2(jβ−kα)xi 2|jβ−kα|cε

)
. 1.

(We used again β 6= 0 to evaluate the last sum over j .)



I This completes the proof of the Marcinkiewicz interpolation
theorem when r ∈ (0,∞).

I When r =∞ the proof is easier.

I Indeed, let f ∈ Lp,∞ with ‖f ‖Lp,∞ = 1, and let λ > 0.

I To estimate µ{|Tf | > λ}, we decompose f = f0 + f1, where
f0 = f χ|f |>γ and f1 = f χ|f |≤γ .

I We have

‖f0‖Lp0,1 .
∑
2k>γ

2kµ{|f | > 2k}
1
p0 .

∑
2k>γ

2k2
− kp

p0 = γ
−p

(
1
p0
− 1

p

)

and similarly

‖f1‖Lp1,1 . γ
−p

(
1
p1
− 1

p

)
.



I As a result,

µ{|Tf | > λ} ≤ µ{|Tf0| > λ/2}+ µ{|Tf1| > λ/2}
. λ−q0‖f0‖q0Lp0,1 + λ−q1‖f1‖q1Lp1,1

which is bounded by

λ−q
(
λ
qq0

(
1
q0
− 1

q

)
γ
−pq0

(
1
p0
− 1

p

)
+ λ

qq1
(

1
q1
− 1

q

)
γ
−pq1

(
1
p1
− 1

p

))
= λ−q

(
λβx0γ−αx0 + λβx1γ−αx1

)
.

I Choosing γ = λβ/α gives

µ{|Tf | > λ} . λ−q,

as desired.



Complex interpolation

I Next we turn to the complex method of interpolation,
following Riesz, Thorin and Stein.

I The key is the following three lines lemma, which is a variant
of the maximum principle for holomorphic functions on a strip
(whose proof we defer to Homework 8):

Lemma
Let S be the strip {0 < Re z < 1}, and S be its closure. Suppose f
is a holomorphic function on the strip S that extends continuously
to S . Assume |f (z)| ≤ A0 when Re z = 0, and |f (z)| ≤ A1 when
Re z = 1. If there exist α < 1, and constants C , c , such that

|f (z)| ≤ Cece
πα|z|

for all z ∈ S , then |f (z)| ≤ A1−Re z
0 ARe z

1 on S .

I The condition |f (z)| ≤ Cece
πα|z|

would be satisfied, if say |f |
is bounded on the strip.



I To proceed further, if (X , µ) is a measure space, and
p0, p1 ∈ [1,∞], then we denote by Lp0 + Lp1 the space of all
functions f on X such that f = f0 + f1 for some f0 ∈ Lp0 and
f1 ∈ Lp1 . This can be made a Banach space with norm

‖f ‖Lp0+Lp1 := inf {‖f0‖Lp0 + ‖f1‖Lp1 : f = f0 + f1, f0 ∈ Lp0 , f1 ∈ Lp1} .

Note that Lp embeds continuously into Lp0 + Lp1 if p is
between p0 and p1.

I We will also need the Banach space Lp0 ∩ Lp1 , where
p0, p1 ∈ [1,∞]. Indeed, this is equipped with norm

‖g‖Lp0∩Lp1 := max {‖g‖Lp0 , ‖g‖Lp1} ;

Lp0 ∩ Lp1 embeds continuously into Lp if p is between p0
and p1.



Theorem (Riesz-Thorin)

Let (X , µ), (Y , ν) be measure spaces. Let p0, p1, q0, q1 ∈ [1,∞],
and T : (Lp0 + Lp1)(X )→ (Lq0 + Lq1)(Y ) be a linear operator.
Suppose there exist constants A0,A1 such that

‖Tf ‖Lq0 ≤ A0‖f ‖Lp0 for all f ∈ Lp0(X ),

‖Tf ‖Lq1 ≤ A1‖f ‖Lp1 for all f ∈ Lp1(X ).

Then for any θ ∈ (0, 1), we have

‖Tf ‖Lq ≤ A1−θ
0 Aθ1‖f ‖Lp

for f ∈ Lp(X ), where

1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
.



I Before we prove the theorem, recall that a simple function on
X is a function of the form

J∑
j=1

ajχEj

where J ∈ N, a1, . . . , aJ ∈ C and E1, . . . ,EJ are measurable
subsets of X of finite measures.

I Note that if p ∈ (0,∞), the set of simple functions on X is
dense in Lp (the same is true for p =∞ if in addition X is
σ-finite, but we will not need this).

