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Introduction

» Joint work with Chin-Yu Hsiao
» Solution of a tangential Kohn Laplacian [J,
» Difficulty: we will work on a non-compact CR manifold

> e.g. Even on the Heisenberg group H", [, may not have
closed range, when it is extended as a closed linear operator

Op: L2(H") — L2(H")
» Way out: use conformal equivalence, and extend [ instead as
Db: LP— L9

(Another possibility is to consider (], as an operator from a
weighted L2 space to itself, as in our earlier work; we will not
pursue that today)

» Application: a positive mass theorem in CR geometry, as was
proposed by Cheng, Malchiodi and Yang.
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The Yamabe problem

v

(M" g) compact Riemannian manifold of dimension n > 2

v

A metric g is said to be conformally equivalent to g, if
g = e g for some smooth function w on M.

v

Question: Can one conformally change the metric g, such
that the new metric g has constant scalar curvature?

Answer: Yes.

dimension n = 2: uniformization theorem

dimension n > 3: contribution by Yamabe, Trudinger, Aubin,
Scheon, Yau, ...

v



» In dimension n > 3, write the conformal metric as
R 4
g = un—2g
for some positive smooth function v on M, and
Lg == cpDg + Rg

for the conformal Laplacian. Then the Yamabe problem for
(M, g) reduces to the following PDE:

n+2
Lgu = Rgur-2, Rg = constant.

» This is a variational problem: it suffices to minimize the
functional

(|Vgul? + Ryu?)dvol
Eg(u) — fM g g - g.

(fM\u\%dvolg)




Define the Yamabe constant by
Y(M, g) = inf{Eg(u): ue C>*(M),u > 0}.

It is known that for any compact Riemannian manifold
(M" g), we have

Y(Ma g) < Y(Sna gstd)»

and the inequality is strict unless (M, [g]) ~ (S", [gstd])-
If n=23,4,50r (M", g) is locally conformally flat, this last
statement was established via a positive mass theorem.

This strictness of the inequality is important, because it is
known that the Yamabe problem can be resolved in the
affirmative when Y(M, g) < Y(S", gstd)-

We now discuss the analog of the Yamabe problem in
3-dimensional CR geometry.



The CR Yamabe problem: Set-up

» M: an orientable CR manifold of dimension 3,
meaning that there exists a distinguished 1-dimensional
subbundle L of CTM, with L N L = {0}.

» Write ¢ = Re (L@ L).

» Assume that there exists a (real) contact form 6 on M (so
6 A df # 0 on M), such that

kernel 8 = &.

(In particular, this implies that M is strongly pseudoconvex.)

» Replacing 6 by —6 if necessary, one can define a Hermitian
inner product on L, by

(Z,W)g :=2id0(Z A W), Z,W eT(L).

» We call such (M, 0) a pseudohermitian manifold, and think of
6 A df as the natural volume form on M.



v

(M, 0): a pseudohermitian manifold
Then as was first shown by Tanaka and Webster, one can
define an associated connection on TM, that is compatible
with the CR and pseudohermitian structures
— define the corresponding (scalar) curvature and torsion.
Write Ry for the scalar curvature associated to 6.

g. (S3,0sq): standard round sphere {|¢| = 1} in C?,

= span {Cz Osta == i(0 — 0)[¢]*.

1
o)
Then Ry, = 1.

e.g. (H',6): Heisenberg group ~ C x R,

o ._0 o e =
L = span {az—i—lzat}, b := dt + i(zdz — Zdz).

Then Ry, = 0.



Various differential operators of interest on (M, 0)
> The subgradient Vy:
Vu = (Xu, Yu)

where Z := 2(X +iY) is a local section of L with (Z,Z)y = 1.
> The sublaplacian Ay:

Apu=(X*X+Y"Y)u

where X, Y are as above, and X*, Y* are their adjoint under
L2(6 A dB).
» The Kohn Laplacian Cp:

Opu =Z"Zu

where Z is a local section of L with (Z,Z)s =1, and Z" is its
adjoint under L2(0 A df).



» The conformal sublaplacian Lp:
Lpf = (4Ab -+ Rg)f

It describes how the Tanaka-Webster scalar curvature changes
under a conformal change of contact form: if § = 1?6, then

Lyu = R§u3.
» The CR Paneitz operator Pp:
1. _ _
Ppf = ZDbDbf — iZ[Torg(T, 2)f]

where Tory is the torsion of the Tanaka-Webster connection
on (M, ), Z is a local section of L with (Z,2Z)y =1,

and T is the Reeb vector field of the contact form 6.

