Topics in Harmonic Analysis Lecture 8: Interpolation

Po-Lam Yung $^{\rm 1}$

The Chinese University of Hong Kong

Real interpolation

- In this lecture we study real and complex interpolation.
- These are methods of deducing boundedness of certain linear or quasi-additive operators on certain "intermediate" function spaces, from the boundedness of these operators on some other "endpoint" function spaces.
- We begin with the real method of interpolation, following Marcinkiewicz.
- We have already seen a version of it in the study of maximal functions and singular integrals in Lectures 3 and 4.
- We will sometimes encounter Lebesgue spaces L^p with p < 1, and the statement of Marcinkiewicz interpolation theorem is best formulated using Lorentz spaces L^{p,r}.
- We introduce these in the next few slides.

Lebesgue spaces for p < 1

- Let (X, μ) be a measure space, and $f: X \to \mathbb{C}$ be measurable.
- ▶ For $p \in (0,1)$, we still say $f \in L^p$ if

$$\|f\|_{L^p}:=\left(\int_X |f|^p d\mu\right)^{1/p}<\infty.$$

- Note that || · ||_{L^p} does not define a norm when p ∈ (0, 1); the triangle inequality is not satisfied.
- The following is often a useful substitute:

$$||f + g||_{L^p}^p \le ||f||_{L^p}^p + ||g||_{L^p}^p$$

which holds for all $f, g \in L^p$, $p \in (0, 1]$.

From this we deduce a quasi-triangle inequality: for all p ∈ (0, 1), there exists some finite constant C_p such that

$$||f + g||_{L^p} \le C_p(||f||_{L^p} + ||g||_{L^p})$$

for all $f, g \in L^p$.

Lorentz spaces $L^{p,r}$

- Next we introduce Lorentz spaces.
- Let (X, μ) be a measure space, and $f: X \to \mathbb{C}$ be measurable.
- Let p ∈ (0,∞), r ∈ (0,∞]. f is said to be in the Lorentz space L^{p,r}, if |||f|||_{L^{p,r}} < ∞, where</p>

$$\|\|f\|\|_{L^{p,r}} := \left(p \int_0^\infty \left[\alpha \mu\{|f| > \alpha\}^{1/p}\right]^r \frac{d\alpha}{\alpha}\right)^{1/r} \quad \text{if } r \in (0,\infty);$$
$$\|\|f\|\|_{L^{p,r}} := \sup_{\alpha > 0} \left[\alpha \,\mu\{|f| > \alpha\}^{1/p}\right] \quad \text{if } r = \infty.$$

- ▶ Note that $L^{p,\infty}$ is the weak- L^p space introduced in Lecture 3.
- ▶ By convention, $L^{\infty,\infty}$ is L^{∞} , and $L^{\infty,r}$ is undefined for $r < \infty$.
- ▶ Observe also $|||f|||_{L^{p,p}} = ||f||_{L^p}$ by Fubini for all $p \in (0,\infty]$.
- It is often convenient to note that

$$\|\|f\|\|_{L^{p,r}} \simeq \|2^k \mu\{|f| > 2^k\}^{1/p}\|_{\ell^r(\mathbb{Z})}$$

for all measurable f and all $p \in (0, \infty)$, $r \in (0, \infty]$.

In general |||·|||_{L^{p,r}} defines only a quasi-norm on L^{p,r}, and not a norm. In other words, the triangle inequality is not satisfied, but we have

$$|||f + g|||_{L^{p,r}} \le C_{p,r} (|||f|||_{L^{p,r}} + |||g|||_{L^{p,r}})$$

for some finite constant $C_{p,r} \geq 1$.

But L^{p,r} does admit a comparable norm if p ∈ (1,∞) and r ∈ [1,∞]; indeed when p ∈ (1,∞) and r ∈ (1,∞], L^{p,r} is the dual space of L^{p',r'}, so it admits a dual norm

$$\|f\|_{L^{p,r}} := \sup\left\{ \left| \int_X fg \ d\mu \right| : \|\|g\|\|_{L^{p',r'}} \leq 1
ight\}.$$

The same construction works when $p \in (1, \infty)$ and r = 1. See Homework 8 for details, and Stein and Weiss' *Introduction to Fourier Analysis*, Chapter V.3, for an alternative approach of norming $L^{p,r}$.

- To formulate the Marcinkiewicz interpolation theorem, let (X, μ), (Y, ν) be measure spaces.
- Let T be an operator defined on a subspace Dom(T) of measurable functions on X, that maps each element in Dom(T) to a measurable function on Y.
- We say T is subadditive if

$$|T(f+g)| \leq |Tf| + |Tg|$$

for all $f, g \in \text{Dom}(T)$.

- Suppose Dom(T) is stable under truncations, i.e. if f ∈ Dom(T) then fχ_E is in Dom(T) for all measurable subsets E of X, where χ_E is the characteristic function of E.
- Let p, q ∈ (0,∞]. If p ≠ ∞, then we say that T is of restricted weak-type (p, q), if

 $\|Tf\|_{L^{q,\infty}} \lesssim \|f\|_{L^{p,1}}$ for all $f \in \mathsf{Dom}(T) \cap L^{p,1}$;

if $p = \infty$, then we say that T is of restricted weak-type (p, q), if the same holds with $L^{p,1}$ replaced by L^{∞}_{\Box} . Theorem (Marcinkiewicz interpolation theorem)

Let $p_0, p_1, q_0, q_1 \in (0, \infty]$ with $p_0 \neq p_1$ and $q_0 \neq q_1$. Let p, q be such that

$$rac{1}{p}=rac{1- heta}{p_0}+rac{ heta}{p_1}$$
 and $rac{1}{q}=rac{1- heta}{q_0}+rac{ heta}{q_1}$

for some $\theta \in (0, 1)$. If a subadditive operator T is of restricted weak-types (p_0, q_0) and (p_1, q_1) , then for any $r \in (0, \infty]$, we have

 $\|Tf\|_{L^{q,r}} \lesssim \|f\|_{L^{p,r}}$

for all f in $Dom(T) \cap L^{p,r}$; in particular, if $p \le q$, then $\|Tf\|_{L^q} \le \|f\|_{L^p}$ for all f in $Dom(T) \cap L^p$.