I The key to the proof of the theorem is the following
proposition (where as before S = {0 < Re z < 1}):



Proposition

Let (X , µ) be a measure space. Let p0, p1 ∈ (0,∞] and θ ∈ (0, 1).
Let p be the exponent given by 1/p = (1− θ)/p0 + θ/p1. Let f be
any simple function on X . Then for any z ∈ S , there exists a
simple function fz on X , such that the (vector-valued) map z 7→ fz
is holomorphic on S , continuous on S , bounded on S , and satisfies

‖fz‖Lpj ≤ ‖f ‖Lp when Re z = j , for j = 0, 1,

with fθ = f .

I Indeed, it suffices to take

fz(x) =
f (x)

|f (x)|
|f (x)|p

(
1−z
p0

+ z
p1

)

‖f ‖
p
(

1−z
p0

+ z
p1

)
Lp

‖f ‖Lp .



I To prove the theorem, let p0, p1, q0, q1 ∈ [1,∞], θ ∈ (0, 1),
and define p, q as in the statement of the theorem.

I Suppose p 6=∞. We claim that it suffices to show that

‖Tf ‖Lq ≤ A1−θ
0 Aθ1‖f ‖Lp (2)

for all simple functions f on X .

I Indeed, then given a general f ∈ Lp(X ), we take a sequence
{fn} of simple functions such that fn → f in Lp(X ) as n→∞.

I Under the hypothesis of the theorem, the map
T : (Lp0 + Lp1)(X )→ (Lq0 + Lq1)(Y ) is continuous.

I By continuity of the inclusion of Lp(X ) into (Lp0 + Lp1)(X ), it
follows that Tfn → Tf in (Lq0 + Lq1)(Y ).

I But by (2), {Tfn} is Cauchy in Lq(Y ), so it converges in Lq.

I Since convergence in Lq implies convergence in Lq0 + Lq1 , we
see that Tf ∈ Lq(Y ), and that Tfn → Tf in Lq(Y ), so (2)
holds for this general f ∈ Lp(X ) as well.



I Let now f be a simple function on X . We establish (2) for f .

I We consider two cases, namely q 6= 1 and q = 1.

I Assume first q 6= 1. By density of simple functions in Lq
′
(Y ),

it suffices to show that∣∣∣∣ˆ
Y
Tf · gdν

∣∣∣∣ ≤ A1−θ
0 Aθ1‖f ‖Lp‖g‖Lq′ (3)

for all simple functions g on Y .

I So fix two simple functions f and g on X and Y respectively.

I We apply the earlier proposition to f , p0, p1, θ and g , q′0, q
′
1, θ,

and obtain a holomorphic family fz and gz , where the key
properties are that

‖fz‖Lpj ≤ ‖f ‖Lp and ‖gz‖
L
q′
j
≤ ‖g‖Lq′

when Re z = j , for j = 0, 1, and that fθ = f , gθ = g .



I Let now

F (z) =

ˆ
Y
Tfz · gzdν.

We see that F (z) is holomorphic on the strip S , continuous
on S , and bounded on S . Also, the assumed bound of T on
Lp0 and Lp1 shows that

|F (z)| ≤ Aj‖f ‖Lp‖g‖Lq′ when Re z = j , for j = 0, 1.

I So the three lines lemma imply |F (θ)| ≤ A1−θ
0 Aθ1‖f ‖Lp‖g‖Lq′ ,

which is the desired conclusion (3) since fθ = f and gθ = g .

I On the other hand, if q = 1, we will show directly that∣∣∣∣ˆ
Y
Tf · gdν

∣∣∣∣ ≤ A1−θ
0 Aθ1‖f ‖Lp‖g‖Lq′ (4)

for all g ∈ Lq
′
(Y ).

I So fix a simple function f on X , and a general g ∈ Lq
′
(Y ).

I Note that since q = 1, we have q0 = q1 = q, so we already
have g ∈ (Lq0

′ ∩ Lq1
′
)(Y ).



I We apply the earlier proposition to f , p0, p1, θ only, and obtain
a holomorphic family fz ; then consider

F (z) =

ˆ
Y
Tfz · gdν

I Since g ∈ (Lq0
′ ∩ Lq1′)(Y ), our assumptions imply that F (z) is

holomorphic on the strip S , continuous on S , and bounded on
S . Also, the assumed bound of T on Lp0 and Lp1 shows that

|F (z)| ≤ Aj‖f ‖Lp‖g‖Lq′ when Re z = j , for j = 0, 1.

