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Introduction

I Joint work with Chin-Yu Hsiao

I Solution of a tangential Kohn Laplacian �b

I Difficulty: we will work on a non-compact CR manifold

I e.g. Even on the Heisenberg group Hn, �b may not have
closed range, when it is extended as a closed linear operator

�b : L2(Hn)→ L2(Hn)

I Way out: use conformal equivalence, and extend �b instead as

�b : Lp → Lq

(Another possibility is to consider �b as an operator from a
weighted L2 space to itself, as in our earlier work; we will not
pursue that today)

I Application: a positive mass theorem in CR geometry, as was
proposed by Cheng, Malchiodi and Yang.



Outline of the talk

I The (Riemannian) Yamabe problem

I The CR Yamabe problem

I A CR positive mass theorem in 3-dimensions

I Solution of �b on a certain class of non-compact
3-dimensional CR manifolds



The Yamabe problem

I (Mn, g) compact Riemannian manifold of dimension n ≥ 2

I A metric ĝ is said to be conformally equivalent to g , if
ĝ = e2wg for some smooth function w on M.

I Question: Can one conformally change the metric g , such
that the new metric ĝ has constant scalar curvature?

I Answer: Yes.
dimension n = 2: uniformization theorem
dimension n ≥ 3: contribution by Yamabe, Trudinger, Aubin,
Scheon, Yau, . . .



I In dimension n ≥ 3, write the conformal metric as

ĝ = u
4

n−2 g

for some positive smooth function u on M, and

Lg := cn∆g + Rg

for the conformal Laplacian. Then the Yamabe problem for
(M, g) reduces to the following PDE:

Lgu = Rĝu
n+2
n−2 , Rĝ = constant.

I This is a variational problem: it suffices to minimize the
functional

Eg (u) :=

´
M(|∇gu|2 + Rgu

2)dvolg(´
M |u|

2n
n−2 dvolg

) n−2
n

.



I Define the Yamabe constant by

Y (M, g) := inf{Eg (u) : u ∈ C∞(M), u > 0}.

I It is known that for any compact Riemannian manifold
(Mn, g), we have

Y (M, g) ≤ Y (Sn, gstd),

and the inequality is strict unless (M, [g ]) ' (Sn, [gstd]).

I If n = 3, 4, 5 or (Mn, g) is locally conformally flat, this last
statement was established via a positive mass theorem.

I This strictness of the inequality is important, because it is
known that the Yamabe problem can be resolved in the
affirmative when Y (M, g) < Y (Sn, gstd).

I We now discuss the analog of the Yamabe problem in
3-dimensional CR geometry.



The CR Yamabe problem: Set-up

I M: an orientable CR manifold of dimension 3,
meaning that there exists a distinguished 1-dimensional
subbundle L of CTM, with L ∩ L̄ = {0}.

I Write ξ = Re (L⊕ L̄).

I Assume that there exists a (real) contact form θ on M (so
θ ∧ dθ 6= 0 on M), such that

kernel θ = ξ.

(In particular, this implies that M is strongly pseudoconvex.)

I Replacing θ by −θ if necessary, one can define a Hermitian
inner product on L, by

(Z ,W )θ := 2idθ(Z ∧ W̄ ), Z ,W ∈ Γ(L).

I We call such (M, θ) a pseudohermitian manifold, and think of
θ ∧ dθ as the natural volume form on M.



I (M, θ): a pseudohermitian manifold

I Then as was first shown by Tanaka and Webster, one can
define an associated connection on TM, that is compatible
with the CR and pseudohermitian structures
→ define the corresponding (scalar) curvature and torsion.

I Write Rθ for the scalar curvature associated to θ.

I e.g. (S3, θstd): standard round sphere {|ζ| = 1} in C2,

L = span

{
ζ2

∂

∂ζ1
− ζ1 ∂

∂ζ2

}
, θstd := i(∂̄ − ∂)|ζ|2.

Then Rθstd ≡ 1.

I e.g. (H1, θ0): Heisenberg group ' C× R,

L = span

{
∂

∂z
+ iz

∂

∂t

}
, θ0 := dt + i(zdz − zdz).

Then Rθ0 ≡ 0.