It can be used to describe how a certain CR Q-curvature
changes under a conformal change of the contact form.



The CR Yamabe problem

v

(M, 0) 3-dimensional pseudohermitian.

v

If § = 126 for some smooth function u with u > 0, then
(Z,W)y;=u*(Z,W)e, Z,W eT(L),

and we say 0 is conformally equivalent to 6.

v

Question: If (M, 0) is compact, can we conformally change
the contact form 0, such that the new contact form 6 has
Tanaka-Webster scalar curvature Ré = constant?

v

This is equivalent to solving the CR Yamabe equation on M:

Lpu = Réu3, Ry = constant.



The problem is again variational: it suffices to minimize the
functional

_ JulVbul® + Rou?)6 A db

Blw): (fyy 1460 A d6)*?

Define the CR Yamabe constant by
Y (M, ) :=inf{Ep(u): ue C®°(M),u > 0}.

It is an old result of Jerison and Lee, that for any compact
3-dimensional pseudohermitian manifolds (M, 6),

Y(Ma 9) < Y(S3v Hstd)'

Also, if strict inequality holds, then Y(M, @) is attained by a
positive smooth function u on M, and the CR Yamabe
problem can be resolved in the affirmative.

— Focus only on the case Y(M, ) > 0.



The Green's function of the conformal sublaplacian

v

(M, 6) 3-dimensional compact pseudohermitian, Y (M, ) > 0.
» Fix a point p € M.
» We study the Green's function G, of the conformal

sublaplacian of (M, #) with pole p: in other words,
Gp is singular at p, with

LG, = 165,.

» Write p(q) for a suitable non-isotropic distance from g to p.

> Also, let O/ be the set of all smooth functions f on M\ {p},
with

f(a)l < p(aY,
and |[VEF(q)| S p(qy* for k =1,2,....



By first conformally changing the contact form on M if
necessary, for ¢ € M near p, the Green's function admits an
expansion

1
Gp(q) = %p(q)*2 + A+ error, error € O

where A is a constant.

This is the analog of the conformal normal coordinates in CR
geometry.

We will assume our contact form 6 has been chosen already,
so that the above expansion of G, is valid near p.

The constant A will be a positive multiple of the mass of a
certain blow-up of (M, ). Its sign will be important in the CR
Yamabe problem in 3 dimensions.



A CR positive mass theorem

Theorem (Cheng-Malchiodi-Yang)

Suppose (M, 0) is a 3-dimensional compact pseudohermitian CR
manifold. Suppose in addition

(i) Y(M,0) >0, and
(ii) the Paneitz operator Py is non-negative, in the sense that
Sy v-PovOAdO >0 forallve Co(M).

For any p € M, let G, be the Green's function of the conformal
sublaplacian L, at p, and A be the constant term in the expansion
of Gp in CR conformal normal coordinates. Then

(a) A>0;
(b) If A=0 at some point p € M, then M is CR equivalent to S3,
and [0] = [Ostd).



It follows that under the same assumptions, unless
(M, [0]) ~ (S3, [fsta]), we have A > 0 in the expansion of G,.

But when A > 0, one can construct a suitable test function u
on M, to show that

Eg(u) < Y(S3, Hstd)-

(u is obtained by gluing G, to a standard bubble on (HZ, 6p).)
Hence under the assumptions of the above theorem, we have

Y(M,6) < Y(S3, 644q)

unless (M, [0]) ~ (S3, [fsa]), and the CR Yamabe quotient
Y (M, 0) is achieved by some positive smooth minimizer.
See also Gamara and Gamara-Jacoub, where they solved the
CR Yamabe problem by seeking critical points of the
functional Ey that are not necessarily minimizers.



Theorem (Cheng-Malchiodi-Yang)

Suppose (M, 0) is a 3-dimensional compact pseudohermitian CR
manifold. Suppose in addition

(i) Y(M,0) >0, and
(ii) the Paneitz operator Py is non-negative, in the sense that
Sy v-PovOAdO >0 forallve C2(M).

For any p € M, let G, be the Green's function of the conformal
sublaplacian L, at p, and A be the constant term in the expansion
of G in CR conformal normal coordinates. Then

(a) A>0;
(b) If A=0 at some point p € M, then M is CR equivalent to S3,
and [0] = [Ostd].



The theorem is about understanding the Green's function Gp.

To do so, one first construct the blow-up (M#, 6%) of (M, 6),
where
M: = M\ {p}, 0%:=G20.

