
CONSEQUENCES OF THE REVERSED SQUARE FUNCTION ESTIMATE

FOR THE PARABOLOID IN Rn+1

PO-LAM YUNG

Fix n ≥ 1. Following Carbery [1], we explain how a reversed square function estimate for the

paraboloid in Rn+1 implies a Kakeya estimate in Rn+1, and a local smoothing estimate for the

Schrödinger equation in Rn+1.

Notations. For R � 1, let PR be the covering of the unit ball B1 in the frequency space Rn by

squares of side lengths 2R−1 with centers at R−1Zn ∩ [−1, 1]n. For θ ∈ PR, let Rθ be a truncated

neighborhood of the paraboloid in Rn+1 given by

Rθ := {(ξ, |ξ|2 + τ) ∈ Rn+1 : ξ ∈ θ, |τ | ≤ R−2}.

Definition. For 2 ≤ p ≤ ∞ and σ ≥ 0, we denote by RS(p, σ) the following statement: For any

R � 1, and any family of functions {Fθ}θ∈PR on Rn+1 with support of F̂θ contained in Rθ for

every θ ∈ PR, we have∥∥∥ ∑
θ∈PR

Fθ

∥∥∥
Lp(Rn+1)

.p,σ R
σ
∥∥∥( ∑

θ∈PR

|Fθ|2
)1/2∥∥∥

Lp(Rn+1)
. (1)

Definition. For 2 ≤ p ≤ ∞ and s ≥ 0, we denote by LS(p, s) the following statement: For any

R � 1 and any Schwartz function g on Rn whose Fourier transform is supported on the annulus

{R ≤ |ξ| ≤ 2R}, we have

‖e−
it∆
2π g‖Lp(Rn×[0,1]) .p,s R

s‖g‖Lp(Rn). (2)

Definition. For 1 ≤ q ≤ ∞ and κ ≥ 0, we denote by K(q, κ) the following statement: For any

R � 1, and any family of cylinders T in Rn+1 of dimensions R−1 × · · · × R−1 × 1 that point in

R−1 separated directions, we have∥∥∥∑
T∈T

aT1T

∥∥∥
Lq(Rn+1)

.q,κ R
κ
(∑
T∈T

aqT |T |
)1/q

(3)

where {aT }T∈T is any collection of non-negative real numbers indexed by T.

Let

σ(p) := max

{
0,

[
n

(
1

2
− 1

p

)
− 1

p

]}
= max

{
0,
n

2
− n+ 1

p

}
,

s(p) := max

{
0, 2

[
n

(
1

2
− 1

p

)
− 1

p

]}
= max

{
0, n− 2(n+ 1)

p

}
and

κ(q) := max

{
0, n

(
1− 1

q

)
− 1

q

}
= max

{
0, n− n+ 1

q

}
;

note that

s(p) = 2σ(p) = κ(p/2).
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In dimension n = 1, it is known that the reversed square function estimate RS(p, σ) holds on Rn+1

for all 2 ≤ p ≤ ∞ and all σ ≥ σ(p), the local smoothing estimate LS(p, s) holds on Rn+1 for all

2 ≤ p ≤ ∞ and all s > s(p), and the Kakeya maximal estimate K(q, κ) holds on Rn+1 for all

1 ≤ q ≤ ∞ and all κ > κ(q). In dimensions n > 1, it is conjectured that RS(p, σ) holds for all

2 ≤ p ≤ ∞ and all σ > σ(p), LS(p, s) holds for all 2 ≤ p ≤ ∞ and all s > s(p), and that K(q, κ)

holds for all 1 ≤ q ≤ ∞ and all κ > κ(q); none of them is known in full, despite numerous partial

results.

Below we prove the following theorems.

Theorem 1. Let 2 ≤ p ≤ ∞ and σ ≥ 0. Then RS(p, σ) implies K(p2 , 4σ+max{4(n+1)
p −2n, 0}+ε)

for any ε > 0, and if p 6= 2(n+1)
n , this holds for ε = 0 as well.

Theorem 2. Let 2 ≤ p ≤ ∞, σ ≥ 0 and κ ≥ 0. Then RS(p, σ) and K(p2 , κ) together implies

LS(p, σ + κ
2 ).

Combining Theorems 1 and 2, we see that if pc is the critical exponent 2(n+1)
n , then

“RS(pc, σ) is true for all σ > 0”⇒ “LS(pc, s) is true for all s > 0”,

which implies the full local smoothing conjecture for all 2 ≤ p ≤ ∞ by interpolating against the

trivial L2 and L∞ bounds.

The proof of Theorem 1 relies on the following simple Kakeya bound, for cylinders with a common

center.