I So the three lines lemma imply |F (θ)| ≤ A1−θ
0 Aθ1‖f ‖Lp‖g‖Lq′ ,

which is the desired conclusion (4) since fθ = f .

I This completes the proof of the theorem when p 6=∞.

I When p =∞, we simply show directly that

‖Tf ‖Lq ≤ A1−θ
0 Aθ1‖f ‖Lp (5)

for all f ∈ Lp(X ).



I Indeed, let f be a general function in Lp(X ). Then since
p =∞, we have p0 = p1 = p, so we have f ∈ (Lp0 ∩ Lp1)(X ).

I If q 6= 1, then we show that∣∣∣∣ˆ
Y
Tf · gdν

∣∣∣∣ ≤ A1−θ
0 Aθ1‖f ‖Lp‖g‖Lq′

for all simple functions g on Y , by considering
´
Y Tf · gzdν

for a suitable holomorphic extension of the simple function g ;
if q = 1, we show that the same holds for all g ∈ Lq

′
(Y )

directly.

I This completes the proof of the Riesz-Thorin theorem. (The
cases p =∞ or q = 1 would not require a separate treatment
if we assume both X and Y are σ-finite.)

I Coming up next is a remarkably useful observation of Stein,
namely that the Riesz-Thorin theorem also works for an
analytic family of operators.

I As before, denote by S the strip {0 < Re z < 1}, and S the
closure of S .



Theorem (Stein)

Let (X , µ), (Y , ν) be measure spaces. Let p0, p1, q0, q1 ∈ [1,∞].
Suppose {Tz}z∈S is a family of bounded linear operators from
(Lp0 ∩ Lp1)(X ) to (Lq0 + Lq1)(Y ), analytic in the sense that for
every f ∈ (Lp0 ∩ Lp1)(X ) and g ∈ (Lq0

′ ∩ Lq1
′
)(Y ), the map

z 7→
´
Y Tz f · gdν is holomorphic on S , continuous up to S and

bounded on S . Assume for all f ∈ (Lp0 ∩ Lp1)(X ), we have

‖Tz f ‖Lqj ≤ Aj‖f ‖Lpj whenever Re z = j , for j = 0, 1.

Then for any θ ∈ (0, 1), we have

‖Tθf ‖Lq ≤ A1−θ
0 Aθ1‖f ‖Lp for all f ∈ (Lp0 ∩ Lp1)(X ),

where
1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

+
θ

q1
.

In particular, Tθ extends to a bounded linear map from Lp(X ) to
Lq(Y ), with norm ≤ A1−θ

0 Aθ1.



I The ability to vary the operator involved makes this theorem
way more powerful than the original theorem of Riesz-Thorin.

I One particularly striking aspect of this theorem is that its
proof can be obtained from that of the Riesz-Thorin theorem
simply “by adding a single letter of the alphabet”
(i.e. by replacing T everywhere by Tz).

I Indeed, suppose p 6=∞ and q 6= 1. By considering
F (z) =

´
Y Tz fz · gzdν instead, we see that

‖Tθf ‖Lq ≤ A1−θ
0 Aθ1‖f ‖Lp

for all simple functions f on X . The continuity of
Tθ : (Lp0 ∩ Lp1)(X )→ (Lq0 + Lq1)(Y ), together with the
density of simple functions in (Lp0 ∩ Lp1)(X ), shows that the
same inequality is true for f ∈ (Lp0 ∩ Lp1)(X ). Similarly one
can adapt the previous argument if p =∞ or q = 1.



I This proof shows that one can relax the assumption that´
Y Tz f · gdν is bounded on S for every f ∈ (Lp0 ∩ Lp1)(X )

and g ∈ (Lq0
′ ∩ Lq1

′
)(Y ), to the assumption that for every

such f and g , there exist α < 1 and constants C , c such that∣∣∣∣ˆ
Y
Tz f · gdν

∣∣∣∣ ≤ Cece
πα|z|

for all z ∈ S .

I We remark that the above proofs of complex interpolation rely
crucially on the duality between Lq and Lq

′
when q ∈ [1,∞];

this gives rise to the assumption p0, p1, q0, q1 ∈ [1,∞].

I But one can modify the above proof, so that the conditions
on the exponents can be relaxed to p0, p1, q0, q1 ∈ (0,∞].

