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Waves and incidences

Po-Lam Yung 1

The wave equation in Euclidean spaces describes many
natural phenomena such as sound, light, or water
waves. We explore how its solutions are related to
the geometric problem of how long thin cylinders
can intersect each other and discuss a related open
problem.

1 Bui ld ing solut ions to the wave equat ion

Wave propagation is a fundamental phenomenon in science and engineering
with applications to diverse fields such as telecommunication, signal processing,
and medical imaging. It is a way of transferring energy through matter or space
via oscillations or vibrations. In this snapshot, we explore a fascinating question
regarding the various patterns that can arise as waves propagate through space.
Despite much recent progress, said question remains open, and we will try to
understand why.

For concreteness, let us focus on waves propagating through three spatial
dimensions (say, sound waves). We denote by u(x, t) the air pressure at a
point x ∈ R3 and time t ∈ R. A sound wave is described by the equation

∂2
t u = ∆u,

where ∆ is the Laplacian, given by

∆u = (∂2
x1

+ ∂2
x2

+ ∂2
x3

)u.

1 I am partially supported by a Future Fellowship FT200100399 from the Australian Research
Council. The presentation here is influenced in many ways by lectures given by Larry Guth.
I would like to thank him for allowing some of his ideas to be reproduced here.
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Intuitively, the Laplacian ∆ measures the average difference of a function over
small circles with respect to their center. It will be instructive to picture some
solutions to the wave equation for 0 ≤ t ≤ 2. In fact, we will start with some
simple solutions, from which more complicated solutions can be built via the
principle of superposition.

Let 0 < λ ≪ 1, meaning that λ is much smaller than 1. Imagine a loudspeaker
with a diaphragm that takes the shape of a disc of unit diameter. If the
diaphragm oscillates once over a distance of λ, it can produce a high pressure
zone that is concentrated along a thin cylindrical slab of diameter ∼ 1 and
thickness ∼ λ (similar in shape to a coin). This creates a plane wave that
propagates along a direction perpendicular to the diaphragm (at unit speed).
The wave’s amplitude encodes the maximum value of the signal when we measure
the wave. In this example, the amplitude at time t is measured by the maximum
pressure at that time. If our wave’s initial amplitude at t = 0 is 1, then the
amplitude remains ∼ 1 for 0 ≤ t ≤ 2.

λ

1

λ

In this example, the diaphragm took the shape of a disc of unit diameter.
What if its diameter d is smaller? Then it should produce a plane wave concen-
trated along a thin cylindrical slab of diameter ∼ d and thickness ∼ λ, as long
as d is not too small, since otherwise the plane source becomes approximately a
point source and we get a spherical rather than a plane wavefront.

λ

d

λ

It turns out that the threshold is at d =
√

λ: if the diaphragm is a disc of
diameter

√
λ and oscillates over a distance λ, then it produces, for 0 ≤ t ≤ 2, a

plane wave concentrated along a thin cylindrical slab of diameter ∼
√

λ and
thickness λ. This is a solution to the wave equation.

λ

√
λ

λ
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The initial data to such a solution of the wave equation is called a wave packet.
A wave packet always travels in a direction perpendicular to the plane along
which it is concentrated. The amplitude of the wave packet that we use below
will be ∼ 1, so that, as it travels through space, the amplitude will be ∼ 1 for
all 0 ≤ t ≤ 2.

2 Local smoothing in three spat ia l d imensions

The plane waves in the examples above are superpositions of simple plane waves
of the form cos(x · ξ ± t|ξ|) and sin(x · ξ ± t|ξ|) with frequency |ξ| ∼ 1/λ. This
means that the plane waves can be decomposed as sums of simple plane waves
of the aforementioned form; this is a special feature of the wave equation. An
outstanding open question concerns the possible concentration in space of waves
with frequency ∼ 1/λ over the time interval 1 ≤ t ≤ 2.

To quantify this, let u be a superposition of plane waves of frequency ∼ 1/λ

and consider the family of energies

Epu(t) :=
�
R3

|u|p + |λ ∂tu|pdx for p ≥ 2.