Lemma 1. Let 1 ≤ q ≤ ∞, R � 1 and T be a family of cylinders in Rn+1, of dimensions

R−1× · · ·×R−1× 1, that point in R−1 separated directions. If all T ∈ T are centered at the origin,

then for any non-negative coefficients {aT }T∈T, we have∥∥∥∑
T∈T

aT1T

∥∥∥
Lq(Rn+1)

.q (logR)e(q)R
max{0,n−n+1

q
}
(∑
T∈T

aqT |T |
)1/q

where

e(q) :=

{
1
q if q = n+1

n

0 if q 6= n+1
n .

Proof. We decompose the unit ball in Rn+1 into the union of the ball B(0, R−1), centered at

the origin and of radius R−1, and the annuli Ak, over k = 1, . . . , log2R, where Ak = {(x, t) ∈
Rn+1 : 2−k ≤ |(x, t)| ≤ 2−(k−1)}. First,
�
B(0,R−1)

(∑
T∈T

aT1T

)q
≤
(∑
T∈T

aT

)q
|B(0, R−1)| '

(∑
T∈T

aT |T |
)q
Rnq−(n+1) .

∑
T∈T

a
n+1
n

T |T |Rnq−(n+1)

by Hölder’s inequality. Next, for k = 1, . . . , log2R, we choosemk many cylinders T1, T2, . . . , Tmk ∈ T
withmk . 2−knRn so that T1, . . . , Tmk covers the intersection of Ak with the support of

∑
T∈T aT1T ,
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and every T ∈ T satisfies ∠(T, Ti) . 2kR−1 for only O(1) many i’s. Then by Hölder’s inequality,

�
Ak

(∑
T∈T

aT1T

)q
≤

mk∑
i=1

( ∑
T∈T,∠(T,Ti).2kR−1

aT

)q
|Ak ∩ Ti|

.
mk∑
i=1

( ∑
T∈T,∠(T,Ti).2kR−1

aqT

)
(2kn)q−12−k|Ti|

. 2k(nq−(n+1))
∑
T∈T

aqT |T |.

It follows that

�
Rn+1

(∑
T∈T

aT1T

)q
.
(
Rnq−(n+1) +

log2 R∑
k=1

2k(nq−(n+1))
)∑
T∈T

aqT |T |.

Our desired conclusion then follows from the estimates

Rnq−(n+1) +

log2R∑
k=1

2k(nq−(n+1)) .q


Rnq−(n+1) if n+1

n < q ≤ ∞
logR if q = n+1

n

1 if 1 ≤ q < n+1
n

.

�

We will apply Lemma 1 to bound
∥∥∥∑T∈T aT1T

∥∥∥
Lq(Rn+1)

for T = {Tθ : θ ∈ PR}, where

Tθ := {(x, t) ∈ Rn+1 : |x+ 2tcθ| ≤ R−1, |t| ≤ 1} (4)

for θ ∈ PR; here cθ denotes the center of the square θ. Indeed, we need the following slightly more

general estimate, which is what we actually need in proving Theorem 1.

Lemma 2. Let 1 ≤ q ≤ ∞ and R� 1. For θ ∈ PR, define Tθ by (4) where cθ is the center of the

square θ. Then for any non-negative coefficients {aθ}θ∈PR and any N > n+ 1, we have∥∥∥ ∑
θ∈PR

aθ(1 +R|x+ 2tcθ|+ |t|)−N
∥∥∥
Lq(Rn+1)

.q (logR)e(q)R
max{0,n−n+1

q
}
( ∑
θ∈PR

aqθ|Tθ|
)1/q

.

Proof of Lemma 2. Note that by Minkowski inequality,∥∥∥ ∑
θ∈PR

aθ(1 +R|x+ 2tcθ|+ |t|)−N
∥∥∥
Lq(Rn+1)

.
∑

m∈Zn+1

(1 + |m|)−N
∥∥∥ ∑
θ∈PR

aθ1Tθ,m

∥∥∥
Lq(Rn+1)

where Tθ,m := Tθ + m′(R−1, 0) + m′′(−2cθ, 1) for m = (m′,m′′) ∈ Zn × Z. The above Lq norm is

independent of m′ by translation invariance. For |m′′| ≥ 1, the cylinders Tθ,(0,m′′) are disjoint, so∥∥∥ ∑
θ∈PR

aθ1Tθ,m

∥∥∥
Lq(Rn+1)

=
( ∑
θ∈PR

aqθ|Tθ|
)1/q

.
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Since N > n+ 1, it follows that∥∥∥ ∑
θ∈PR

aθ(1 +R|x+ 2tcθ|+ |t|)−N
∥∥∥
Lq(Rn+1)

.
( ∑
θ∈PR

aqθ|Tθ|
)1/q

+
∥∥∥ ∑
θ∈PR

aθ1Tθ

∥∥∥
Lq(Rn+1)

.q (logR)e(q)R
max{0,n−n+1

q
}
( ∑
θ∈PR

aqθ|Tθ|
)1/q

where we invoked Lemma 1 in the last inequality. �

The following wave packet computation will be useful both for proving Theorems 1 and 2.