I The key is to first take appropriate ‘square root’ of the
functions involved, and to use the maximum principle for
subharmonic functions instead of that for holomorphic
functions. See Homework 8 for details.

I Also see Homework 8 for a complex interpolation theorem for
bilinear operators.



Complex interpolation involving BMO
I We specialize now to the case when X = Y = Rn with the

usual Lebesgue measure.

I One can also use complex interpolation for operators that
map into BMO instead of L∞.

I Recall that a locally integrable function h on Rn is said to be
in BMO, if the sharp maximal function M]h is in L∞, where

M]h(x) := sup
x∈B

 
B
|h(y)− hB |dy ,

the supremum taken over all balls B containing x .

I Also recall that L1loc is the space of all locally integrable
functions on Rn, and it is a topological vector space where
fn → f in L1loc, if and only if ‖fn − f ‖L1(K) → 0 for every
compact subset K of Rn.

I For convenience, let us write L∞0 for the space of bounded,
compactly supported measurable functions g on Rn, with´
Rn gdx = 0.



Theorem
Let p0, p1 ∈ [1,∞]. Suppose {Tz}z∈S is a family of continuous
linear operators from (Lp0 ∩ Lp1)(Rn) to L1loc(Rn), analytic in the
sense that for every simple function f and every g ∈ L∞0 , the map
z 7→

´
Rn Tz f · gdx is holomorphic on S , continuous up to S and

bounded on S . Let q0 ∈ [1,∞). Assume for all f ∈ Lp0 ∩ Lp1 , we
have Tz f ∈ Lq0 for all z ∈ S , with

‖Tz f ‖Lq0 ≤ A0‖f ‖Lp0 whenever Re z = 0,

‖Tz f ‖BMO ≤ A1‖f ‖Lp1 whenever Re z = 1.

Then for any θ ∈ (0, 1), we have

‖Tθf ‖Lq . A1−θ
0 Aθ1‖f ‖Lp for all f ∈ Lp0 ∩ Lp1 ,

where 1

p
=

1− θ
p0

+
θ

p1
,

1

q
=

1− θ
q0

.

In particular, Tθ extends to a bounded linear map from Lp(Rn) to
Lq(Rn), with norm . A1−θ

0 Aθ1.



I The key is the following proposition:

Proposition

Let q0 ∈ [1,∞). Suppose {hz}z∈S is an analytic family of L1loc
functions on Rn, in the sense that for every g ∈ L∞0 (Rn), the map
z 7→

´
Rn hz · gdx is holomorphic on S , continuous on S and

bounded on S . Assume that hz ∈ Lq0 for all z ∈ S , and that there
exists constants A0,A1 such that

‖hz‖Lq0 ≤ A0 whenever Re z = 0,

‖hz‖BMO ≤ A1 whenever Re z = 1.

Then for any θ ∈ (0, 1), we have hθ ∈ Lq with

‖hθ‖Lq . A1−θ
0 Aθ1, where

1

q
=

1− θ
q0

.

I Assuming the proposition for the moment, we finish the proof
of the theorem as follows.



I Let p0, p1, q0 ∈ [1,∞], θ ∈ (0, 1), and define p, q as in the
statement of the theorem.

I Let first f be a simple function on Rn.
I We apply our earlier proposition to f , p0, p1, θ, so that we

have a holomorphic family fz , with ‖fz‖Lpj ≤ ‖f ‖Lp when
Re z = j , j = 0, 1, and fθ = f .

I Then hz := Tz fz satisfies the hypothesis of the proposition on
the previous slide, so for any θ ∈ (0, 1), we have Tθf ∈ Lq,
with

‖Tθf ‖Lq . A1−θ
0 Aθ1‖f ‖Lp .

I Now since simple functions are dense in Lp0 ∩ Lp1 , if f is a
general Lp0 ∩ Lp1 function on Rn, we take a sequence of
simple functions {fn} so that fn → f in Lp0 ∩ Lp1 .

I Then by continuity of Tθ : Lp0 ∩ Lp1 → L1loc, we have
Tθfn → Tθf in L1loc, whereas our earlier estimate for simple
functions show that Tθfn is Cauchy in Lq.

I Since convergence in Lq implies convergence in L1loc, this
shows Tθf ∈ Lq, with ‖Tθf ‖Lq . A1−θ

0 Aθ1‖f ‖Lp for this
general f ∈ Lp0 ∩ Lp1 as well.



I This finishes the proof of the theorem.