In applications usually we have both p₀ ≤ q₀ and p₁ ≤ q₁, from which it follows that p ≤ q.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Here we mention a related observation:

Proposition

Let $p_0, p_1, q_0, q_1 \in (0, \infty]$ with $p_0 = p_1$ and $q_0 \neq q_1$. Let p, q be as in the previous theorem with $\theta \in (0, 1)$. If a subadditive operator T is of weak-types (p_0, q_0) and (p_1, q_1) (not just restricted weak-types), then for all $r \in (0, \infty]$, we have

$$\|Tf\|_{L^{q,r}} \lesssim \|f\|_{L^{p,r}}$$

for all f in $Dom(T) \cap L^{p,r}$.

- ▶ The proposition follows just from the inclusions $L^{p,r} \subseteq L^{p,\infty}$ and $L^{q_0,\infty} \cap L^{q_1,\infty} \subseteq L^{q,r}$. But the condition $q_0 \neq q_1$ is crucial.
- Combining the theorem (the case where p₀ ≤ q₀ and p₁ ≤ q₁) with the proposition, we obtain the following corollary:

Corollary (weak-type case of Marcinkiewicz interpolation) Let $p_0, p_1, q_0, q_1 \in (0, \infty]$ with $q_0 \neq q_1, p_0 \leq q_0$ and $p_1 \leq q_1$. Let p, q be such that

$$rac{1}{p}=rac{1- heta}{p_0}+rac{ heta}{p_1} \quad \textit{and} \quad rac{1}{q}=rac{1- heta}{q_0}+rac{ heta}{q_1}$$

for some $\theta \in (0, 1)$. If a subadditive operator T is of weak-types (p_0, q_0) and (p_1, q_1) , then

$$\|Tf\|_{L^q} \lesssim \|f\|_{L^p}$$

for all f in $Dom(T) \cap L^p$.

- We now turn to the proof of the theorem.
- We will only prove the case when p₀, p₁, q₀, q₁ are all finite; the cases where one of the p_i's is infinite, and/or where one of the q_i's is infinite, is left as an exercise (see Homework 8).
- ▶ Let $p_0, p_1, q_0, q_1 \in (0, \infty)$ with $p_0 \neq p_1$ and $q_0 \neq q_1$. Let $\theta \in (0, 1)$, and define p, q as in the theorem.
- It will be convenient to write

$$\alpha = p\left(\frac{1}{p_0} - \frac{1}{p_1}\right), \quad \beta = q\left(\frac{1}{q_0} - \frac{1}{q_1}\right),$$

$$x_0=q_0 heta,\quad x_1=-q_1(1- heta).$$

We have α ≠ 0 and β ≠ 0 by assumption.
 Let r ∈ (0,∞), f ∈ L^{p,r} with |||f|||_{L^{p,r}} = 1. We will show that ||Tf||_{L^{q,r}} ≤ 1.

$$f=\sum_{k\in\mathbb{Z}}f_k$$

where $f_k = f \chi_{2^k < |f| \le 2^{k+1}}$. Write $W_k = \mu(\operatorname{supp} f_k)$, so that

$$\sum_{k\in\mathbb{Z}} 2^{kr} W_k^{r/p} \lesssim 1.$$

For $k \in \mathbb{Z}$, we define

$$\mathsf{a}_k = \sum_{\ell \in \mathbb{Z}} 2^{-|k-\ell|arepsilon} 2^{\ell r} \, \mathsf{W}_\ell^{r/p}$$

where $\varepsilon > 0$ is a small parameter to be determined. Then

$$W_k \leq 2^{-kp} a_k^{p/r} \quad ext{for all } k \in \mathbb{Z} \quad ext{and} \quad \sum_{k \in \mathbb{Z}} a_k \lesssim 1,$$

(and these would also hold if we had simply defined a_k to be $2^{kr}W_k^{r/p}$), but the additional sup over ℓ in the definition of a_k guarantees that a_k does not vary too rapidly, in the sense that

$$a_k \leq 2^{|k-\ell|\varepsilon}a_\ell$$
 for all $k, \ell \in \mathbb{Z}$.

▶ In particular, since $a_\ell \lesssim 1$ for all ℓ , taking $\ell \simeq rac{j\beta}{\alpha}$, we have

$$a_k^{rac{lpha-eta}{r}}\lesssim 2^{|jeta-klpha|\mathcal{C}arepsilon}$$

for some finite constant $C = C_{\alpha,\beta,r}$.

▶ For $k,j \in \mathbb{Z}$, let $c_{k,j} := 2^{-|j\beta - k\alpha|arepsilon}.$

▶ Then since $\alpha \neq 0$, $\sum_{k \in \mathbb{Z}} c_{k,j} \lesssim_{\varepsilon} 1$, so by subadditivity of *T*,

$$\mu\{|Tf|>2^j\}\leq \sum_{k\in\mathbb{Z}}\mu\{|Tf_k|\gtrsim_{\varepsilon}c_{k,j}2^j\},$$

which by the restricted weak-type properties of \mathcal{T} is bounded above by

$$\lesssim_{arepsilon} \sum_{k \in \mathbb{Z}} \min_{i=0,1} \left(c_{k,j}^{-1} 2^{-j} 2^k W_k^{1/
ho_i}
ight)^{q_i}$$

(We used the finiteness of p_0, p_1, q_0, q_1 here.)