Lemma 3. Let Φ be a Schwartz function on Rn whose Fourier transform is compactly supported

on [−1, 1]n. For R� 1 and θ ∈ PR, let Φθ be given by

Φθ(x) := Φ(R−1x)e2πix·cθ

where cθ is the center of the square θ. Then

e−
it∆
2π Φθ(x) = e2πi(x·cθ+t|cθ|2)

�
Rn

Φ̂(ξ)e2πiR−1(x+2tcθ)·ξe2πiR−2t|ξ|2dξ. (5)

In particular,

e−
it∆
2π Φθ(x) = e2πi(x·cθ+t|cθ|2)Φ(R−1(x+ 2tcθ)) +O(R−2t), (6)

and if η(t) is a Schwartz function on R, then

|η(R−2t)e−
it∆
2π Φθ(x)| .N (1 +R−1|x+ 2tcθ|+R−2|t|)−N (7)

for every positive integer N .

Proof. Note that

e−
it∆
2π Φθ(x) = Rn

�
Rn

Φ̂(R(ξ − cθ))e2πi(x·ξ+t|ξ|2)dξ.

We Taylor expand the phase t|ξ|2 + x · ξ around ξ = cθ, and obtain

e−
it∆
2π Φθ(x) = e2πi(x·cθ+t|cθ|2)Rn

�
Rn

Φ̂(R(ξ − cθ))e2πi(x+2tcθ)·(ξ−cθ)e2πit|ξ−cθ|2dξ

which gives (5). We then Taylor expand the last exponential in (5) via

e2πiR−2t|ξ|2 = 1 +O(R−2|t||ξ|2)

and that gives (6). Since

e2πiR−1(x+2tcθ)·ξ =
∆ξe

2πiR−1(x+2tcθ)·ξ

(2πiR−1|x+ 2tcθ|)2
,

we may integrate by parts on the right hand side of (5), and obtain, for every positive integer N ,

that ∣∣∣e− it∆2π Φθ(x)
∣∣∣ .N (1 +R−1(1 +R−2t)−1|x+ 2tcθ|)−N .

Together with the rapid decay of η at infinity, we obtain the upper bound (7). �
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Proof of Theorem 1. Suppose 2 ≤ p ≤ ∞, σ ≥ 0 and RS(p, σ) holds. We want to establish

K(p2 , 4σ + max{4(n+1)
p − 2n, 0} + ε) for every ε > 0. By rescaling by a factor of R2 in both x

and t, we may consider families of cylinders of dimensions R × · · · × R × R2, that point in R−1

separated directions. Without loss of generality assume that the central axis of each cylinder in the

family makes an angle . π/4 with the t axis. By replacing the cylinders by slightly larger ones in a

direction that differs by O(R−1), and splitting a fat cylinder into O(1) thinner cylinders and using

the Minkowski inequality, we may also assume, without loss of generality, that T =
{
T̃θ : θ ∈ PR

}
where for θ ∈ PR,

T̃θ := zθ +
R2

4n
Tθ;

here Tθ is as in (4) and zθ is an arbitrary point in Rn+1. We will also assume that the cylinders

intersect, and hence we may assume that |zθ| ≤ R2 for all θ ∈ PR. For each θ ∈ PR we will

construct a wave packet Fθ so that F̂θ is supported in θ and so that |Fθ| & 1 on T̃θ. Each Fθ will

in turn be the superposition of wave packets whose frequencies are even more localized, via

Fθ(x, t) =
∑

β∈PR2 , β⊂θ
Fβ(x, t) (8)

where each F̂β is supported in β. We may then apply (1) (with R replaced by R2) to∑
θ∈PR

εθa
1/2
θ Fθ =

∑
θ∈PR

∑
β∈PR2 , β⊂θ

εθa
1/2
θ Fβ(x, t) (9)

where {εθ}θ∈PR is a random choice of signs ±1, and {aθ}θ∈PR is a family of non-negative coefficients;

further applying Klintchine’s inequality on the left hand side, we will be able to show that∥∥∥ ∑
θ∈PR

aθ1T̃θ

∥∥∥
Lp/2(Rn+1)

.p,σ,ε R
4σ+max{ 4(n+1)

p
−2n,0}+ε

( ∑
θ∈PR

a
p/2
θ |T̃θ|

)2/p
(10)

for every ε > 0, from which K(p2 , 4σ + max{4(n+1)
p − 2n, 0}+ ε) will follow.