Various differential operators of interest on (M , θ)

I The subgradient ∇b:

∇bu = (Xu,Yu)

where Z := 1
2(X + iY ) is a local section of L with (Z ,Z )θ = 1.

I The sublaplacian ∆b:

∆bu = (X ∗X + Y ∗Y )u

where X , Y are as above, and X ∗, Y ∗ are their adjoint under
L2(θ ∧ dθ).

I The Kohn Laplacian �b:

�bu = Z
∗
Zu

where Z is a local section of L̄ with (Z ,Z )θ = 1, and Z
∗

is its
adjoint under L2(θ ∧ dθ).



I The conformal sublaplacian Lb:

Lbf = (4∆b + Rθ)f .

It describes how the Tanaka-Webster scalar curvature changes
under a conformal change of contact form: if θ̂ = u2θ, then

Lbu = Rθ̂u
3.

I The CR Paneitz operator Pb:

Pbf =
1

4
�b�bf − iZ [Torθ(T ,Z )f ]

where Torθ is the torsion of the Tanaka-Webster connection
on (M, θ), Z is a local section of L̄ with (Z ,Z )θ = 1,
and T is the Reeb vector field of the contact form θ.
It can be used to describe how a certain CR Q-curvature
changes under a conformal change of the contact form.



The CR Yamabe problem

I (M, θ) 3-dimensional pseudohermitian.

I If θ̂ = u2θ for some smooth function u with u > 0, then

(Z ,W )θ̂ = u2(Z ,W )θ, Z ,W ∈ Γ(L),

and we say θ̂ is conformally equivalent to θ.

I Question: If (M, θ) is compact, can we conformally change
the contact form θ, such that the new contact form θ̂ has
Tanaka-Webster scalar curvature Rθ̂ = constant?

I This is equivalent to solving the CR Yamabe equation on M:

Lbu = Rθ̂u
3, Rθ̂ = constant.



I The problem is again variational: it suffices to minimize the
functional

Eθ(u) :=

´
M(|∇bu|2 + Rθu

2)θ ∧ dθ(´
M u4θ ∧ dθ

)1/2 .

I Define the CR Yamabe constant by

Y (M, θ) := inf{Eθ(u) : u ∈ C∞(M), u > 0}.

I It is an old result of Jerison and Lee, that for any compact
3-dimensional pseudohermitian manifolds (M, θ),

Y (M, θ) ≤ Y (S3, θstd).

Also, if strict inequality holds, then Y (M, θ) is attained by a
positive smooth function u on M, and the CR Yamabe
problem can be resolved in the affirmative.
→ Focus only on the case Y (M, θ) > 0.



The Green’s function of the conformal sublaplacian

I (M, θ) 3-dimensional compact pseudohermitian, Y (M, θ) > 0.

I Fix a point p ∈ M.

I We study the Green’s function Gp of the conformal
sublaplacian of (M, θ) with pole p: in other words,
Gp is singular at p, with

LbGp = 16δp.

I Write ρ(q) for a suitable non-isotropic distance from q to p.

I Also, let Oj be the set of all smooth functions f on M \ {p},
with

|f (q)| . ρ(q)j ,

and |∇k
bf (q)| . ρ(q)j−k for k = 1, 2, . . . .



I By first conformally changing the contact form on M if
necessary, for q ∈ M near p, the Green’s function admits an
expansion

Gp(q) =
1

2π
ρ(q)−2 + A + error, error ∈ O1.

where A is a constant.

I This is the analog of the conformal normal coordinates in CR
geometry.

I We will assume our contact form θ has been chosen already,
so that the above expansion of Gp is valid near p.

I The constant A will be a positive multiple of the mass of a
certain blow-up of (M, θ). Its sign will be important in the CR
Yamabe problem in 3 dimensions.



A CR positive mass theorem

Theorem (Cheng-Malchiodi-Yang)

Suppose (M, θ) is a 3-dimensional compact pseudohermitian CR
manifold. Suppose in addition

(i) Y (M, θ) > 0, and

(ii) the Paneitz operator Pb is non-negative, in the sense that´
M v · Pbv θ ∧ dθ ≥ 0 for all v ∈ C∞(M).