• Hence to show that $||Tf||_{L^{q,r}} \leq 1$, it suffices to show that

$$\sum_{j\in\mathbb{Z}} 2^{jr} \left[\sum_{k\in\mathbb{Z}} \min_{i=0,1} \left(c_{k,j}^{-1} 2^{-j} 2^k W_k^{1/p_i} \right)^{q_i} \right]^{\frac{r}{q}} \lesssim 1.$$

▶ Now using $W_k \le 2^{-kp} a_k^{p/r}$, we just need to show

$$\sum_{j\in\mathbb{Z}}\left[\sum_{k\in\mathbb{Z}}\min_{i=0,1}\left(c_{k,j}^{-1}2^{jq\left(\frac{1}{q_i}-\frac{1}{q}\right)}2^{-kp\left(\frac{1}{p_i}-\frac{1}{p}\right)}a_k^{\frac{p}{rp_i}}\right)^{q_i}\right]^{\frac{r}{q}}$$

Since

$$pq_i\left(\frac{1}{p_i}-\frac{1}{p}\right)=\alpha x_i$$
 and $qq_i\left(\frac{1}{q_i}-\frac{1}{q}\right)=\beta x_i$,

the above is just

$$\sum_{j\in\mathbb{Z}}\left[\sum_{k\in\mathbb{Z}}\min_{i=0,1}\left(c_{k,j}^{-q_i}2^{(j\beta-k\alpha)x_i}a_k^{\frac{pq_i}{p_i}}\right)\right]^{\frac{r}{q}}.$$

٠

Now factor our $a_k^{q/r}$ from the minimum in the sum. Since

$$\frac{pq_i}{p_i} - q = pq_i\left(\frac{1}{p_i} - \frac{1}{p}\right) + q_i - q = \alpha x_i - qq_i\left(\frac{1}{q_i} - \frac{1}{q}\right)$$

which equals $(\alpha - \beta)x_i$, the above is just

$$\sum_{j\in\mathbb{Z}}\left[\sum_{k\in\mathbb{Z}}a_k^{\frac{q}{r}}\min_{i=0,1}\left(c_{k,j}^{-q_i}2^{(j\beta-k\alpha)x_i}a_k^{\frac{(\alpha-\beta)x_i}{r}}\right)\right]^{\frac{r}{q}}$$

ln view of our earlier bound for $a_k^{\frac{\alpha-\beta}{r}}$ and $c_{k,j}$, this is bounded by

$$\sum_{j\in\mathbb{Z}}\left[\sum_{k\in\mathbb{Z}}a_{k}^{\frac{q}{r}}\min_{i=0,1}\left(2^{(j\beta-k\alpha)x_{i}}2^{|j\beta-k\alpha|c\varepsilon}\right)\right]^{\frac{r}{q}}$$
(1)

for some finite constant c.

• We now choose $\varepsilon > 0$ sufficiently small, so that

 $c\varepsilon < \min\{|x_0|, |x_1|\}.$

► If $\frac{r}{q} \leq 1$, then we use $[\sum_{k} \dots]^{r/q} \leq \sum_{k} [\dots]^{r/q}$, and bound (1) by $\sum_{j \in \mathbb{Z}} \sum_{k \in \mathbb{Z}} a_k \min_{i=0,1} \left(2^{(j\beta - k\alpha)x_i} 2^{|j\beta - k\alpha|c\varepsilon} \right)^{\frac{r}{q}}.$

Since x_0, x_1 are non-zero, of opposite signs, and $\beta \neq 0$, in view of our earlier choice of ε , we have

$$\sum_{j\in\mathbb{Z}}\min_{i=0,1}\left(2^{(j\beta-k\alpha)x_i}2^{|j\beta-k\alpha|c\varepsilon}\right)^{\frac{r}{q}}\lesssim 1$$

uniformly in k, so

$$(1)\lesssim \sum_{k\in\mathbb{Z}} \mathsf{a}_k\lesssim 1.$$

• If $\frac{r}{q} \geq 1$, we use the observation that

$$\sum_{k \in \mathbb{Z}} \min_{i=0,1} \left(2^{(j\beta - k\alpha) \varkappa_i} 2^{|j\beta - k\alpha| c\varepsilon} \right) \lesssim 1$$

uniformly in j. Jensen's inequality then shows

$$\left[\sum_{k\in\mathbb{Z}}a_k^{\frac{q}{r}}\min_{i=0,1}\left(2^{(j\beta-k\alpha)x_i}2^{|j\beta-k\alpha|c\varepsilon}\right)\right]^{\frac{r}{q}}$$

$$\lesssim \sum_{k\in\mathbb{Z}}a_k\min_{i=0,1}\left(2^{(j\beta-k\alpha)x_i}2^{|j\beta-k\alpha|c\varepsilon}\right),$$

which we then sum over j to yield

$$(1)\lesssim \sum_{k\in\mathbb{Z}}a_k\sum_{j\in\mathbb{Z}}\min_{i=0,1}\left(2^{(jeta-klpha)x_i}2^{|jeta-klpha|carepsilon}
ight)\lesssim 1.$$

(We used again $\beta \neq 0$ to evaluate the last sum over j.)

・ロト・4回ト・4回ト・4回ト・回・99(や)

This completes the proof of the Marcinkiewicz interpolation theorem when r ∈ (0,∞).

• When
$$r = \infty$$
 the proof is easier.