To carry this out in detail, let Φ(x) be as in Lemma 3, and η(t) be a Schwartz function on R
whose Fourier transform is compactly supported on [−1, 1]. In addition, suppose Φ(x) is real-valued,

Φ(x) ≥ 1 for |x| ≤ 1, and |η(t)| ≥ 1 for |t| ≤ [−1, 1]. For R� 1 and β ∈ PR2 , define

Φβ(x) := Φ(R−2x)e2πix·cβ

as in Lemma 3; for θ ∈ PR, let εθ be a random sign ±1 and write zθ as (yθ, sθ). Now define, for

each θ ∈ PR, a function Fθ(x, t) by (8), where for β ∈ PR2 and β ⊂ θ, Fβ(x, t) is defined via

Fβ(x− yθ, t− sθ) := εθR
−nη(R−4t)e−

it∆
2π Φβ(x).

Then the Fourier transform of Fβ is

εθR
n+4η̂(R4(τ − |ξ|2))Φ̂(R2(ξ − cβ))e2πi(x·yθ+tsθ)

which is supported on Rβ. Furthermore, for each θ ∈ PR,

|Fθ(x, t)| =

∣∣∣∣∣∣
∑

β∈PR2 , β⊂θ
Fβ(x, t)

∣∣∣∣∣∣ & 1T̃θ(x, t). (11)
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Indeed, by (6),∑
β∈PR2 , β⊂θ

Fβ(x− yθ, t− sθ) =
∑

β∈PR2 , β⊂θ
R−nη(R−4t)e2πi(x·cβ+t|cβ |2)Φ(R−2(x+ 2tcβ)) +O(R−4t).

But we may rewrite the phase in the sum by “Taylor expanding cβ around cθ”, and obtain

x · cβ + t|cβ|2 = x · cθ + t|cθ|2 + (x+ 2tcθ) · (cβ − cθ) + t|cβ − cθ|2.

It follows that∑
β∈PR2 , β⊂θ

Fβ(x− yθ, t− sθ)

= e2πi(x·cθ+t|cθ|2)R−nη(R−4t)
∑

β∈PR2 , β⊂θ
e2πi((x+2tcθ)·(cβ−cθ)+t|cθ−cβ |2)Φ(R−2(x+ 2tcβ)) +O(R−4t).

Since |cβ − cθ| ≤ R−1/2, for any (x, t) ∈ R2

4nTθ, we have

Re
( ∑
β∈PR2 , β⊂θ

e2πi((x+2tcθ)·(cβ−cθ)+t|cθ−cβ |2)Φ(R−2(x+ 2tcβ))
)

=
∑

β∈PR2 , β⊂θ
cos(2π[(x+ 2tcθ) · (cβ − cθ) + t|cθ − cβ|2])Φ(R−2(x+ 2tcβ))

≥ cos

(
3π

8

) ∑
β∈PR2 , β⊂θ

Φ(R−2(x+ 2tcβ))

&Rn.

As a result, we obtain ∣∣∣ ∑
β∈PR2 , β⊂θ

Fβ(x− yθ, t− sθ)
∣∣∣ & 1R2

4n
Tθ

(x, t),

verifying (11). We now apply (1) (with R replaced by R2) to (9), and obtain∥∥∥ ∑
θ∈PR

εθa
1/2
θ Fθ(x, t)

∥∥∥
Lp(Rn+1)

.p,σ (R2)σ
∥∥∥( ∑

θ∈PR

aθ
∑

β∈PR2 , β⊂θ
|Fβ(x, t)|2

)1/2∥∥∥
Lp(Rn+1)

.

Applying Klintchine’s inequality to the p-th power of the left hand side, and then taking p/2-th

root, we obtain∥∥∥ ∑
θ∈PR

aθ|Fθ(x, t)|2
∥∥∥
Lp/2(Rn+1)

.p,σ R
4σ
∥∥∥ ∑
θ∈PR

aθ
∑

β∈PR2 , β⊂θ
|Fβ(x, t)|2

∥∥∥
Lp/2(Rn+1)

. (12)

By (11), the left hand side of (12) is bounded below by

&
∥∥∥ ∑
θ∈PR

aθ1T̃θ

∥∥∥
Lp/2(Rn+1)

By (7), the Lp/2 norm right hand side of (12) is bounded above by

.N
∥∥∥ ∑
θ∈PR

aθ
∑

β∈PR2 , β⊂θ
R−2n(1 +R−2|x+ 2tcβ|+R−4|t|)−N

∥∥∥
Lp/2(Rn+1)

(13)

6



for every positive integer N , because |zθ| ≤ R2; once we get rid of zθ, if N > n+ 1, we may rescale

and apply Lemma 2 (with R replaced by R2) and bound (13) by

.p R
2κ(p/2)

( ∑
θ∈PR

∑
β∈PR2 , β⊂θ

(aθR
−2n)p/2R2(n+2)

)2/p
' R2κ(p/2)−2n+

4(n+1)
p

( ∑
θ∈PR

a
p/2
θ |T̃θ|

)2/p
,

using RnR2(n+2) ' R2(n+1)|T̃θ|. As a result, (12) implies∥∥∥ ∑
θ∈PR

aθ1T̃θ

∥∥∥
Lp/2(Rn+1)