For any p ∈ M, let Gp be the Green’s function of the conformal
sublaplacian Lb at p, and A be the constant term in the expansion
of Gp in CR conformal normal coordinates. Then

(a) A ≥ 0;

(b) If A = 0 at some point p ∈ M, then M is CR equivalent to S3,
and [θ] = [θstd].



I It follows that under the same assumptions, unless
(M, [θ]) ' (S3, [θstd]), we have A > 0 in the expansion of Gp.

I But when A > 0, one can construct a suitable test function u
on M, to show that

Eθ(u) < Y (S3, θstd).

(u is obtained by gluing Gp to a standard bubble on (H1, θ0).)

I Hence under the assumptions of the above theorem, we have

Y (M, θ) < Y (S3, θstd)

unless (M, [θ]) ' (S3, [θstd]), and the CR Yamabe quotient
Y (M, θ) is achieved by some positive smooth minimizer.

I See also Gamara and Gamara-Jacoub, where they solved the
CR Yamabe problem by seeking critical points of the
functional Eθ that are not necessarily minimizers.



Theorem (Cheng-Malchiodi-Yang)

Suppose (M, θ) is a 3-dimensional compact pseudohermitian CR
manifold. Suppose in addition

(i) Y (M, θ) > 0, and

(ii) the Paneitz operator Pb is non-negative, in the sense that´
M v · Pbv θ ∧ dθ ≥ 0 for all v ∈ C∞(M).

For any p ∈ M, let Gp be the Green’s function of the conformal
sublaplacian Lb at p, and A be the constant term in the expansion
of Gp in CR conformal normal coordinates. Then

(a) A ≥ 0;

(b) If A = 0 at some point p ∈ M, then M is CR equivalent to S3,
and [θ] = [θstd].



I The theorem is about understanding the Green’s function Gp.

I To do so, one first construct the blow-up (M], θ]) of (M, θ),
where

M] := M \ {p}, θ] := G 2
p θ.

I Then (M], θ]) becomes a non-compact pseudohermitian
manifold with infinite volume.

I Under a further change of coordinates, if U is a sufficiently
small neighborhood of p in M, then one can identify

U \ {p} ⊂ M] ↔ a neighborhood of infinity on H1.

Since H1 is flat, this allows one to identify M] as an
asymptotically flat pseudohermitian manifold.



I Example:

M = S3 ⊂ C2, θ = θstd = i(∂ − ∂)|ζ|2, p = (0,−1)

I The Green’s function of conformal sublaplacian on M with
pole p is then Gp = |h|, where

h(ζ1, ζ2) =
1

1 + ζ2
.

I Then (M], θ]) := (M \ {p},G 2
p θ) is isometric to the

Heisenberg group (H1, θ0), where θ0 = dt + i(zdz − zdz);
in fact the ‘stereographic projection’ map

ζ ∈ S3 \ {p} 7→ (z , t) ∈ H1

z =
ζ1

1 + ζ2
, t = −Re 1− ζ2

1 + ζ2

is an isometry between (M], θ]) and (H1, θ0).



I Back to our general setting, where (M], θ]) is asymptotically
flat; in particular, there exists a compact subset K of M],
where we identify M] \ K with a neighborhood of infinity on
H1.

I It turns out one can define the mass of such (M], θ]), by
means of an integral of certain geometric quantities on a
‘sphere at infinity’ on H1.

Proposition (Cheng-Malchiodi-Yang)

Suppose (M], θ]) arises from the blow-up of a compact
3-dimensional pseudohermitian manifold (M, θ) as described above
at some point p ∈ M. Then its mass satisfies

m(M], θ]) = 48π2A,

where A is the constant in the expansion of the Green’s function
Gp of Lb on (M, θ) at p, in CR conformal normal coordinates.



Proposition (continued)

Furthermore, there exists some function w ∈ O−1 on M], with
�]bw ∈ O

4, such that the mass of (M], θ]) satisfies

m(M], θ]) =− 3

2

ˆ
M]

|�]bw |
2θ] ∧ dθ] + 3

ˆ
M]

|∇]
Z

]∇]
Z

]w |2θ] ∧ dθ]

+
3

4

ˆ
M]

w · P]bw θ] ∧ dθ].