- ▶ Indeed, let $f \in L^{p,\infty}$ with $||f||_{L^{p,\infty}} = 1$, and let $\lambda > 0$.
- To estimate $\mu\{|Tf| > \lambda\}$, we decompose $f = f_0 + f_1$, where $f_0 = f\chi_{|f| > \gamma}$ and $f_1 = f\chi_{|f| \le \gamma}$.
- We have

$$\|f_0\|_{L^{p_0,1}} \lesssim \sum_{2^k > \gamma} 2^k \mu\{|f| > 2^k\}^{\frac{1}{p_0}} \lesssim \sum_{2^k > \gamma} 2^k 2^{-\frac{kp}{p_0}} = \gamma^{-p\left(\frac{1}{p_0} - \frac{1}{p}\right)}$$

and similarly

$$\|f_1\|_{L^{p_1,1}} \lesssim \gamma^{-p\left(\frac{1}{p_1}-\frac{1}{p}\right)}.$$

◆□▶ ◆□▶ ◆目▶ ◆目▶ ▲□ ◆ ��や

$$\begin{split} \mu\{|Tf| > \lambda\} &\leq \mu\{|Tf_0| > \lambda/2\} + \mu\{|Tf_1| > \lambda/2\} \\ &\lesssim \lambda^{-q_0} \|f_0\|_{L^{p_0,1}}^{q_0} + \lambda^{-q_1} \|f_1\|_{L^{p_1,1}}^{q_1} \end{split}$$

which is bounded by

$$\lambda^{-q} \left(\lambda^{qq_0\left(\frac{1}{q_0} - \frac{1}{q}\right)} \gamma^{-pq_0\left(\frac{1}{p_0} - \frac{1}{p}\right)} + \lambda^{qq_1\left(\frac{1}{q_1} - \frac{1}{q}\right)} \gamma^{-pq_1\left(\frac{1}{p_1} - \frac{1}{p}\right)} \right)$$
$$= \lambda^{-q} \left(\lambda^{\beta x_0} \gamma^{-\alpha x_0} + \lambda^{\beta x_1} \gamma^{-\alpha x_1} \right).$$

▶ Choosing $\gamma = \lambda^{\beta/\alpha}$ gives

 $\mu\{|Tf|>\lambda\}\lesssim\lambda^{-q},$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

as desired.

Complex interpolation

- Next we turn to the complex method of interpolation, following Riesz, Thorin and Stein.
- The key is the following three lines lemma, which is a variant of the maximum principle for holomorphic functions on a strip (whose proof we defer to Homework 8):

Lemma

Let S be the strip $\{0 < \text{Re } z < 1\}$, and \overline{S} be its closure. Suppose f is a holomorphic function on the strip S that extends continuously to \overline{S} . Assume $|f(z)| \leq A_0$ when Re z = 0, and $|f(z)| \leq A_1$ when Re z = 1. If there exist $\alpha < 1$, and constants C, c, such that

$$|f(z)| \leq Ce^{ce^{\pi \alpha |z|}}$$

for all $z \in \overline{S}$, then $|f(z)| \leq A_0^{1-\operatorname{Re} z} A_1^{\operatorname{Re} z}$ on \overline{S} .

The condition |f(z)| ≤ Ce^{ce^{πα|z|}} would be satisfied, if say |f| is bounded on the strip.

To proceed further, if (X, µ) is a measure space, and p₀, p₁ ∈ [1,∞], then we denote by L^{p₀} + L^{p₁} the space of all functions f on X such that f = f₀ + f₁ for some f₀ ∈ L^{p₀} and f₁ ∈ L^{p₁}. This can be made a Banach space with norm

 $||f||_{L^{p_0}+L^{p_1}} := \inf \{ ||f_0||_{L^{p_0}} + ||f_1||_{L^{p_1}} : f = f_0 + f_1, f_0 \in L^{p_0}, f_1 \in L^{p_1} \}.$

Note that L^p embeds continuously into $L^{p_0} + L^{p_1}$ if p is between p_0 and p_1 .

▶ We will also need the Banach space $L^{p_0} \cap L^{p_1}$, where $p_0, p_1 \in [1, \infty]$. Indeed, this is equipped with norm

$$\|g\|_{L^{p_0}\cap L^{p_1}} := \max\{\|g\|_{L^{p_0}}, \|g\|_{L^{p_1}}\};\$$

 $L^{p_0} \cap L^{p_1}$ embeds continuously into L^p if p is between p_0 and p_1 .

Theorem (Riesz-Thorin)

Let (X, μ) , (Y, ν) be measure spaces. Let $p_0, p_1, q_0, q_1 \in [1, \infty]$, and $T: (L^{p_0} + L^{p_1})(X) \rightarrow (L^{q_0} + L^{q_1})(Y)$ be a linear operator. Suppose there exist constants A_0, A_1 such that

$$\|Tf\|_{L^{q_0}} \le A_0 \|f\|_{L^{p_0}}$$
 for all $f \in L^{p_0}(X)$,

 $\|Tf\|_{L^{q_1}} \le A_1 \|f\|_{L^{p_1}}$ for all $f \in L^{p_1}(X)$.

Then for any $\theta \in (0, 1)$, we have

$$\|Tf\|_{L^q} \le A_0^{1-\theta} A_1^{\theta} \|f\|_{L^p}$$

for $f \in L^p(X)$, where

$$rac{1}{p}=rac{1- heta}{p_0}+rac{ heta}{p_1}, \quad rac{1}{q}=rac{1- heta}{q_0}+rac{ heta}{q_1}$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ● ●

Before we prove the theorem, recall that a simple function on X is a function of the form

$$\sum_{j=1}^{J} a_j \chi_{E_j}$$

where $J \in \mathbb{N}$, $a_1, \ldots, a_J \in \mathbb{C}$ and E_1, \ldots, E_J are measurable subsets of X of finite measures.