. (logR)e(p/2)R
4σ+2κ(p/2)−2n+

4(n+1)
p

( ∑
θ∈PR

a
p/2
θ |T̃θ|

)2/p

Since 2κ(p/2)− 2n+ 4(n+1)
p = max{4(n+1)

p − 2n, 0}, this implies K(p2 , 4σ+ max{4(n+1)
p − 2n, 0}+ ε)

for any ε > 0, and that the same holds with ε = 0 if p
2 6=

n+1
n . �

We now proceed to the proof of Theorem 2. It is well-known that K(p2 , κ) implies a corresponding

Nikodym maximal estimate; see Tao [4]. We need a small extension of that. We begin with the

following lemma.

Lemma 4. Suppose 1 ≤ q ≤ ∞, κ ≥ 0 and K(q, κ) holds. For θ ∈ PR, let wθ ∈ Rn be an arbitrary

vector with |wθ| ≤ 2, and let

T ′θ := (cθ, 0) + {(x, t) ∈ Rn+1 : |x+ twθ| ≤ R−1, |t| ≤ 1}

where cθ is the center of the square θ. Then for any non-negative coefficients {aθ}θ∈PR , we have∥∥∥ ∑
θ∈PR

aθ1T ′θ

∥∥∥
Lq(Rn+1)

.q,κ R
κ
( ∑
θ∈PR

aqθ|T
′
θ|
)1/q

. (14)

More generally, let T ∗θ be the infinite cylinder

T ∗θ := (cθ, 0) + {(x, t) ∈ Rn+1 : |x+ twθ| ≤ R−1}.

Then for N ≥ n+2
q , ∥∥∥ ∑

θ∈PR

aθ(1 + |t|)−N1T ∗θ

∥∥∥
Lq(Rn+1)

.q,κ R
κ
( ∑
θ∈PR

aqθ|T
′
θ|
)1/q

. (15)

The following proof is essentially in Tao [4].

Proof. Suppose 1 ≤ q ≤ ∞, κ ≥ 0 and K(q, κ) holds. For θ ∈ PR, let T ′θ,top be the intersection of

T ′θ with the strip {1/2 ≤ |t| ≤ 1} in Rn+1. We first show that�
Rn+1

( ∑
θ∈PR

aθ1T ′θ,top
(x, t)

)q
dxdt .q,κ R

κq
∑
θ∈PR

aqθ|T
′
θ|. (16)

Indeed, we perform a projective change of variables (y, s) := I(x, t) where

I(x, t) := (x/t, 1/t).

The Jacobian is . 1 on the support of the integrand, and

I(T ′θ,top) = (−wθ, 0) + {(y, s) ∈ Rn+1 : |y − scθ| ≤ |s|R−1, 1 ≤ |s| ≤ 2} ⊂ T̄θ
7



where

T̄θ := (−wθ, 0) + 2{(y, s) ∈ Rn+1 : |y − scθ| ≤ R−1, |s| ≤ 1}

is a cylinder of dimensions ' R−1 × · · · ×R−1 × 1, pointing in the direction (cθ, 1); such directions

are ' R−1 separated as θ varies over PR. Thus�
Rn+1

( ∑
θ∈PR

aθ1T ′θ,top
(x, t)

)q
dxdt .

�
Rn+1

( ∑
θ∈PR

aθ1T̄θ(y, s)
)q
dyds

and (16) follows from our assumption K(q, κ).

Next, for k ≥ 1, let T ′θ,k be the intersection of T ′θ with the strip {2−(k+1) ≤ |t| ≤ 2−k} in Rn+1.

We show that �
Rn+1

( ∑
θ∈PR

aθ1T ′θ,k(x, t)
)q
dxdt .q,κ 2−kRκq

∑
θ∈PR

aqθ|T
′
θ|. (17)

We perform a change of variables by dilation in the t variable, via t′ = 2kt so that the left hand

side of (17) becomes

2−k
�
Rn+1

( ∑
θ∈PR

aθ1T ′′θ,k(x, t′)
)q
dxdt′ (18)

where T ′′θ,k is the cylinder T ′θ,k dilated by 2k in the t direction, i.e.

T ′′θ,k = (cθ, 0) + {(x, t′) ∈ Rn+1 : |x+ t′(2−kwθ)| ≤ R−1, 1/2 ≤ |t′| ≤ 1}.

Note that |2−kwθ| ≤ 1 since |wθ| ≤ 1. Thus (16) implies that (18) is bounded by the right hand

side of (17), as desired.

Summing (16) and (17) over k ∈ N, and then taking q-th root, we obtain (14).

