CONSEQUENCES OF THE REVERSED SQUARE FUNCTION ESTIMATE FOR THE PARABOLOID IN \mathbb{R}^{n+1}

PO-LAM YUNG

Fix $n \geq 1$. Following Carbery [1], we explain how a reversed square function estimate for the paraboloid in \mathbb{R}^{n+1} implies a Kakeya estimate in \mathbb{R}^{n+1}, and a local smoothing estimate for the Schrödinger equation in \mathbb{R}^{n+1}.

Notations. For $R \gg 1$, let \mathcal{P}_{R} be the covering of the unit ball B_{1} in the frequency space \mathbb{R}^{n} by squares of side lengths $2 R^{-1}$ with centers at $R^{-1} \mathbb{Z}^{n} \cap[-1,1]^{n}$. For $\theta \in \mathcal{P}_{R}$, let \mathfrak{R}_{θ} be a truncated neighborhood of the paraboloid in \mathbb{R}^{n+1} given by

$$
\mathfrak{R}_{\theta}:=\left\{\left(\xi,|\xi|^{2}+\tau\right) \in \mathbb{R}^{n+1}: \xi \in \theta,|\tau| \leq R^{-2}\right\}
$$

Definition. For $2 \leq p \leq \infty$ and $\sigma \geq 0$, we denote by $R S(p, \sigma)$ the following statement: For any $R \gg 1$, and any family of functions $\left\{F_{\theta}\right\}_{\theta \in \mathcal{P}_{R}}$ on \mathbb{R}^{n+1} with support of $\widehat{F_{\theta}}$ contained in \mathfrak{R}_{θ} for every $\theta \in \mathcal{P}_{R}$, we have

$$
\begin{equation*}
\left\|\sum_{\theta \in \mathcal{P}_{R}} F_{\theta}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \lesssim p, \sigma R^{\sigma}\left\|\left(\sum_{\theta \in \mathcal{P}_{R}}\left|F_{\theta}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} . \tag{1}
\end{equation*}
$$

Definition. For $2 \leq p \leq \infty$ and $s \geq 0$, we denote by $L S(p, s)$ the following statement: For any $R \gg 1$ and any Schwartz function g on \mathbb{R}^{n} whose Fourier transform is supported on the annulus $\{R \leq|\xi| \leq 2 R\}$, we have

$$
\begin{equation*}
\left\|e^{-\frac{i t \Delta}{2 \pi}} g\right\|_{L^{p}\left(\mathbb{R}^{n} \times[0,1]\right)} \lesssim_{p, s} R^{s}\|g\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{2}
\end{equation*}
$$

Definition. For $1 \leq q \leq \infty$ and $\kappa \geq 0$, we denote by $K(q, \kappa)$ the following statement: For any $R \gg 1$, and any family of cylinders \mathbb{T} in \mathbb{R}^{n+1} of dimensions $R^{-1} \times \cdots \times R^{-1} \times 1$ that point in R^{-1} separated directions, we have

$$
\begin{equation*}
\left\|\sum_{T \in \mathbb{T}} a_{T} \mathbf{1}_{T}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \lesssim_{q, \kappa} R^{\kappa}\left(\sum_{T \in \mathbb{T}} a_{T}^{q}|T|\right)^{1 / q} \tag{3}
\end{equation*}
$$

where $\left\{a_{T}\right\}_{T \in \mathbb{T}}$ is any collection of non-negative real numbers indexed by \mathbb{T}.

Let

$$
\begin{aligned}
\sigma(p) & :=\max \left\{0,\left[n\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{p}\right]\right\}=\max \left\{0, \frac{n}{2}-\frac{n+1}{p}\right\} \\
s(p) & :=\max \left\{0,2\left[n\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{p}\right]\right\}=\max \left\{0, n-\frac{2(n+1)}{p}\right\} \quad \text { and } \\
\kappa(q) & :=\max \left\{0, n\left(1-\frac{1}{q}\right)-\frac{1}{q}\right\}=\max \left\{0, n-\frac{n+1}{q}\right\}
\end{aligned}
$$