Note that if p ∈ (0,∞), the set of simple functions on X is dense in L^p (the same is true for p = ∞ if in addition X is σ-finite, but we will not need this).

The key to the proof of the theorem is the following proposition (where as before S = {0 < Re z < 1}):</p>

Proposition

Let (X, μ) be a measure space. Let $p_0, p_1 \in (0, \infty]$ and $\theta \in (0, 1)$. Let p be the exponent given by $1/p = (1 - \theta)/p_0 + \theta/p_1$. Let f be any simple function on X. Then for any $z \in \overline{S}$, there exists a simple function f_z on X, such that the (vector-valued) map $z \mapsto f_z$ is holomorphic on S, continuous on \overline{S} , bounded on \overline{S} , and satisfies

$$\|f_z\|_{L^{p_j}} \le \|f\|_{L^p}$$
 when $Re z = j$, for $j = 0, 1$,

with $f_{\theta} = f$.

Indeed, it suffices to take

$$f_z(x) = rac{f(x)}{|f(x)|} rac{|f(x)|^{p\left(rac{1-z}{p_0}+rac{z}{p_1}
ight)}}{\|f\|_{L^p}^{p\left(rac{1-z}{p_0}+rac{z}{p_1}
ight)}} \|f\|_{L^p}.$$

- ▶ To prove the theorem, let $p_0, p_1, q_0, q_1 \in [1, \infty]$, $\theta \in (0, 1)$, and define p, q as in the statement of the theorem.
- Suppose $p \neq \infty$. We claim that it suffices to show that

$$\|Tf\|_{L^{q}} \le A_{0}^{1-\theta} A_{1}^{\theta} \|f\|_{L^{p}}$$
(2)

for all simple functions f on X.

- ▶ Indeed, then given a general $f \in L^p(X)$, we take a sequence $\{f_n\}$ of simple functions such that $f_n \to f$ in $L^p(X)$ as $n \to \infty$.
- Under the hypothesis of the theorem, the map $T: (L^{p_0} + L^{p_1})(X) \rightarrow (L^{q_0} + L^{q_1})(Y)$ is continuous.
- ▶ By continuity of the inclusion of $L^p(X)$ into $(L^{p_0} + L^{p_1})(X)$, it follows that $Tf_n \to Tf$ in $(L^{q_0} + L^{q_1})(Y)$.
- But by (2), $\{Tf_n\}$ is Cauchy in $L^q(Y)$, so it converges in L^q .
- Since convergence in L^q implies convergence in $L^{q_0} + L^{q_1}$, we see that $Tf \in L^q(Y)$, and that $Tf_n \to Tf$ in $L^q(Y)$, so (2) holds for this general $f \in L^p(X)$ as well.

- Let now f be a simple function on X. We establish (2) for f.
- We consider two cases, namely $q \neq 1$ and q = 1.
- Assume first $q \neq 1$. By density of simple functions in $L^{q'}(Y)$, it suffices to show that

$$\left|\int_{\mathbf{Y}} Tf \cdot g d\nu\right| \leq A_0^{1-\theta} A_1^{\theta} \|f\|_{L^p} \|g\|_{L^{q'}}$$
(3)

for all simple functions g on Y.

So fix two simple functions f and g on X and Y respectively.
 We apply the earlier proposition to f, p₀, p₁, θ and g, q'₀, q'₁, θ, and obtain a holomorphic family f_z and g_z, where the key properties are that

$$\|f_z\|_{L^{p_j}} \le \|f\|_{L^p}$$
 and $\|g_z\|_{L^{q'_j}} \le \|g\|_{L^{q'}}$

when $\operatorname{Re} z = j$, for j = 0, 1, and that $f_{\theta} = f$, $g_{\theta} = g$.

$$F(z)=\int_Y Tf_z\cdot g_z d\nu.$$

We see that F(z) is holomorphic on the strip S, continuous on \overline{S} , and bounded on \overline{S} . Also, the assumed bound of T on L^{p_0} and L^{p_1} shows that

$$|F(z)| \leq A_j \|f\|_{L^p} \|g\|_{L^{q'}}$$
 when $\operatorname{Re} z = j$, for $j = 0, 1$.

- So the three lines lemma imply $|F(\theta)| \le A_0^{1-\theta} A_1^{\theta} ||f||_{L^p} ||g||_{L^{q'}}$, which is the desired conclusion (3) since $f_{\theta} = f$ and $g_{\theta} = g$.
- On the other hand, if q = 1, we will show directly that

$$\left|\int_{Y} Tf \cdot g d\nu\right| \leq A_0^{1-\theta} A_1^{\theta} \|f\|_{L^p} \|g\|_{L^{q'}}$$
(4)

for all $g \in L^{q'}(Y)$.

- So fix a simple function f on X, and a general $g \in L^{q'}(Y)$.
- Note that since q = 1, we have $q_0 = q_1 = q$, so we already have $g \in (L^{q_0'} \cap L^{q_1'})(Y)$.