I We now turn to the proof of the proposition. We use the
following lemma:

Lemma
Suppose h ∈ Lq0(Rn). If M]h ∈ Lq(Rn) for some q ∈ [q0,∞), then
h ∈ Lq(Rn) with

‖h‖Lq . ‖M]h‖Lq .

I The proof of the lemma is based on a relative distributional
inequality from Homework 3. See Homework 8 for details.

I In view of the lemma, to prove the proposition, we only need
to show that ‖M]hθ‖Lq . A1−θ

0 Aθ1 for all θ ∈ (0, 1).

I Recall for h ∈ L1loc, M]h(x) = supx∈B
ffl
B |h(y)− hB |dy , where

the supremum is taken over all balls B containing x .

I But by dominated convergence, it suffices to take balls with
center in Qn and radius in Q.



I Now consider a collection of balls {Bx}x∈Rn such that Bx

contains x , the volume of Bx is bounded above and below
independent of x , and the center and the radius of Bx

depends measurably on x (such measurability could be
guaranteed, if say the center and the radius takes value in a
countable set like Qn and Q).

I Also consider a measurable function η(x , y) on Rn × Rn with
|η(x , y)| ≤ 1 for all x , y ∈ Rn.

I If for a fixed x ∈ Rn, we compute

 
Bx

[h(y)− hBx ]η(x , y)dy

and take supremum over all collections of balls and all
functions η as above, then we obtain M]h(x).

I We now return to the setting of the proposition.

I We want to estimate ‖M]hθ‖Lq .



I By duality, we fix a compactly supported simple function g
with ‖g‖Lq′ = 1, and consider a holomorphic extension gz of
g such that gz is a simple function for each z ∈ S , the map
z 7→ gz is holomorphic on S , continuous on S , bounded on S ,
with

‖gz‖Lq0′ ≤ 1 when Re z = 0,

‖gz‖L1 ≤ 1 when Re z = 1.

I We fix any collection of balls {Bx} and bounded function η as
on the previous slide.

I Now let

F (z) :=

ˆ
Rn

 
Bx

[hz(y)− (hz)Bx ]η(x , y)dygz(x)dx z ∈ S

where {hz}z∈S is as in the proposition.
I Note that if g =

∑
j bjχFj

where the Fj ’s are disjoint bounded
measurable subsets of Rn, then

gz(x) =
∑
j

|bj |
q′
(

1−z
q0

+ z
1

)
bj
|bj |

χFj
.



I So F (z) =
∑

j |bj |
q′
(

1−θ
q0

+ θ
1

)
bj
|bj |

´
Rn hz(y)Gj(y)dy , where

Gj(y) is given by

ˆ
Rn

χFj
(x)

[
χBx (y)

|Bx |
η(x , y)− χBx (y)

|Bx |

ˆ
Rn

χBx (w)

|Bx |
η(x ,w)dw

]
dx ;

note Gj(y) is in L∞0 for every j .

I Our assumptions guarantee that F is holomorphic on S ,
continuous on S , bounded on S , and

|F (z)| ≤ ‖hz‖BMO‖gz‖L1 ≤ A1 when Re z = 1,

|F (z)| ≤ 2‖Mhz‖Lq0‖gz‖Lq0′ . A0 when Re z = 0.



I So the three lines lemma implies that

|F (θ)| . A1−θ
0 Aθ1,

which in turn implies

‖M]hθ‖Lq . A1−θ
0 Aθ1.

This completes the proof of the proposition.

I We remark that the hypothesis of the proposition can be
weakened as before: it will suffice if for every g ∈ L∞0 , there

exist α < 1 and C , c such that |
´
Rn hz · gdx | ≤ Cece

πα|z|
for

all z ∈ S . This yields a corresponding improvement of the
complex interpolation theorem involving BMO.



Comparing the real and complex methods of interpolation

I To conclude, let us draw a comparison between the real and
complex methods of interpolation.

I The real method of interpolation allows one to convert
weak-type or restricted weak-type hypothesis into strong type
conclusions (whereas the complex method doesn’t).

I Indeed, the real method is less sensitive to the hypothesis
given at the endpoints; it gives the same conclusion regardless
of whether a strong-type and a (restricted) weak-type
hypothesis is given (contrary to the complex method).

I The real method also allows one to work with subadditive
operators (whereas the complex method requires the operator
to be linear, or at least linearizable).

I On the other hand, the complex method allows one to vary an
operator within an analytic family, a feature that is
tremendously useful in practice.