note that

$$
s(p)=\underset{1}{2 \sigma(p)}=\kappa(p / 2)
$$

In dimension $n=1$, it is known that the reversed square function estimate $R S(p, \sigma)$ holds on \mathbb{R}^{n+1} for all $2 \leq p \leq \infty$ and all $\sigma \geq \sigma(p)$, the local smoothing estimate $L S(p, s)$ holds on \mathbb{R}^{n+1} for all $2 \leq p \leq \infty$ and all $s>s(p)$, and the Kakeya maximal estimate $K(q, \kappa)$ holds on \mathbb{R}^{n+1} for all $1 \leq q \leq \infty$ and all $\kappa>\kappa(q)$. In dimensions $n>1$, it is conjectured that $R S(p, \sigma)$ holds for all $2 \leq p \leq \infty$ and all $\sigma>\sigma(p), L S(p, s)$ holds for all $2 \leq p \leq \infty$ and all $s>s(p)$, and that $K(q, \kappa)$ holds for all $1 \leq q \leq \infty$ and all $\kappa>\kappa(q)$; none of them is known in full, despite numerous partial results.

Below we prove the following theorems.
Theorem 1. Let $2 \leq p \leq \infty$ and $\sigma \geq 0$. Then $R S(p, \sigma)$ implies $K\left(\frac{p}{2}, 4 \sigma+\max \left\{\frac{4(n+1)}{p}-2 n, 0\right\}+\varepsilon\right)$ for any $\varepsilon>0$, and if $p \neq \frac{2(n+1)}{n}$, this holds for $\varepsilon=0$ as well.

Theorem 2. Let $2 \leq p \leq \infty, \sigma \geq 0$ and $\kappa \geq 0$. Then $R S(p, \sigma)$ and $K\left(\frac{p}{2}, \kappa\right)$ together implies $L S\left(p, \sigma+\frac{\kappa}{2}\right)$.

Combining Theorems 1 and 2, we see that if p_{c} is the critical exponent $\frac{2(n+1)}{n}$, then

$$
" R S\left(p_{c}, \sigma\right) \text { is true for all } \sigma>0 " \Rightarrow " L S\left(p_{c}, s\right) \text { is true for all } s>0 "
$$

which implies the full local smoothing conjecture for all $2 \leq p \leq \infty$ by interpolating against the trivial L^{2} and L^{∞} bounds.

The proof of Theorem 1 relies on the following simple Kakeya bound, for cylinders with a common center.

Lemma 1. Let $1 \leq q \leq \infty, R \gg 1$ and \mathbb{T} be a family of cylinders in \mathbb{R}^{n+1}, of dimensions $R^{-1} \times \cdots \times R^{-1} \times 1$, that point in R^{-1} separated directions. If all $T \in \mathbb{T}$ are centered at the origin, then for any non-negative coefficients $\left\{a_{T}\right\}_{T \in \mathbb{T}}$, we have

$$
\left\|\sum_{T \in \mathbb{T}} a_{T} \mathbf{1}_{T}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \lesssim q(\log R)^{e(q)} R^{\max \left\{0, n-\frac{n+1}{q}\right\}}\left(\sum_{T \in \mathbb{T}} a_{T}^{q}|T|\right)^{1 / q}
$$

where

$$
e(q):= \begin{cases}\frac{1}{q} & \text { if } q=\frac{n+1}{n} \\ 0 & \text { if } q \neq \frac{n+1}{n}\end{cases}
$$

Proof. We decompose the unit ball in \mathbb{R}^{n+1} into the union of the ball $B\left(0, R^{-1}\right)$, centered at the origin and of radius R^{-1}, and the annuli A_{k}, over $k=1, \ldots, \log _{2} R$, where $A_{k}=\{(x, t) \in$ $\left.\mathbb{R}^{n+1}: 2^{-k} \leq|(x, t)| \leq 2^{-(k-1)}\right\}$. First,
$\int_{B\left(0, R^{-1}\right)}\left(\sum_{T \in \mathbb{T}} a_{T} \mathbf{1}_{T}\right)^{q} \leq\left(\sum_{T \in \mathbb{T}} a_{T}\right)^{q}\left|B\left(0, R^{-1}\right)\right| \simeq\left(\sum_{T \in \mathbb{T}} a_{T}|T|\right)^{q} R^{n q-(n+1)} \lesssim \sum_{T \in \mathbb{T}} a_{T}^{\frac{n+1}{n}}|T| R^{n q-(n+1)}$
by Hölder's inequality. Next, for $k=1, \ldots, \log _{2} R$, we choose m_{k} many cylinders $T_{1}, T_{2}, \ldots, T_{m_{k}} \in \mathbb{T}$ with $m_{k} \lesssim 2^{-k n} R^{n}$ so that $T_{1}, \ldots, T_{m_{k}}$ covers the intersection of A_{k} with the support of $\sum_{T \in \mathbb{T}} a_{T} \mathbf{1}_{T}$,
and every $T \in \mathbb{T}$ satisfies $\angle\left(T, T_{i}\right) \lesssim 2^{k} R^{-1}$ for only $O(1)$ many i 's. Then by Hölder's inequality,