We apply the earlier proposition to f, p₀, p₁, θ only, and obtain a holomorphic family f_z; then consider

$$F(z) = \int_{Y} Tf_{z} \cdot gd\nu$$

Since g ∈ (L^{q0'} ∩ L^{q1'})(Y), our assumptions imply that F(z) is holomorphic on the strip S, continuous on S, and bounded on S. Also, the assumed bound of T on L^{p0} and L^{p1} shows that

$$|F(z)| \le A_j \|f\|_{L^p} \|g\|_{L^{q'}}$$
 when $\text{Re} \, z = j$, for $j = 0, 1$

- So the three lines lemma imply $|F(\theta)| \le A_0^{1-\theta} A_1^{\theta} ||f||_{L^p} ||g||_{L^{q'}}$, which is the desired conclusion (4) since $f_{\theta} = f$.
- This completes the proof of the theorem when $p \neq \infty$.
- When $p = \infty$, we simply show directly that

$$\|Tf\|_{L^{q}} \le A_{0}^{1-\theta} A_{1}^{\theta} \|f\|_{L^{p}}$$
(5)

くしん 山 ふかく 山 く 山 く し く

for all $f \in L^p(X)$.

- Indeed, let f be a general function in L^p(X). Then since p = ∞, we have p₀ = p₁ = p, so we have f ∈ (L^{p₀} ∩ L^{p₁})(X).
- ▶ If $q \neq 1$, then we show that

$$\left|\int_{Y} Tf \cdot gd\nu\right| \leq A_0^{1-\theta} A_1^{\theta} \|f\|_{L^p} \|g\|_{L^{q'}}$$

for all simple functions g on Y, by considering $\int_Y Tf \cdot g_z d\nu$ for a suitable holomorphic extension of the simple function g; if q = 1, we show that the same holds for all $g \in L^{q'}(Y)$ directly.

- This completes the proof of the Riesz-Thorin theorem. (The cases p = ∞ or q = 1 would not require a separate treatment if we assume both X and Y are σ-finite.)
- Coming up next is a remarkably useful observation of Stein, namely that the Riesz-Thorin theorem also works for an analytic family of operators.
- As before, denote by S the strip $\{0 < \text{Re } z < 1\}$, and \overline{S} the closure of S.

Theorem (Stein)

Let (X, μ) , (Y, ν) be measure spaces. Let $p_0, p_1, q_0, q_1 \in [1, \infty]$. Suppose $\{T_z\}_{z\in\overline{S}}$ is a family of bounded linear operators from $(L^{p_0} \cap L^{p_1})(X)$ to $(L^{q_0} + L^{q_1})(Y)$, analytic in the sense that for every $f \in (L^{p_0} \cap L^{p_1})(X)$ and $g \in (L^{q_0'} \cap L^{q_1'})(Y)$, the map $z \mapsto \int_Y T_z f \cdot g d\nu$ is holomorphic on S, continuous up to \overline{S} and bounded on \overline{S} . Assume for all $f \in (L^{p_0} \cap L^{p_1})(X)$, we have

$$\|T_z f\|_{L^{q_j}} \le A_j \|f\|_{L^{p_j}}$$
 whenever $\operatorname{Re} z = j$, for $j = 0, 1$.

Then for any $heta \in (0,1)$, we have

$$\|T_{ heta}f\|_{L^q}\leq A_0^{1- heta}A_1^{ heta}\|f\|_{L^p} \quad ext{for all } f\in (L^{p_0}\cap L^{p_1})(X),$$

where

$$rac{1}{p}=rac{1- heta}{p_0}+rac{ heta}{p_1}, \quad rac{1}{q}=rac{1- heta}{q_0}+rac{ heta}{q_1}$$

In particular, T_{θ} extends to a bounded linear map from $L^{p}(X)$ to $L^{q}(Y)$, with norm $\leq A_{0}^{1-\theta}A_{1}^{\theta}$.

- The ability to vary the operator involved makes this theorem way more powerful than the original theorem of Riesz-Thorin.
- One particularly striking aspect of this theorem is that its proof can be obtained from that of the Riesz-Thorin theorem simply "by adding a single letter of the alphabet" (i.e. by replacing *T* everywhere by *T_z*).
- ▶ Indeed, suppose $p \neq \infty$ and $q \neq 1$. By considering $F(z) = \int_Y T_z f_z \cdot g_z d\nu$ instead, we see that

$$\|T_{\theta}f\|_{L^q} \leq A_0^{1-\theta}A_1^{\theta}\|f\|_{L^p}$$

for all simple functions f on X. The continuity of $T_{\theta}: (L^{p_0} \cap L^{p_1})(X) \to (L^{q_0} + L^{q_1})(Y)$, together with the density of simple functions in $(L^{p_0} \cap L^{p_1})(X)$, shows that the same inequality is true for $f \in (L^{p_0} \cap L^{p_1})(X)$. Similarly one can adapt the previous argument if $p = \infty$ or q = 1.

This proof shows that one can relax the assumption that ∫_Y T_zf · gdν is bounded on S for every f ∈ (L^{p0} ∩ L^{p1})(X) and g ∈ (L^{q0'} ∩ L^{q1'})(Y), to the assumption that for every such f and g, there exist α < 1 and constants C, c such that</p>

$$\left|\int_{Y} T_z f \cdot g d\nu\right| \leq C e^{c e^{\pi \alpha |z|}} \quad \text{for all } z \in S.$$

- We remark that the above proofs of complex interpolation rely crucially on the duality between L^q and L^{q'} when q ∈ [1,∞]; this gives rise to the assumption p₀, p₁, q₀, q₁ ∈ [1,∞].
- But one can modify the above proof, so that the conditions on the exponents can be relaxed to p₀, p₁, q₀, q₁ ∈ (0,∞].
- The key is to first take appropriate 'square root' of the functions involved, and to use the maximum principle for subharmonic functions instead of that for holomorphic functions. See Homework 8 for details.
- Also see Homework 8 for a complex interpolation theorem for bilinear operators.