An easy modification of the above proof gives also (15). Indeed, for θ ∈ PR, let T ∗θ,top be the

intersection of T ∗θ with the strip {|t| ≥ 1/2} in Rn+1. Then for N ≥ (n+ 2)/q, we show that�
Rn+1

( ∑
θ∈PR

aθ|t|−N1T ∗θ,top
(x, t)

)q
dxdt .q,κ R

κq
∑
θ∈PR

aqθ|T
′
θ|. (19)

To see this, we perform the same projective change of variables (y, s) := I(x, t). This time it will

be crucial that dxdt = s−(n+2)dyds, and we still have I(T ∗θ,top) ⊂ Tθ,top because

I(T ∗θ,top) = (−wθ, 0) + {(y, s) ∈ Rn+1 : |y − scθ| ≤ |s|R−1, |s| ≤ 2}.

Thus �
Rn+1

( ∑
θ∈PR

aθ|t|−N1T ∗θ,top
(x, t)

)q
dxdt .

�
Rn+1

( ∑
θ∈PR

aθ1Tθ,top
(y, s)

)q
sNq−(n+2)dyds,

and the factor sNq−(n+2) can be bounded by 2Nq−(n+2) . 1 when N ≥ (n+ 2)/q. (19) then follows.

Together with (17), we obtain the desired conclusion (15). �

We need a slightly more general version of Lemma 4, where we allow infinitely many cylinders

rather than just ' Rn cylinders based on [−1, 1]n × {0}.
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Lemma 5. Suppose 1 ≤ q ≤ ∞, κ ≥ 0, and K(q, κ) holds. For µ ∈ R−1Zn, let wµ ∈ Rn
be an arbitrary vector with |wµ| ≤ 2. Then any non-negative coefficients {aµ}µ∈R−1Zn and any

N > 2n+ n+2
q , we have∥∥∥ ∑
µ∈R−1Zn

aµ(1 +R|x− µ+ twµ|+ |t|)−N
∥∥∥
Lq(Rn+1)

.q,κ R
κ
( ∑
µ∈R−1Zn

aqµR
−n
)1/q

. (20)

Proof. For µ ∈ R−1Zn let T ∗µ be the infinite cylinder

T ∗µ := (µ, 0) + {(x, t) ∈ Rn+1 : |x+ twµ| ≤ R−1}.

We first show that for N > n+ n+2
q , we have∥∥∥ ∑

µ∈R−1Zn
aµ(1 + |t|)−N1T ∗µ

∥∥∥
Lq(Rn+1)

.q,κ R
κ
( ∑
µ∈R−1Zn

aqµR
−n
)1/q

. (21)

For m ∈ Zn+1, let Qm be the unit cube in Rn+1 centered at m. If m = (m′,m′′) then for T ∗µ to

intersect Qm we must have |µ−m′| . 1 + |m′′|. Thus∥∥∥ ∑
µ∈R−1Zn

aµ(1+|t|)−
n+2
q 1T ∗µ

∥∥∥
Lq(Qm)

.
∑

n′∈Zn, |n′−m′|.1+|m′′|

∥∥∥ ∑
µ∈R−1Zn, |µ−n′|≤1

aµ(1+|t|)−
n+2
q 1T ∗µ

∥∥∥
Lq(Qm)

which by (15) is

.q,κ R
κ

∑
n′∈Zn, |n′−m′|.1+|m′′|

( ∑
µ∈R−1Zn, |µ−n′|≤1

aqµR
−n
)1/q

. Rκ
( ∑
µ∈R−1Zn, |µ−m′|.1+|m′′|

aqµR
−n
)1/q

(1 + |m′′|)n(q−1)/q.

As a result, raising both sides to power q and summing over m′ ∈ Zn, we obtain∥∥∥ ∑
µ∈R−1Zn

aµ(1 + |t|)−
n+2
q 1T ∗µ

∥∥∥
Lq(Rn×(m′′+[−1/2,1/2]))

.q,κ (1 + |m′′|)nRκ
( ∑
µ∈R−1Zn

aqµR
−n
)1/q

from which (21) follows upon multiplying by (1 + |m′′|)−(N−n+2
q

)
and then summing over m′′.

Finally, the left hand side of (20) is bounded by∑
m′∈Zn

(1 + |m′|)−(N−N ′)
∥∥∥ ∑
µ∈R−1Zn

aµ(1 + |t|)−N ′1m′(R−1,0)+T ∗µ

∥∥∥
Lq(Rn+1)

.

The Lq norm above is independent of m′, and is controlled by (21) as long as N ′ > n+ n+2
q . The

sum over m′ is finite as long as N −N ′ > n. Thus (20) follows when N > 2n+ n+2
q . �

Lemma 5 can be reformulated in terms of a Nikodym maximal function via duality. For R� 1

and w ∈ Rn with |w| ≤ 2, let

Tw := {(x, t) ∈ Rn+1 : |t| ≤ 1, |x+ tw| ≤ R−1}

note that |Tw| ' R−n uniformly in w. Let NR be the Nikodym maximal function, defined by

NRg(y) := sup
w∈Rn, |w|≤2

1

R−n

�
(y,0)+Tw

|g(x, t)|dxdt, y ∈ Rn.

