A PROOF OF THE SIMPLICITY OF $\mathfrak{s l}_{n}$

PO-LAM YUNG

Let k be a field with char $k=0$. Let $\mathfrak{s l}_{n}$ be the Lie subalgebra of $\mathfrak{g l}_{n}$ over k, defined by

$$
\mathfrak{s l}_{n}=\left\{x \in \mathfrak{g l}_{n}: \operatorname{tr} x=0\right\} .
$$

In this note, we present a less computational proof of the following theorem:
Theorem 1. $\mathfrak{s l}_{n}$ is simple.
Let $E_{i j}$ be the elementary matrix whose entry in the i-th row, j-th column is 1 , and zero in all other entries. The key here is to show that any non-zero ideal of $\mathfrak{s l}_{n}$ contains at least one $E_{i j}$ for some $i \neq j$. There are various ways of achieving this, some more elementary, at the expense of being a little more computational; the argument we present below is more conceptual, and is a variant of one given by Crystal Hoyt in a very nice set of lecture notes on Lie Algebras. The key is the following lemma, which is interesting in its own right:
Lemma 1. Suppose V is a finite dimensional vector space, and $T: V \rightarrow V$ is a diagonalizable linear map. We write Λ for the set of eigenvalues of T, and $V_{\lambda}=$ $\{v \in V: T v=\lambda v\}$ be the eigenspace of T associated with λ, so that $V=\oplus_{\lambda \in \Lambda} V_{\lambda}$. If W is a T-invariant subspace of V, i.e. if $T(W) \subseteq W$, then

$$
W=\oplus_{\lambda \in \Lambda}\left(W \cap V_{\lambda}\right)
$$

Proof. Since $V=\oplus_{\lambda \in \Lambda} V_{\lambda}$, given $w \in W$, one can write

$$
w=\sum_{\lambda \in \Lambda} w_{\lambda}, \quad \text { with } w_{\lambda} \in V_{\lambda}
$$

We enumerate those $\lambda \in \Lambda$ for which $w_{\lambda} \neq 0$ by $\lambda_{1}, \ldots, \lambda_{m}$. Then

$$
\begin{aligned}
w & =w_{\lambda_{1}}+\cdots+w_{\lambda_{m}} \\
T w & =\lambda_{1} w_{\lambda_{1}}+\cdots+\lambda_{m} w_{\lambda_{m}} \\
\vdots & \\
T^{m-1} w & =\lambda_{1}^{m-1} w_{\lambda_{1}}+\cdots+\lambda_{m}^{m-1} w_{\lambda_{m}}
\end{aligned}
$$

Now we consider the coefficient matrix on the right hand side. Its determinant is the Vandermonde determinant, which is non-zero in our case since the λ_{i} 's are all distinct:

$$
\operatorname{det}\left(\begin{array}{cccc}
1 & 1 & \ldots & 1 \\
\lambda_{1} & \lambda_{2} & \ldots & \lambda_{m} \\
\vdots & & \ddots & \vdots \\
\lambda_{1}^{m-1} & \lambda_{2}^{m-1} & \ldots & \lambda_{m}^{m-1}
\end{array}\right)=\prod_{i>j}\left(\lambda_{i}-\lambda_{j}\right) \neq 0
$$

Thus we can invert this coefficient matrix. As a result, $w_{\lambda_{1}}, \ldots, w_{\lambda_{m}}$ can all be written as linear combinations of $w, T w, \ldots, T^{m-1} w$, all of which are in W by the T-invariance of W. It follows that $w \in \oplus_{\lambda \in \Lambda}\left(W \cap V_{\lambda}\right)$, and the lemma follows.

We remark that the above lemma works for vector spaces over any field. Moreover, while we will not need this below, there is a version of this lemma involving r commuting diagonalizable linear maps $T_{1}, \ldots, T_{r}: V \rightarrow V$, and a subspace W of V that is preserved by each of the T_{1}, \ldots, T_{r}.