Then (M*, 6%) becomes a non-compact pseudohermitian
manifold with infinite volume.

Under a further change of coordinates, if U is a sufficiently
small neighborhood of p in M, then one can identify

U\ {p} c M¥ & a neighborhood of infinity on H!.

Since H! is flat, this allows one to identify M? as an
asymptotically flat pseudohermitian manifold.



> Example:
M=S*CC? 0=04=i0-0)? p=(0-1)

» The Green's function of conformal sublaplacian on M with
pole p is then G, = |h|, where

1

h(¢1, &) = 156

» Then (Mf 6%) := (M \ {p}, G20) is isometric to the
Heisenberg group (H?, o), where 6y = dt + i(zdz — zdz);
in fact the ‘stereographic projection” map

¢eS*\{p} (z,t) e H

C1 1-¢
- . t=-R
i 14+ ¢ e1+Cz

is an isometry between (MF, 6%) and (HY, 6y).




» Back to our general setting, where (M, 6%) is asymptotically
flat; in particular, there exists a compact subset K of Mt
where we identify M*\ K with a neighborhood of infinity on
H.

» It turns out one can define the mass of such (M*, 6%), by
means of an integral of certain geometric quantities on a
‘sphere at infinity’ on H.

Proposition (Cheng-Malchiodi-Yang)

Suppose (I\/Iﬁ7 Gﬁ) arises from the blow-up of a compact
3-dimensional pseudohermitian manifold (M, 0) as described above
at some point p € M. Then its mass satisfies

m(M*, 0%) = 487%A,

where A is the constant in the expansion of the Green's function
Gp of L on (M, 0) at p, in CR conformal normal coordinates.



Proposition (continued)

Furthermore, there exists some function w € O~1 on M?, with
Diw € 0% such that the mass of (M* 0% satisfies

rmmkm):_§ 08 w|?6f A dBt +3 [ |[VE,VE, w|?0% A dbF
b # #
2 me me 2 Z

3 —
+/‘W-%WMAdm
4 Mﬁ

Here Di, Vv and Pg are the Kohn Laplacian, the Tanaka-Webster
connection, and CR Paneitz operator with respect to (I\/Iﬁ, 9“), and

7" is a section of L on M* with (7ﬁ,7ﬁ)9u =1L

» This is a version of Bochner's formula; one gets this by
integrating by parts twice in the term involving Pg.



Proposition (continued)

m(Mﬁ,Gﬁ) =- 73 ]Dﬁwlzeﬁ/\dﬁﬁ+3 \Vﬁ v w\zoneﬁ
b 1Yt
2 S me £ Z

3 —
+/ w - Piw 6t A doP.
4 Mﬁ

In addition, the same continues to hold, when w is replaced by any
v on M¥, withv —w € O9 and Div € 0319 for some § > 0.
Theorem (Hsiao-Y.)

Under the assumptions of the 3-dim CR positive mass theorem,
namely that Y(M,0) > 0 and P, > 0 on (M, 0), there exists a
smooth function v on M?, such that

v—we O forallée(0,1), and D%v =0.



> As a result, the formula for mass simplifies:
m(ME, 6?) :3/ yvﬁuv”uv129Mdeﬁ+3/ v Piv ot A dot.
Mt V4 V4 4 Mt

With a little more work to bring the integral involving Pg
under control, we can show that m(M*, 6%) > 0.

(In fact the integral involving Pg can be written as the sum of
a non-negative term with —3m(M?, 6%), the latter of which
can be reabsorbed into the left hand side.)

» Recalling the relation between m(MF*, 6%) and the constant

term A in the expansion of the Green's function G, at p, one

sees that
1

4872
» Further work then allows one to characterize when A is zero
at some point p.

m(M*,6%) > 0.



- #
Solving L1}

» Recall the statement of our theorem: w € O~ is a given
function on M, with DiW e O~

Theorem (Hsiao-Y.)

If Y(M,0) >0 and P, > 0 on (M, ), then there exists a smooth
function v on M!, such that

v—we O™ forallde(0,1), and Thv=0.

To prove this, let f = 0% w € O3 for all § € (0, 1).

We solve Diu = f for u € O with estimates.

v

v

v

Hence taking v = w — u, we have all conclusions of our
theorem, namely v — w € O'9, and Div =0.

Thus the key is to solve the Kohn Laplacian on (MF, 6).
This is done via the conformal equivalence between #* with 6.

v



A toy problem

» We saw how (H, fy) arises as the blow-up of (S3, fq).