$$
\begin{aligned}
\int_{A_{k}}\left(\sum_{T \in \mathbb{T}} a_{T} \mathbf{1}_{T}\right)^{q} & \leq \sum_{i=1}^{m_{k}}\left(\sum_{T \in \mathbb{T}, \angle\left(T, T_{i}\right) \leq 2^{k} R^{-1}} a_{T}\right)^{q}\left|A_{k} \cap T_{i}\right| \\
& \lesssim \sum_{i=1}^{m_{k}}\left(\sum_{T \in \mathbb{T}, \angle\left(T, T_{i}\right) \leq 2^{k} R^{-1}} a_{T}^{q}\right)\left(2^{k n}\right)^{q-1} 2^{-k}\left|T_{i}\right| \\
& \lesssim 2^{k(n q-(n+1))} \sum_{T \in \mathbb{T}} a_{T}^{q}|T| .
\end{aligned}
$$

It follows that

$$
\int_{\mathbb{R}^{n+1}}\left(\sum_{T \in \mathbb{T}} a_{T} \mathbf{1}_{T}\right)^{q} \lesssim\left(R^{n q-(n+1)}+\sum_{k=1}^{\log _{2} R} 2^{k(n q-(n+1))}\right) \sum_{T \in \mathbb{T}} a_{T}^{q}|T| .
$$

Our desired conclusion then follows from the estimates

$$
R^{n q-(n+1)}+\sum_{k=1}^{\log _{2} R} 2^{k(n q-(n+1))} \lesssim_{q}\left\{\begin{array}{ll}
R^{n q-(n+1)} & \text { if } \frac{n+1}{n}<q \leq \infty \\
\log R & \text { if } q=\frac{n+1}{n} \\
1 & \text { if } 1 \leq q<\frac{n+1}{n}
\end{array} .\right.
$$

We will apply Lemma 1 to bound $\left\|\sum_{T \in \mathbb{T}} a_{T} \mathbf{1}_{T}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)}$ for $\mathbb{T}=\left\{T_{\theta}: \theta \in \mathcal{P}_{R}\right\}$, where

$$
\begin{equation*}
T_{\theta}:=\left\{(x, t) \in \mathbb{R}^{n+1}:\left|x+2 t c_{\theta}\right| \leq R^{-1},|t| \leq 1\right\} \tag{4}
\end{equation*}
$$

for $\theta \in \mathcal{P}_{R}$; here c_{θ} denotes the center of the square θ. Indeed, we need the following slightly more general estimate, which is what we actually need in proving Theorem 1.

Lemma 2. Let $1 \leq q \leq \infty$ and $R \gg 1$. For $\theta \in \mathcal{P}_{R}$, define T_{θ} by (4) where c_{θ} is the center of the square θ. Then for any non-negative coefficients $\left\{a_{\theta}\right\}_{\theta \in \mathcal{P}_{R}}$ and any $N>n+1$, we have

$$
\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}\left(1+R\left|x+2 t c_{\theta}\right|+|t|\right)^{-N}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \lesssim_{q}(\log R)^{e(q)} R^{\max \left\{0, n-\frac{n+1}{q}\right\}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{q}\left|T_{\theta}\right|\right)^{1 / q}
$$