We are now ready to prove the simplicity of $\mathfrak{s l}_{n}$.
Proof of Theorem 1. Since $\mathfrak{g l}_{n}=\mathfrak{s l}_{n} \oplus(k \cdot I)$ where $k \cdot I$ is the set of all scalar multiples of the identity matrix I, and since $k \cdot I$ is a subset of the center of $\mathfrak{g l}_{n}$, if I is any ideal of $\mathfrak{s l}_{n}$, it is also an ideal of $\mathfrak{g l}_{n}$. Hence to prove Theorem 1, it suffices to prove that every non-zero ideal I of $\mathfrak{g l}_{n}$ with $I \subseteq \mathfrak{s l}_{n}$ is equal to $\mathfrak{s l}_{n}$.

Suppose now I is a non-zero ideal of $\mathfrak{g l}_{n}$ with $I \subseteq \mathfrak{s l}_{n}$. Let $s=\sum_{k=1}^{n} 2^{k} E_{k k}$. Then ad s is diagonalizable on $V:=\mathfrak{g l}_{n}$: in fact

$$
\operatorname{ad} s\left(E_{i j}\right)=\left(2^{i}-2^{j}\right) E_{i j} \quad \text { for all } i, j=1, \ldots, n
$$

Hence the distinct eigenvalues of ad s are 0 and $\pm\left(2^{i}-2^{j}\right), 1 \leq j<i \leq n$. (Note that if $i \neq j$ and $i^{\prime} \neq j^{\prime}$, then $2^{i}-2^{j} \neq 2^{i^{\prime}}-2^{j^{\prime}}$, unless $i=i^{\prime}$ and $j=j^{\prime}$. This is the place where we use our assumption that our base field k has characteristic zero.) Let V_{λ} be the eigenspace of ad $s: V \rightarrow V$ with eigenvalue λ. Then V_{0} is the set of all diagonal matrices in $\mathfrak{g l}_{n}$, and $V_{2^{i}-2^{j}}=\operatorname{span}\left\{E_{i j}\right\}$ for $i \neq j$. Now I is ad s-invariant, since I is an ideal of $\mathfrak{g l}_{n}$. By the previous lemma, I is the direct sum of $I \cap V_{0}$ with $\oplus_{i \neq j}\left(I \cap V_{2^{i}-2^{j}}\right)$. If $I \cap V_{0} \neq\{0\}$, then since $I \subseteq \mathfrak{s l}_{n}$, one sees that I contains a matrix t of the form $\sum_{k=1}^{n} \lambda_{k} E_{k k}$, with $\lambda_{i} \neq \lambda_{j}$ for some $i \neq j$. But then I contains $\left[t, E_{i j}\right]=\left(\lambda_{i}-\lambda_{j}\right) E_{i j}$, so I contains $E_{i j}$ for some $i \neq j$. On the other hand, if $I \cap V_{0}=\{0\}$, then since I is non-zero, we must have $I \cap V_{2^{i}-2^{j}} \neq\{0\}$ for some $i \neq j$. Hence I contains $E_{i j}$ for some $i \neq j$ in either case.

To proceed further, it suffices to note that then I contains $E_{i k}$ whenever $k \neq i$. and $E_{k j}$ whenever $k \neq j$. This is because

$$
\left[E_{j k}, E_{i j}\right]=-E_{i k} \quad \text { if } k \neq i
$$

and

$$
\left[E_{k i}, E_{i j}\right]=E_{k j} \quad \text { if } k \neq j
$$

Repeating this argument, I contains $E_{k l}$ for all $k \neq l$. It follows that I contains $E_{k k}-E_{l l}$ for all $k \neq l$, since

$$
\left[E_{k l}, E_{l k}\right]=E_{k k}-E_{l l}
$$

One then concludes that I contains $\mathfrak{s l}_{n}$. Since we assumed $I \subseteq \mathfrak{s l}_{n}$, we obtain $I=\mathfrak{s l}_{n}$ as desired. This completes our proof.