9



More generally, for N > 2n+ n+2
q , let

N∗Rg(y) := sup
w∈Rn, |w|≤2

1

R−n

�
Rn+1

|g(x, t)|(1 +R|x− y + tw|+ |t|)−Ndxdt, y ∈ Rn.

Lemma 6. Suppose 1 ≤ q ≤ ∞, κ ≥ 0 and K(q, κ) holds. Let q′ = q/(q − 1) be the conjugate

exponent to q. Then for any R� 1,

‖NRg‖Lq′ (Rn) .q,κ R
κ‖g‖Lq′ (Rn+1) (22)

and for N > 2n+ n+2
q ,

‖N∗Rg‖Lq′ (Rn) .q,κ R
κ‖g‖Lq′ (Rn+1). (23)

Proof. Since NRg(y) . N∗Rg(y), clearly (23) implies (22). Thus we prove only (23).

For µ ∈ R−1Zn we have

N∗Rg(y) ' N∗Rg(µ)

for every y ∈ Rn with |y − µ| ≤ R−1. This is because for such y’s, we have

(1 +R|x− y + tw|+ |t|)−N ' (1 +R|x− µ+ tw|+ |t|)−N .

Thus

‖N∗Rg‖Lq′ (Rn) '
( ∑
µ∈R−1Zn

N∗Rg(µ)q
′
R−n

)1/q
.

To compute the latter, let {aµ}µ∈R−1Zn so that
∑

µ∈R−1Zn a
q
µR−n = 1. Then picking wµ ∈ Rn with

|wµ| ≤ 2 so that

N∗Rg(µ) ' 1

R−n

�
Rn+1

|g(x, t)|(1 +R|x− µ+ twµ|+ |t|)−Ndxdt,

we have ∑
µ∈R−1Zn

aµN
∗
Rg(µ)R−n =

�
Rn+1

|g(x, t)|
∑

µ∈R−1Zn
aµ(1 +R|x− µ+ twµ|+ |t|)−Ndxdt

which by Hölder and Lemma 5 is bounded by

.q,κ R
κ‖g‖Lq(Rn+1)

if N > 2n+ n+2
q . This completes the proof of (23). �

Proof of Theorem 2. Let 2 ≤ p ≤ ∞, σ ≥ 0 and κ ≥ 0 be such that RS(p, σ) and K(p2 , κ) holds.

The local smoothing estimate LS(p, σ + κ
2 ) can now be deduced in a few strokes.

First, by rescaling, let f be a Schwartz function on Rn whose Fourier transform is supported on

the annulus {1/2 ≤ |ξ| ≤ 1}. Then LS(p, σ + κ
2 ) will follow if we can show that

‖e−
it∆
2π f‖Lp(Rn×[0,R2]) / R

2
pRσ+κ

2 ‖f‖Lp(Rn). (24)
10



To prove (24) we decompose f as follows. Let ϕ be a smooth function with compact support on

[−1, 1]n so that ∑
ν∈Zn

ϕ(ξ − ν) = 1 for all ξ ∈ Rn.

Then for any |ξ| ' 1, we have ∑
θ∈PR

ϕ(R(ξ − cθ)) = 1 (25)

where cθ is the center of the square θ. If θ ∈ PR, we define fθ to be the Schwartz function given by

f̂θ(ξ) := ϕ(R(ξ − cθ))f̂(ξ);

(25) then gives

f =
∑
θ∈PR

fθ.

Let η(t) be a Schwartz function on R so that |η(t)| ≥ 1 for all t ∈ [0, 1], and so that η̂(τ) is supported

on [−1, 1]. Then for t ∈ [0, R2],

|e−
it∆
2π f(x)| ≤

∣∣∣ ∑
θ∈PR

η(R−2t)e−
it∆
2π fθ(x)

∣∣∣,
and for each θ ∈ PR, the function η(R−2t)e−

it∆
2π fθ(x) has (space-time) Fourier transform

R2η̂(R2(τ − |ξ|2))ϕ(R(ξ − cθ))f̂(ξ)

which is supported in Rθ. Thus from our assumption RS(p, σ), we obtain that

‖e−
it∆
2π f(x)‖Lp(Rn×[0,R2]) .p,σ R

σ
∥∥∥( ∑

θ∈PR

|η(R−2t)e−
it∆
2π fθ(x)|2

)1/2∥∥∥
Lp(Rn+1)

. (26)

Next, we use our assumption K(p2 , κ) to deduce that∥∥∥( ∑
θ∈PR

|η(R−2t)e−
it∆
2π fθ(x)|2

)1/2∥∥∥
Lp(Rn+1)

.p,κ R
2
pR

κ
2

∥∥∥( ∑
θ∈PR

|fθ(x)|2
)1/2∥∥∥

Lp(Rn)
. (27)