Complex interpolation involving BMO

- We specialize now to the case when X = Y = ℝⁿ with the usual Lebesgue measure.
- ► One can also use complex interpolation for operators that map into BMO instead of L[∞].
- ► Recall that a locally integrable function h on ℝⁿ is said to be in BMO, if the sharp maximal function M[#]h is in L[∞], where

$$M^{\sharp}h(x) := \sup_{x \in B} \int_B |h(y) - h_B| dy,$$

the supremum taken over all balls B containing x.

- Also recall that L¹_{loc} is the space of all locally integrable functions on ℝⁿ, and it is a topological vector space where f_n → f in L¹_{loc}, if and only if ||f_n − f ||_{L¹(K)} → 0 for every compact subset K of ℝⁿ.
- For convenience, let us write L₀[∞] for the space of bounded, compactly supported measurable functions g on ℝⁿ, with ∫_{ℝⁿ} gdx = 0.

Theorem

Let $p_0, p_1 \in [1, \infty]$. Suppose $\{T_z\}_{z \in \overline{S}}$ is a family of continuous linear operators from $(L^{p_0} \cap L^{p_1})(\mathbb{R}^n)$ to $L^1_{loc}(\mathbb{R}^n)$, analytic in the sense that for every simple function f and every $g \in L_0^{\infty}$, the map $z \mapsto \int_{\mathbb{R}^n} T_z f \cdot gdx$ is holomorphic on S, continuous up to \overline{S} and bounded on \overline{S} . Let $q_0 \in [1, \infty)$. Assume for all $f \in L^{p_0} \cap L^{p_1}$, we have $T_z f \in L^{q_0}$ for all $z \in \overline{S}$, with

$$\|T_z f\|_{L^{q_0}} \le A_0 \|f\|_{L^{p_0}}$$
 whenever $Re z = 0$,
 $\|T_z f\|_{BMO} \le A_1 \|f\|_{L^{p_1}}$ whenever $Re z = 1$.

Then for any $\theta \in (0,1)$, we have

$$\begin{split} \|T_{\theta}f\|_{L^{q}} \lesssim A_{0}^{1-\theta}A_{1}^{\theta}\|f\|_{L^{p}} \quad \text{for all } f \in L^{p_{0}} \cap L^{p_{1}}, \\ \end{split}$$
where
$$\frac{1}{p} = \frac{1-\theta}{p_{0}} + \frac{\theta}{p_{1}}, \quad \frac{1}{q} = \frac{1-\theta}{q_{0}}. \end{split}$$

In particular, T_{θ} extends to a bounded linear map from $L^{p}(\mathbb{R}^{n})$ to $L^{q}(\mathbb{R}^{n})$, with norm $\leq A_{0}^{1-\theta}A_{1}^{\theta}$.

The key is the following proposition:

Proposition

Let $q_0 \in [1, \infty)$. Suppose $\{h_z\}_{z \in \overline{S}}$ is an analytic family of L^1_{loc} functions on \mathbb{R}^n , in the sense that for every $g \in L^\infty_0(\mathbb{R}^n)$, the map $z \mapsto \int_{\mathbb{R}^n} h_z \cdot gdx$ is holomorphic on S, continuous on \overline{S} and bounded on \overline{S} . Assume that $h_z \in L^{q_0}$ for all $z \in \overline{S}$, and that there exists constants A_0, A_1 such that

$$\|h_z\|_{L^{q_0}} \le A_0$$
 whenever $Re z = 0$,
 $\|h_z\|_{BMO} \le A_1$ whenever $Re z = 1$.

Then for any $\theta \in (0,1)$, we have $h_{\theta} \in L^q$ with

$$\|h_ heta\|_{L^q} \lesssim A_0^{1- heta}A_1^ heta, \quad ext{where} \quad rac{1}{q} = rac{1- heta}{q_0}.$$

Assuming the proposition for the moment, we finish the proof of the theorem as follows.

- ▶ Let $p_0, p_1, q_0 \in [1, \infty]$, $\theta \in (0, 1)$, and define p, q as in the statement of the theorem.
- Let first f be a simple function on \mathbb{R}^n .
- We apply our earlier proposition to *f*, *p*₀, *p*₁, *θ*, so that we have a holomorphic family *f_z*, with ||*f_z*||_{*L^pj*} ≤ ||*f*||_{*L^p*} when Re *z* = *j*, *j* = 0, 1, and *f_θ* = *f*.
- ► Then $h_z := T_z f_z$ satisfies the hypothesis of the proposition on the previous slide, so for any $\theta \in (0, 1)$, we have $T_{\theta} f \in L^q$, with

 $\|T_{\theta}f\|_{L^q} \lesssim A_0^{1-\theta}A_1^{\theta}\|f\|_{L^p}.$

- Now since simple functions are dense in L^{p0} ∩ L^{p1}, if f is a general L^{p0} ∩ L^{p1} function on ℝⁿ, we take a sequence of simple functions {f_n} so that f_n → f in L^{p0} ∩ L^{p1}.
- ▶ Then by continuity of $T_{\theta}: L^{p_0} \cap L^{p_1} \to L^1_{loc}$, we have $T_{\theta}f_n \to T_{\theta}f$ in L^1_{loc} , whereas our earlier estimate for simple functions show that $T_{\theta}f_n$ is Cauchy in L^q .
- Since convergence in L^q implies convergence in L^1_{loc} , this shows $T_{\theta}f \in L^q$, with $||T_{\theta}f||_{L^q} \lesssim A_0^{1-\theta}A_1^{\theta}||f||_{L^p}$ for this general $f \in L^{p_0} \cap L^{p_1}$ as well.