Here �]b, ∇] and P]b are the Kohn Laplacian, the Tanaka-Webster
connection, and CR Paneitz operator with respect to (M], θ]), and

Z
]

is a section of L̄ on M] with (Z
]
,Z

]
)θ] = 1.

I This is a version of Bochner’s formula; one gets this by
integrating by parts twice in the term involving P]b.



Proposition (continued)

m(M], θ]) =− 3

2

ˆ
M]

|�]bw |
2θ] ∧ dθ] + 3

ˆ
M]

|∇]
Z

]∇]
Z

]w |2θ] ∧ dθ]

+
3

4

ˆ
M]

w · P]bw θ] ∧ dθ].

In addition, the same continues to hold, when w is replaced by any
v on M], with v − w ∈ O1+δ and �]bv ∈ O

3+δ for some δ > 0.

Theorem (Hsiao-Y.)

Under the assumptions of the 3-dim CR positive mass theorem,
namely that Y (M, θ) > 0 and Pb ≥ 0 on (M, θ), there exists a
smooth function v on M], such that

v − w ∈ O1+δ for all δ ∈ (0, 1), and �]bv = 0.



I As a result, the formula for mass simplifies:

m(M], θ]) =3

ˆ
M]

|∇]
Z

]∇]
Z

]v |2θ] ∧ dθ] +
3

4

ˆ
M]

v · P]bv θ
] ∧ dθ].

With a little more work to bring the integral involving P]b
under control, we can show that m(M], θ]) ≥ 0.

(In fact the integral involving P]b can be written as the sum of
a non-negative term with −4

3m(M], θ]), the latter of which
can be reabsorbed into the left hand side.)

I Recalling the relation between m(M], θ]) and the constant
term A in the expansion of the Green’s function Gp at p, one
sees that

A =
1

48π2
m(M], θ]) ≥ 0.

I Further work then allows one to characterize when A is zero
at some point p.



Solving �]b
I Recall the statement of our theorem: w ∈ O−1 is a given

function on M, with �]bw ∈ O
4.

Theorem (Hsiao-Y.)

If Y (M, θ) > 0 and Pb ≥ 0 on (M, θ), then there exists a smooth
function v on M], such that

v − w ∈ O1+δ for all δ ∈ (0, 1), and �]bv = 0.

I To prove this, let f = �]bw ∈ O
3+δ for all δ ∈ (0, 1).

I We solve �]bu = f for u ∈ O1+δ with estimates.

I Hence taking v = w − u, we have all conclusions of our
theorem, namely v − w ∈ O1+δ, and �]bv = 0.

I Thus the key is to solve the Kohn Laplacian on (M], θ]).
This is done via the conformal equivalence between θ] with θ.



A toy problem

I We saw how (H1, θ0) arises as the blow-up of (S3, θstd).

I We know very well how one could solve the Kohn Laplacian
�b on (S3, θstd).

I Question: Can we use this knowledge to solve

�]bu = f on (H1, θ0)?

I The key here turns out to be that not only θ0 = G 2
p θstd, but

also there exists a CR function h on S3 \ {p}, i.e. one with

Zh = 0, such that Gp = |h|.

In fact, as we saw before, in this case one can take h to be

h(ζ1, ζ2) =
1

1 + ζ2
.



I Let Z be a section of L̄ on S3 with (Z ,Z )θstd = 1.

I Write Z
∗

for its formal adjoint under L2(S3, θstd ∧ dθstd).

I Then Z
]

:= h−1Z is a section of L̄ on H1, with (Z
]
,Z

]
)θ0 = 1.

I Also, the formal adjoint of Z
]

under L2(H1, θ0 ∧ dθ0) is given
by

(Z
]
)∗v = |h|−4Z ∗(h|h|2v);

this follows since θ0 ∧ dθ0 = |h|4θstd ∧ dθstd. In fact,

ˆ
Z
]
u · v θ0 ∧ dθ0 =

ˆ
h−1Zu · v |h|4 θstd ∧ dθstd

=

ˆ
u · Z ∗(h|h|2v) θstd ∧ dθstd

=

ˆ
u · |h|−4Z ∗(h|h|2v) θ0 ∧ dθ0.