» We know very well how one could solve the Kohn Laplacian
Lp on (83, Hstd)'

» Question: Can we use this knowledge to solve
Oiu=f on (H,0)?

» The key here turns out to be that not only 6y = Gg@std, but
also there exists a CR function h on S3\ {p}, i.e. one with

Zh =0, suchthat G,=|h|

In fact, as we saw before, in this case one can take h to be

1

h(¢1,¢2) = 16



v

v

v

Let Z be a section of L on S% with (Z,Z),,, = 1.
Write Z~ for its formal adjoint under L2(S3, Ostq A dbstq).
Then Z* := h~1Z is a section of L on H!, with (7ﬂ,7ﬁ)90 =1.

Also, the formal adjoint of 7" under L2(H, 69 A dBy) is given
by
(Z')v = |~"Z" (hlhv);

this follows since fg A dflg = | h|*0stg A dOq. In fact,
/Zﬁu V00 A dby = /h_lzu T|A[* faeq A st

:/u-Z*(h|h|2v) Ostd A dBsiq

—/u~ |h|=4Z" (| h|2v) 6 A dbo.



Z'u=hn"1Zu,  (Z)v=|0Z (W), O = ()7

> Hence
Ofu = |h|=*Z"(hh|? - KX Zu) = |h|~*hZ" Z(hu),

the last equality following from the commutativity about Z
and h. In other words,

0 u = h*h=200,(hu).
» Thus to solve D%u — f on H!, one could solve instead
Op(hu) = hh*f  on S3;

one can do this using standard theory about solutions of [p.



The general case

» Back to the general case, where M* = M\ {p}, and
0f = G29 Then it is not necessarily true that

Gp: ‘h|

for some CR function h.

» Good news: one can still construct a CR function h, so that
\h|2Gp_2 =1+a, for some error a € O,

» Bad news: The error a may not be smooth across p.



A tale of 3 different [y's

v

Goal: to solve Di on M#

v

Step 1: Introduce [J, on M, such that Dt}) is conjugate to CJp.

v

Problem: Clp, will in general have non-smooth coefficients

v

Way out: Construct Clp, with smooth coefficients, that
approximates [



> Let Z be a local section of L on M, with (Z,2Z)y = 1.
> Let Z' = G, 'Z, and define its Hilbert space closure

78 12(6% A d6%) — L2(0% A d6Y).
Let (7ﬁ)* be its adjoint. Then

0t =(Z°)Z.



» Define two (possibly non-smooth) measures
Mo = (1 + xa) "0 A db, 1 = G5|h| 720 A db.

Here x is a smooth function, which is identically 1 near p, and
vanishes outside a small neighborhood of p.

» Mo and My are finite measures on M, which we think of as
perturbations of 8 A df. In fact

mg=m =60Adf when a=0.
> Let Z = prﬁ, and define its Hilbert space closure
7+ [2(g) — L2(y).
Let ?* be its adjoint. Define

DNb = ?*

NI



One can check that for any function v,
Ohu = (1+xa) G, *hp(h ).
Hence solving Diu = f is the same as solving
Cp(h™tu) = (1 + Xa)Gsl_flf.

Problem: Clp, is defined using two possibly non-smooth
measures Mg and my. The standard theory of Kohn
Laplacians do not cover this!

The way out: construct a smooth Kohn Laplacian [p, which
approximates [p,.



> Define two new measures
Mo = 0 A db, My = (1+ xa)G3|h| 20 A df.
so that near p,
=(1+a)G3|h 20 A df =0 A db.

» In particular, mg and My are both smooth across p.
» Let Z be as before with (Z,Z)p =1, and Z := Z.
We extend Z to its Hilbert space closure

~

7: L2(mo) — L2(m1).
Let Z be its adjoint. Define

A~

O, =7

N\>



[Jp is not quite the standard Kohn Laplacian O, on M, since
A %

the adjoint Z is taken with respect to two different measures;
but the standard theory of Kohn Laplacians carry over easily.

By a result of Chanillo-Chiu-Yang, the conditions
Y(M,0) > 0 and P, > 0 implies that

Clp: L2(0 A df) — L%(O A df) has closed range.

So we know in principle how to solve Clp.

But one can check that there exists a function g € O!, with a
sufficiently small support near p, such that

ljb = |j\b +g7.

One can then solve CJp, using the solution operator for [, by
adding up a suitable Neumann series. The key is the
estimates of various solution operators in LP(6 A df) and O%.