Proof of Lemma 2. Note that by Minkowski inequality,

$$
\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}\left(1+R\left|x+2 t c_{\theta}\right|+|t|\right)^{-N}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \lesssim \sum_{m \in \mathbb{Z}^{n+1}}(1+|m|)^{-N}\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{T_{\theta, m}}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)}
$$

where $T_{\theta, m}:=T_{\theta}+m^{\prime}\left(R^{-1}, 0\right)+m^{\prime \prime}\left(-2 c_{\theta}, 1\right)$ for $m=\left(m^{\prime}, m^{\prime \prime}\right) \in \mathbb{Z}^{n} \times \mathbb{Z}$. The above L^{q} norm is independent of m^{\prime} by translation invariance. For $\left|m^{\prime \prime}\right| \geq 1$, the cylinders $T_{\theta,\left(0, m^{\prime \prime}\right)}$ are disjoint, so

$$
\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{T_{\theta, m}}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)}=\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{q}\left|T_{\theta}\right|\right)^{1 / q}
$$

Since $N>n+1$, it follows that

$$
\begin{aligned}
\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}\left(1+R\left|x+2 t c_{\theta}\right|+|t|\right)^{-N}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} & \lesssim\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{q}\left|T_{\theta}\right|\right)^{1 / q}+\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{T_{\theta}}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \\
& \lesssim q(\log R)^{e(q)} R^{\max \left\{0, n-\frac{n+1}{q}\right\}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{q}\left|T_{\theta}\right|\right)^{1 / q}
\end{aligned}
$$

where we invoked Lemma 1 in the last inequality.

The following wave packet computation will be useful both for proving Theorems 1 and 2 .
Lemma 3. Let Φ be a Schwartz function on \mathbb{R}^{n} whose Fourier transform is compactly supported on $[-1,1]^{n}$. For $R \gg 1$ and $\theta \in \mathcal{P}_{R}$, let Φ_{θ} be given by

$$
\Phi_{\theta}(x):=\Phi\left(R^{-1} x\right) e^{2 \pi i x \cdot c_{\theta}}
$$

where c_{θ} is the center of the square θ. Then

$$
\begin{equation*}
e^{-\frac{i t \Delta}{2 \pi}} \Phi_{\theta}(x)=e^{2 \pi i\left(x \cdot c_{\theta}+t\left|c_{\theta}\right|^{2}\right)} \int_{\mathbb{R}^{n}} \widehat{\Phi}(\xi) e^{2 \pi i R^{-1}\left(x+2 t c_{\theta}\right) \cdot \xi} e^{2 \pi i R^{-2} t|\xi|^{2}} d \xi \tag{5}
\end{equation*}
$$

In particular,

$$
\begin{equation*}
e^{-\frac{i t \Delta}{2 \pi}} \Phi_{\theta}(x)=e^{2 \pi i\left(x \cdot c_{\theta}+t\left|c_{\theta}\right|^{2}\right)} \Phi\left(R^{-1}\left(x+2 t c_{\theta}\right)\right)+O\left(R^{-2} t\right) \tag{6}
\end{equation*}
$$

and if $\eta(t)$ is a Schwartz function on \mathbb{R}, then

$$
\begin{equation*}
\left|\eta\left(R^{-2} t\right) e^{-\frac{i t \Delta}{2 \pi}} \Phi_{\theta}(x)\right| \lesssim_{N}\left(1+R^{-1}\left|x+2 t c_{\theta}\right|+R^{-2}|t|\right)^{-N} \tag{7}
\end{equation*}
$$

for every positive integer N.

Proof. Note that

$$
e^{-\frac{i t \Delta}{2 \pi}} \Phi_{\theta}(x)=R^{n} \int_{\mathbb{R}^{n}} \widehat{\Phi}\left(R\left(\xi-c_{\theta}\right)\right) e^{2 \pi i\left(x \cdot \xi+t|\xi|^{2}\right)} d \xi
$$