Z
]
u = h−1Zu, (Z

]
)∗v = |h|−4Z ∗(h|h|2v), �]b = (Z

]
)∗Z

]
.

I Hence

�]bu = |h|−4Z ∗(h|h|2 · h−1Zu) = |h|−4h̄Z ∗Z (hu),

the last equality following from the commutativity about Z
and h. In other words,

�]bu = h̄−1h−2�b(hu).

I Thus to solve �]bu = f on H1, one could solve instead

�b(hu) = h̄h2f on S3;

one can do this using standard theory about solutions of �b.



The general case

I Back to the general case, where M] = M \ {p}, and
θ] = G 2

p θ. Then it is not necessarily true that

Gp = |h|

for some CR function h.

I Good news: one can still construct a CR function h, so that

|h|2G−2p = 1 + a, for some error a ∈ O2.

I Bad news: The error a may not be smooth across p.



A tale of 3 different �b’s

I Goal: to solve �]b on M]

I Step 1: Introduce �̃b on M, such that �]b is conjugate to �̃b.

I Problem: �̃b will in general have non-smooth coefficients

I Way out: Construct �̂b, with smooth coefficients, that
approximates �̃b



I Let Z be a local section of L̄ on M, with (Z ,Z )θ = 1.

I Let Z
]

:= G−1p Z , and define its Hilbert space closure

Z
]
: L2(θ] ∧ dθ])→ L2(θ] ∧ dθ]).

Let (Z
]
)∗ be its adjoint. Then

�]b = (Z
]
)∗Z

]
.



I Define two (possibly non-smooth) measures

m̃0 = (1 + χa)−1θ ∧ dθ, m̃1 = G 2
p |h|−2θ ∧ dθ.

Here χ is a smooth function, which is identically 1 near p, and
vanishes outside a small neighborhood of p.

I m̃0 and m̃1 are finite measures on M, which we think of as
perturbations of θ ∧ dθ. In fact

m̃0 = m̃1 = θ ∧ dθ when a = 0.

I Let Z̃ := GpZ
]
, and define its Hilbert space closure

Z̃ : L2(m̃0)→ L2(m̃1).

Let Z̃
∗

be its adjoint. Define

�̃b := Z̃
∗
Z̃ .



I One can check that for any function u,

�]bu = (1 + χa)−1G−4p h̄�̃b(h−1u).

I Hence solving �]bu = f is the same as solving

�̃b(h−1u) = (1 + χa)G 4
p h̄
−1f .

I Problem: �̃b is defined using two possibly non-smooth
measures m̃0 and m̃1. The standard theory of Kohn
Laplacians do not cover this!

I The way out: construct a smooth Kohn Laplacian �̂b, which
approximates �̃b.



I Define two new measures

m̂0 = θ ∧ dθ, m̂1 = (1 + χa)G 2
p |h|−2θ ∧ dθ.

so that near p,

m̂1 = (1 + a)G 2
p |h|−2θ ∧ dθ = θ ∧ dθ.

I In particular, m̂0 and m̂1 are both smooth across p.

I Let Z be as before with (Z ,Z )θ = 1, and Ẑ := Z .

We extend Ẑ to its Hilbert space closure

Ẑ : L2(m0)→ L2(m1).

Let Ẑ
∗

be its adjoint. Define

�̂b := Ẑ
∗
Ẑ .



I �̂b is not quite the standard Kohn Laplacian �b on M, since

the adjoint Ẑ
∗

is taken with respect to two different measures;
but the standard theory of Kohn Laplacians carry over easily.

I By a result of Chanillo-Chiu-Yang, the conditions
Y (M, θ) > 0 and Pb ≥ 0 implies that

�̂b : L2(θ ∧ dθ)→ L2(θ ∧ dθ) has closed range.

So we know in principle how to solve �̂b.

I But one can check that there exists a function g ∈ O1, with a
sufficiently small support near p, such that

�̃b = �̂b + gZ .

I One can then solve �̃b using the solution operator for �̂b, by
adding up a suitable Neumann series. The key is the
estimates of various solution operators in Lp(θ ∧ dθ) and Oα.