It can be shown that E2u(t) remains approximately constant as t varies (this
is essentially equivalent to the physical principle of conservation of energy).
However, as p grows, Epu(t) detects the concentration of u in space at time t: if
the solution u is concentrated in a very small region in space at a given time t0,
then Epu(t0) becomes huge as p grows. To see this heuristically, notice first
that Epu(t0) is roughly E2u(t0) times the (p − 2)th power of the amplitude
of u at time t0. Now, u concentrating strongly at time t0 just means that its
amplitude is huge at time t0. Therefore, since E2u(t0) is essentially a constant
independent of t0, the value of Epu(t0) becomes huge when p is much bigger
than 2!

One way of phrasing our earlier open question is to ask how large
� 2

1 Epu(t)dt
can possibly be relative to Epu(0). A famous conjecture of Sogge [26], known
as the local smoothing conjecture for the wave equation, suggests that for every
arbitrarily small but positive parameter ε > 0, there exists a constant Cε > 0
such that � 2

1
Epu(t)dt ≤ Cελ−(p−3+ε)Epu(0) for p ≥ 3 (1)

whenever u is a wave of frequency ∼ 1/λ in three spatial dimensions.
To shed some light on the difficulty of this conjecture, it may be illuminating

to know that Epu(t) can be huge at any given time 1 ≤ t ≤ 2. For instance,
imagine a small explosion in the air that produces an initial high pressure zone
in a small ball of diameter λ at time t = 0. This produces a single wavefront
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with “thickness” of one wavelength λ, travelling away from the source at the
center (at unit speed) with an amplitude that decreases over time. As such,
it is also a wave of frequency ∼ 1/λ. If the initial amplitude at t = 0 is of
height ∼ 1/λ, then conservation of energy shows that the amplitude at t = 1 is
of height ∼ 1. Let us temporarily denote this solution by u(x, t).

λ
λ

|u| ∼ 1/λ at t = 0
|u| ∼ 1 at t = 1

Imagine making a video of this solution and playing it backwards in time.
What we see is, then, the time-reversed solution v(x, t) := u(x, 1 − t); it still
solves the wave equation and it can be set up so that ∂tv(x, 1) = 0, in which
case v(x, t) = v(x, 2 − t) holds. Thus, the solution first concentrates into a tiny
ball of diameter λ as t goes from 0 to 1, and subsequently disperses back again
into its original position at t = 0 as t goes from 1 to 2. 2

λ
λ |v| ∼ 1/λ at t = 1

|v| ∼ 1 at t = 0 and t = 2

It turns out that Epv(1) ∼ λ−(p−2)Epv(0) for all p ≥ 2, which is big compared
to Epv(0) (recall 1/λ ≫ 1). 3 Fortunately, Epv(t) does not stay big for a very

2 Indeed, since a two-dimensional sphere of radius 1 can be covered by ∼ 1/λ discs of
diameter

√
λ, we can think of the initial data on the blue shell around the unit sphere as

the superposition of ∼ 1/λ many wave packets, and these ∼ 1/λ many wave packets would
interfere constructively at the red ball at time t = 1, producing a peak of height ∼ 1/λ.
3 In fact, a classic result of Peral [22] and Miyachi [21] says that this is essentially the worst
possible case: they independently showed that for any 0 < λ ≪ 1 and any solution u to the
wave equation in three spatial dimensions with frequency ∼ 1/λ, one has

Epu(1) ≲ λ−(p−2)Epu(0)

for p ≥ 2. This was extended by Seeger, Sogge and Stein [24] to a more general class of
wave equations (e.g. waves in a smooth inhomogeneous medium), and much more recently
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long time as t varies from 1 to 2; as a result, there is still a constant C such that

� 2

1
Epv(t)dt ≤ CEpv(0)

for p ≥ 3, which is consistent with the local smoothing conjecture (1). But to
prove the conjecture (1), we must show that we are always fortunate; this is
part of the reason why conjecture (1) is hard.

Indeed, some solutions to the wave equation can remain concentrated for a
longer time than in the previous example (despite the fact that such solutions
are less focussing than the previous example at any given time). To see one
such solution, let us first build a so-called wave train by having initial data
with many parallel wave packets, all sent to move in the same direction. Such a
wave train, consisting of waves of frequency ∼ 1/λ with wavelength 0 < λ ≪ 1,
is depicted in the following picture.

√
λ

λ

For simplicity, we represent a wave train by the long thin cylinder containing it.