We Taylor expand the phase $t|\xi|^{2}+x \cdot \xi$ around $\xi=c_{\theta}$, and obtain

$$
e^{-\frac{i t \Delta}{2 \pi}} \Phi_{\theta}(x)=e^{2 \pi i\left(x \cdot c_{\theta}+t\left|c_{\theta}\right|^{2}\right)} R^{n} \int_{\mathbb{R}^{n}} \widehat{\Phi}\left(R\left(\xi-c_{\theta}\right)\right) e^{2 \pi i\left(x+2 t c_{\theta}\right) \cdot\left(\xi-c_{\theta}\right)} e^{2 \pi i t\left|\xi-c_{\theta}\right|^{2}} d \xi
$$

which gives (5). We then Taylor expand the last exponential in (5) via

$$
e^{2 \pi i R^{-2} t|\xi|^{2}}=1+O\left(R^{-2}|t||\xi|^{2}\right)
$$

and that gives (6). Since

$$
e^{2 \pi i R^{-1}\left(x+2 t c_{\theta}\right) \cdot \xi}=\frac{\Delta_{\xi} e^{2 \pi i R^{-1}\left(x+2 t c_{\theta}\right) \cdot \xi}}{\left(2 \pi i R^{-1}\left|x+2 t c_{\theta}\right|\right)^{2}}
$$

we may integrate by parts on the right hand side of (5), and obtain, for every positive integer N, that

$$
\left|e^{-\frac{i t \Delta}{2 \pi}} \Phi_{\theta}(x)\right| \lesssim_{N}\left(1+R^{-1}\left(1+R^{-2} t\right)^{-1}\left|x+2 t c_{\theta}\right|\right)^{-N} .
$$

Together with the rapid decay of η at infinity, we obtain the upper bound (7).

Proof of Theorem 1. Suppose $2 \leq p \leq \infty, \sigma \geq 0$ and $R S(p, \sigma)$ holds. We want to establish $K\left(\frac{p}{2}, 4 \sigma+\max \left\{\frac{4(n+1)}{p}-2 n, 0\right\}+\varepsilon\right)$ for every $\varepsilon>0$. By rescaling by a factor of R^{2} in both x and t, we may consider families of cylinders of dimensions $R \times \cdots \times R \times R^{2}$, that point in R^{-1} separated directions. Without loss of generality assume that the central axis of each cylinder in the family makes an angle $\lesssim \pi / 4$ with the t axis. By replacing the cylinders by slightly larger ones in a direction that differs by $O\left(R^{-1}\right)$, and splitting a fat cylinder into $O(1)$ thinner cylinders and using the Minkowski inequality, we may also assume, without loss of generality, that $\mathbb{T}=\left\{\tilde{T}_{\theta}: \theta \in \mathcal{P}_{R}\right\}$ where for $\theta \in \mathcal{P}_{R}$,

$$
\tilde{T}_{\theta}:=z_{\theta}+\frac{R^{2}}{4 n} T_{\theta}
$$

here T_{θ} is as in (4) and z_{θ} is an arbitrary point in \mathbb{R}^{n+1}. We will also assume that the cylinders intersect, and hence we may assume that $\left|z_{\theta}\right| \leq R^{2}$ for all $\theta \in \mathcal{P}_{R}$. For each $\theta \in \mathcal{P}_{R}$ we will construct a wave packet F_{θ} so that $\widehat{F_{\theta}}$ is supported in θ and so that $\left|F_{\theta}\right| \gtrsim 1$ on \tilde{T}_{θ}. Each F_{θ} will in turn be the superposition of wave packets whose frequencies are even more localized, via

$$
\begin{equation*}
F_{\theta}(x, t)=\sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta} F_{\beta}(x, t) \tag{8}
\end{equation*}
$$

where each $\widehat{F_{\beta}}$ is supported in β. We may then apply (1) (with R replaced by R^{2}) to

$$
\begin{equation*}
\sum_{\theta \in \mathcal{P}_{R}} \varepsilon_{\theta} a_{\theta}^{1 / 2} F_{\theta}=\sum_{\theta \in \mathcal{P}_{R}} \sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta} \varepsilon_{\theta} a_{\theta}^{1 / 2} F_{\beta}(x, t) \tag{9}
\end{equation*}
$$

where $\left\{\varepsilon_{\theta}\right\}_{\theta \in \mathcal{P}_{R}}$ is a random choice of signs ± 1, and $\left\{a_{\theta}\right\}_{\theta \in \mathcal{P}_{R}}$ is a family of non-negative coefficients; further applying Klintchine's inequality on the left hand side, we will be able to show that