To see this, let Φ be as in Lemma 3, and satisfy additionally the assumption that Φ̂ = 1 on

the support of ϕ. Then e−
it∆
2π fθ(x) = R−nfθ ∗ e−

it∆
2π Φθ(x), so from the upper bound (7) of

|η(R−2t)e−
it∆
2π Φθ(x)|, we obtain that

|η(R−2t)e−
it∆
2π fθ(x)| .N

�
Rn
|fθ(y)|R−n(1 +R−1|x− y + 2tcθ|+R−2|t|)−Ndy

for every positive integer N . Cauchy-Schwarz then gives

|η(R−2t)e−
it∆
2π fθ(x)|2 .N

�
Rn
|fθ(y)|2R−n(1 +R−1|x− y + 2tcθ|+R−2|t|)−Ndy.

To estimate the right hand side of (26), let q′ be the dual exponent of q := p/2, and let g ∈ Lq′(Rn+1)

with ‖g‖Lq′ (Rn+1) = 1. We estimate
�
Rn+1

∑
θ∈PR

|η(R−2t)e−
it∆
2π fθ(x)|2g(x, t)dxdt . R2

�
Rn

∑
θ∈PR

|fθ(y)|2N∗∗R g(y)dy (28)
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where

N∗∗R g(y) := sup
θ∈PR

�
Rn+1

|g(x, t)|R−(n+2)(1 +R−1|x− y + 2tcθ|+R−2|t|)−Ndxdt

is a rescaled version of N∗R. Indeed, applying Lemma 6 to g(R2x,R2t) instead of g(x, t), we obtain,

‖N∗∗R ‖Lq′ (Rn+1)→Lq′ (Rn) = R
− 2
q′ ‖N∗R‖Lq′ (Rn+1)→Lq′ (Rn) .q,κ R

− 2
q′Rκ.

if N > 2n+ n+2
q . Thus from (28), we obtain(�

Rn+1

( ∑
θ∈PR

|η(R−2t)e−
it∆
2π fθ(x)|2

)p/2
dxdt

)2/p
.p,κ R

2R
− 2
q′Rκ

( �
Rn

( ∑
θ∈PR

|fθ(x)|2
)p/2

dx
)2/p

.

(27) follows by taking square roots of both sides, and recalling that q′ is the dual exponent of p/2.

Finally, it remains to observe that for any 2 ≤ p <∞, we have∥∥∥( ∑
θ∈PR

|fθ|2
)1/2∥∥∥

Lp(Rn)
. ‖f‖Lp(Rn), (29)

which follows from the following lemma by rescaling by R in the frequency space; combining (26),

(27) and (29) we have our desired local smoothing estimate (24) and hence LS(p, σ + κ
2 ). �

Lemma 7. For any 2 ≤ p ≤ ∞, we have∥∥∥( ∑
ν∈Zn

|f ∗ Φν |2
)1/2∥∥∥

Lp(Rn)
. ‖f‖Lp(Rn)

where Φ̂ν(ξ) := ϕ(ξ − ν) and ϕ is a Schwartz function on Rn.

Proof of Lemma 7. The following proof appears, for instance, in Córdoba [2].

The idea is to write ∑
ν∈Zn

|f ∗ Φν(x)|2 =

�
[0,1]n

∣∣∣ ∑
ν∈Zn

f ∗ Φν(x)e2πiν·y
∣∣∣2dy

using Parseval. Since

f ∗ Φν(x)e2πiν·y =

�
Rn
f̂(ξ)ϕ(ξ − ν)e2πix·ξe2πiν·ydξ

and Poisson summation gives∑
ν∈Zn

ϕ(ξ − ν)e2πiν·y =
∑
ν∈Zn

Φ0(y + ν)e−2πi(y+ν)·ξ,

we obtain ∑
ν∈Zn

f ∗ Φν(x)e2πiν·y =
∑
ν∈Zn

f(x− y − ν)Φ0(y + ν).

Hence by Cauchy-Schwarz,∣∣∣ ∑
ν∈Zn

f ∗ Φν(x)e2πiν·y
∣∣∣2 . ∑

ν∈Zn
|f(x− y − ν)|2|Φ0(y + ν)|,

12



which yields�
[0,1]n

∣∣∣ ∑
ν∈Zn

f ∗ Φν(x)e2πiν·y
∣∣∣2dy . �

Rn
|f(x− z)|2|Φ0(z)|dz = |f |2 ∗ |Φ0|(x).

It follows that ∥∥∥( ∑
ν∈Zn

|f ∗ Φν |2
)1/2∥∥∥

Lp(Rn)
.
∥∥∥|f |2 ∗ |Φ0|

∥∥∥1/2

Lp/2(Rn)
. ‖f‖Lp(Rn)

when 2 ≤ p ≤ ∞. �
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