√
λ

A wave u of frequency ∼ 1/λ can be formed by putting together many wave trains,
initially concentrated on disjoint cylinders T of diameter

√
λ and height ∼ 2, as

illustrated in the following picture, travelling into a common unit square. For
any time 1 ≤ t ≤ 2, each wave train occupies a fixed cylinder T̃ of height ∼ 1
in the said unit square.

by Frey and Portal [23] and Hassell and Rozendaal [16] to two even more general classes
of wave equations (concerning waves in certain rough inhomogeneous media). These latest
advances were, in turn, based on a new function space, introduced by Hassell, Portal and
Rozendaal [14] (building on earlier work by Smith [25]; see also [15]), that is particularly
suited to study solutions to various wave equations.
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1 ≤ t ≤ 2{T̃}

t = 0
{T}

√
λ

A result from incidence geometry 4 says that the T̃ s can be arranged to overlap
quite a lot more than the initial T s (which are disjoint): we can have

Volume
(⋃

T
)
≳ log λ−1 · Volume

(⋃
T̃

)
,

even though �
∪T

|u(x, 0)|2dx ∼
�

∪T̃

|u(x, t)|2dx

for every 1 ≤ t ≤ 2. Then, E3u(t) ≳
√

log λ−1E3u(0) for every 1 ≤ t ≤ 2. As a
result, � 2

1
E3u(t)dt ≳

√
log λ−1E3u(0). (2)

Now recall the conjecture (1) with p = 3. While (2) does not contradict (1),
the example (2) does show that when p = 3, the conjecture (1) is essentially
sharp: it cannot hold when ε = 0.

3 The issue of over lapping thin cyl inders

The previous example begs the following question: What if we can produce
another pattern of thin cylinders in R3 that point in separated directions but
overlap even more than the previous example? This way, we might produce a
counterexample to the local smoothing conjecture!

In other words, in order to prove the local smoothing conjecture, we will
have to rule out the possibility of having lots of thin cylinders in R3 that
point in separated directions but overlap significantly more than the previous

4 See pioneering work of Fefferman [10] and Bourgain [4] for some early realizations of the
relevance of incidence geometry in this circle of problems.
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example. This is the content of the Kakeya conjecture. One form of it states
that any collection of cylinders in R3 with diameter

√
λ and height 1 that

point in directions separated by angles that are larger than λ1/2 cannot overlap
too much, meaning that their union’s volume is a constant multiple of λε for
every ε > 0 (with the constant given by an implicit function in ε).

The Kakeya conjecture is open and considered very difficult. 5 It explains
partly why the local smoothing conjecture is difficult (because local smooth-
ing implies Kakeya). There is a local smoothing conjecture for every spatial
dimension n ≥ 2, and this difficulty involving incidences is understood in di-
mension n = 2 (see [9]). But it still takes non-trivial effort to establish the
local smoothing conjecture in two spatial dimensions: this was only achieved by
Guth, Wang and Zhang [13] in 2020.

It is nevertheless possible to make partial progress on the local smoothing
conjecture in three spatial dimensions. In fact, (1) was first shown to be true
for p > 74 by Wolff [28] in 2000, and for p ≥ 4 by Bourgain and Demeter [6]
in 2015. The key was in understanding the possible ways that waves travelling
in different directions may superimpose; the resulting interference patterns are
quantified by certain so-called Fourier decoupling inequalities. 6 They have been
in the focus of much recent active research because of their wide applicability to
other areas of mathematics, such as analytic number theory, where one seeks to
understand the number of solutions to certain Diophantine equations [7], and
the Riemann ζ function [5, 8]. See also [11], where inspirations from number
theory (particularly the work of Wooley [29] on efficient congruencing) was used
to understand Fourier decoupling.

We have seen in this snapshot that the study of wave propagation reveals
surprising connections to a vast array of fields, including incidence geometry and
Fourier analysis. Tools from these topics have already been used successfully to
study problems from number theory. In the case of wave propagation, however,
some exciting and fundamental conjectures remain open. This makes wave
propagation very much an active and exciting area of research.

5 It remains open despite much recent progress, by Katz and Zahl [19, 20], Zahl [30],
Hickman, Rogers and Zhang [17], building upon earlier work of Bourgain [4], Wolff [27], Katz
and Tao [18], Guth and Katz [12], among others.
6 These inequalities were proved using multilinear incidence estimates such as [3] and
perturbed versions of [1, 2].
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