$$
\begin{equation*}
\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{\tilde{T}_{\theta}}\right\|_{L^{p / 2}\left(\mathbb{R}^{n+1}\right)} \lesssim_{p, \sigma, \varepsilon} R^{4 \sigma+\max \left\{\frac{4(n+1)}{p}-2 n, 0\right\}+\varepsilon}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{p / 2}\left|\tilde{T}_{\theta}\right|\right)^{2 / p} \tag{10}
\end{equation*}
$$

for every $\varepsilon>0$, from which $K\left(\frac{p}{2}, 4 \sigma+\max \left\{\frac{4(n+1)}{p}-2 n, 0\right\}+\varepsilon\right)$ will follow.
To carry this out in detail, let $\Phi(x)$ be as in Lemma 3, and $\eta(t)$ be a Schwartz function on \mathbb{R} whose Fourier transform is compactly supported on $[-1,1]$. In addition, suppose $\Phi(x)$ is real-valued, $\Phi(x) \geq 1$ for $|x| \leq 1$, and $|\eta(t)| \geq 1$ for $|t| \leq[-1,1]$. For $R \gg 1$ and $\beta \in \mathcal{P}_{R^{2}}$, define

$$
\Phi_{\beta}(x):=\Phi\left(R^{-2} x\right) e^{2 \pi i x \cdot c_{\beta}}
$$

as in Lemma 3 ; for $\theta \in \mathcal{P}_{R}$, let ε_{θ} be a random $\operatorname{sign} \pm 1$ and write z_{θ} as $\left(y_{\theta}, s_{\theta}\right)$. Now define, for each $\theta \in \mathcal{P}_{R}$, a function $F_{\theta}(x, t)$ by (8), where for $\beta \in \mathcal{P}_{R^{2}}$ and $\beta \subset \theta, F_{\beta}(x, t)$ is defined via

$$
F_{\beta}\left(x-y_{\theta}, t-s_{\theta}\right):=\varepsilon_{\theta} R^{-n} \eta\left(R^{-4} t\right) e^{-\frac{i t \Delta}{2 \pi}} \Phi_{\beta}(x)
$$

Then the Fourier transform of F_{β} is

$$
\varepsilon_{\theta} R^{n+4} \widehat{\eta}\left(R^{4}\left(\tau-|\xi|^{2}\right)\right) \widehat{\Phi}\left(R^{2}\left(\xi-c_{\beta}\right)\right) e^{2 \pi i\left(x \cdot y_{\theta}+t s_{\theta}\right)}
$$

which is supported on \mathfrak{R}_{β}. Furthermore, for each $\theta \in \mathcal{P}_{R}$,

$$
\begin{equation*}
\left|F_{\theta}(x, t)\right|=\left|\sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta} F_{\beta}(x, t)\right| \gtrsim \mathbf{1}_{\tilde{T}_{\theta}}(x, t) \tag{11}
\end{equation*}
$$

Indeed, by (6),

$$
\sum_{\beta \in \mathcal{P}_{R^{2}, \beta \subset \theta}} F_{\beta}\left(x-y_{\theta}, t-s_{\theta}\right)=\sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta} R^{-n} \eta\left(R^{-4} t\right) e^{2 \pi i\left(x \cdot c_{\beta}+t\left|c_{\beta}\right|^{2}\right)} \Phi\left(R^{-2}\left(x+2 t c_{\beta}\right)\right)+O\left(R^{-4} t\right) .
$$

But we may rewrite the phase in the sum by "Taylor expanding c_{β} around c_{θ} ", and obtain

$$
x \cdot c_{\beta}+t\left|c_{\beta}\right|^{2}=x \cdot c_{\theta}+t\left|c_{\theta}\right|^{2}+\left(x+2 t c_{\theta}\right) \cdot\left(c_{\beta}-c_{\theta}\right)+t\left|c_{\beta}-c_{\theta}\right|^{2}
$$

It follows that

$$
\begin{aligned}
& \sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta} F_{\beta}\left(x-y_{\theta}, t-s_{\theta}\right) \\
= & e^{2 \pi i\left(x \cdot c_{\theta}+t\left|c_{\theta}\right|^{2}\right)} R^{-n} \eta\left(R^{-4} t\right) \sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta} e^{2 \pi i\left(\left(x+2 t c_{\theta}\right) \cdot\left(c_{\beta}-c_{\theta}\right)+t\left|c_{\theta}-c_{\beta}\right|^{2}\right)} \Phi\left(R^{-2}\left(x+2 t c_{\beta}\right)\right)+O\left(R^{-4} t\right) .
\end{aligned}
$$