- This finishes the proof of the theorem.
- We now turn to the proof of the proposition. We use the following lemma:

Lemma

Suppose $h \in L^{q_0}(\mathbb{R}^n)$. If $M^{\sharp}h \in L^q(\mathbb{R}^n)$ for some $q \in [q_0, \infty)$, then $h \in L^q(\mathbb{R}^n)$ with $\|h\|_{L^q} \lesssim \|M^{\sharp}h\|_{L^q}$.

- The proof of the lemma is based on a relative distributional inequality from Homework 3. See Homework 8 for details.
- ▶ In view of the lemma, to prove the proposition, we only need to show that $\|M^{\sharp}h_{\theta}\|_{L^q} \lesssim A_0^{1-\theta}A_1^{\theta}$ for all $\theta \in (0,1)$.
- ▶ Recall for $h \in L^1_{loc}$, $M^{\sharp}h(x) = \sup_{x \in B} \int_B |h(y) h_B| dy$, where the supremum is taken over all balls *B* containing *x*.
- ▶ But by dominated convergence, it suffices to take balls with center in Qⁿ and radius in Q.

- Now consider a collection of balls {B_x}_{x∈ℝⁿ} such that B_x contains x, the volume of B_x is bounded above and below independent of x, and the center and the radius of B_x depends measurably on x (such measurability could be guaranteed, if say the center and the radius takes value in a countable set like Qⁿ and Q).
- Also consider a measurable function $\eta(x, y)$ on $\mathbb{R}^n \times \mathbb{R}^n$ with $|\eta(x, y)| \le 1$ for all $x, y \in \mathbb{R}^n$.
- If for a fixed $x \in \mathbb{R}^n$, we compute

$$\int_{B_x} [h(y) - h_{B_x}]\eta(x, y) dy$$

and take supremum over all collections of balls and all functions η as above, then we obtain $M^{\sharp}h(x)$.

- We now return to the setting of the proposition.
- We want to estimate $||M^{\sharp}h_{\theta}||_{L^{q}}$.

By duality, we fix a compactly supported simple function g with ||g||_{Lq'} = 1, and consider a holomorphic extension g_z of g such that g_z is a simple function for each z ∈ S̄, the map z ↦ g_z is holomorphic on S, continuous on S̄, bounded on S̄, with

$$\begin{split} \|g_z\|_{L^{q_0'}} &\leq 1 \quad \text{when } \operatorname{Re} z = 0, \\ \|g_z\|_{L^1} &\leq 1 \quad \text{when } \operatorname{Re} z = 1. \end{split}$$

We fix any collection of balls {B_x} and bounded function η as on the previous slide.

Now let

$$F(z) := \int_{\mathbb{R}^n} \oint_{B_x} [h_z(y) - (h_z)_{B_x}] \eta(x, y) dy g_z(x) dx \quad z \in \overline{S}$$

where $\{h_z\}_{z\in\overline{S}}$ is as in the proposition.

Note that if g = ∑_j b_j χ_{F_j} where the F_j's are disjoint bounded measurable subsets of ℝⁿ, then

$$g_z(x) = \sum_j |b_j|^{q'\left(\frac{1-z}{q_0} + \frac{z}{1}\right)} \frac{b_j}{|b_j|} \chi_{F_j}.$$

• So
$$F(z) = \sum_{j} |b_{j}|^{q' \left(\frac{1-\theta}{q_{0}} + \frac{\theta}{1}\right)} \frac{b_{j}}{|b_{j}|} \int_{\mathbb{R}^{n}} h_{z}(y) G_{j}(y) dy$$
, where $G_{j}(y)$ is given by

$$\int_{\mathbb{R}^n} \chi_{F_j}(x) \left[\frac{\chi_{B_x}(y)}{|B_x|} \eta(x,y) - \frac{\chi_{B_x}(y)}{|B_x|} \int_{\mathbb{R}^n} \frac{\chi_{B_x}(w)}{|B_x|} \eta(x,w) dw \right] dx;$$

note $G_j(y)$ is in L_0^{∞} for every j.

Our assumptions guarantee that F is holomorphic on S, continuous on S, bounded on S, and

 $|F(z)| \le ||h_z||_{BMO} ||g_z||_{L^1} \le A_1$ when $\text{Re} \, z = 1$,

 $|F(z)| \le 2 \|Mh_z\|_{L^{q_0}} \|g_z\|_{L^{q_0'}} \lesssim A_0 \quad \text{when } \operatorname{Re} z = 0.$

So the three lines lemma implies that

 $|F(\theta)| \lesssim A_0^{1-\theta} A_1^{\theta},$

which in turn implies

$$\|M^{\sharp}h_{ heta}\|_{L^q}\lesssim A_0^{1- heta}A_1^{ heta}.$$

This completes the proof of the proposition.

We remark that the hypothesis of the proposition can be weakened as before: it will suffice if for every g ∈ L₀[∞], there exist α < 1 and C, c such that | ∫_{ℝⁿ} h_z · gdx| ≤ Ce^{ce^{πα|z|}} for all z ∈ S. This yields a corresponding improvement of the complex interpolation theorem involving BMO.

Comparing the real and complex methods of interpolation

- To conclude, let us draw a comparison between the real and complex methods of interpolation.
- The real method of interpolation allows one to convert weak-type or restricted weak-type hypothesis into strong type conclusions (whereas the complex method doesn't).
- Indeed, the real method is less sensitive to the hypothesis given at the endpoints; it gives the same conclusion regardless of whether a strong-type and a (restricted) weak-type hypothesis is given (contrary to the complex method).
- The real method also allows one to work with subadditive operators (whereas the complex method requires the operator to be linear, or at least linearizable).
- On the other hand, the complex method allows one to vary an operator within an analytic family, a feature that is tremendously useful in practice.