Since $\left|c_{\beta}-c_{\theta}\right| \leq R^{-1} / 2$, for any $(x, t) \in \frac{R^{2}}{4 n} T_{\theta}$, we have

$$
\begin{aligned}
& \operatorname{Re}\left(\sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta} e^{2 \pi i\left(\left(x+2 t c_{\theta}\right) \cdot\left(c_{\beta}-c_{\theta}\right)+t\left|c_{\theta}-c_{\beta}\right|^{2}\right)} \Phi\left(R^{-2}\left(x+2 t c_{\beta}\right)\right)\right) \\
= & \sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta} \cos \left(2 \pi\left[\left(x+2 t c_{\theta}\right) \cdot\left(c_{\beta}-c_{\theta}\right)+t\left|c_{\theta}-c_{\beta}\right|^{2}\right]\right) \Phi\left(R^{-2}\left(x+2 t c_{\beta}\right)\right) \\
\geq & \cos \left(\frac{3 \pi}{8}\right) \sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta} \Phi\left(R^{-2}\left(x+2 t c_{\beta}\right)\right) \\
\gtrsim & R^{n} .
\end{aligned}
$$

As a result, we obtain

$$
\left|\sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta} F_{\beta}\left(x-y_{\theta}, t-s_{\theta}\right)\right| \gtrsim \mathbf{1}_{\frac{R^{2}}{4 n} T_{\theta}}(x, t)
$$

verifying (11). We now apply (1) (with R replaced by R^{2}) to (9), and obtain

$$
\left\|\sum_{\theta \in \mathcal{P}_{R}} \varepsilon_{\theta} a_{\theta}^{1 / 2} F_{\theta}(x, t)\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \lesssim p, \sigma\left(R^{2}\right)^{\sigma}\left\|\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta}\left|F_{\beta}(x, t)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)}
$$

Applying Klintchine's inequality to the p-th power of the left hand side, and then taking $p / 2$-th root, we obtain

$$
\begin{equation*}
\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}\left|F_{\theta}(x, t)\right|^{2}\right\|_{L^{p / 2}\left(\mathbb{R}^{n+1}\right)} \lesssim p, \sigma R^{4 \sigma}\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta}\left|F_{\beta}(x, t)\right|^{2}\right\|_{L^{p / 2}\left(\mathbb{R}^{n+1}\right)} \tag{12}
\end{equation*}
$$

By (11), the left hand side of (12) is bounded below by

$$
\gtrsim\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{\tilde{T}_{\theta}}\right\|_{L^{p / 2}\left(\mathbb{R}^{n+1}\right)}
$$

By (7), the $L^{p / 2}$ norm right hand side of (12) is bounded above by

$$
\begin{equation*}
\lesssim N\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta} R^{-2 n}\left(1+R^{-2}\left|x+2 t c_{\beta}\right|+R^{-4}|t|\right)^{-N}\right\|_{L^{p / 2}\left(\mathbb{R}^{n+1}\right)} \tag{13}
\end{equation*}
$$

for every positive integer N, because $\left|z_{\theta}\right| \leq R^{2}$; once we get rid of z_{θ}, if $N>n+1$, we may rescale and apply Lemma 2 (with R replaced by R^{2}) and bound (13) by

$$
\lesssim_{p} R^{2 \kappa(p / 2)}\left(\sum_{\theta \in \mathcal{P}_{R}} \sum_{\beta \in \mathcal{P}_{R^{2}}, \beta \subset \theta}\left(a_{\theta} R^{-2 n}\right)^{p / 2} R^{2(n+2)}\right)^{2 / p} \simeq R^{2 \kappa(p / 2)-2 n+\frac{4(n+1)}{p}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{p / 2}\left|\tilde{T}_{\theta}\right|\right)^{2 / p},
$$

using $R^{n} R^{2(n+2)} \simeq R^{2(n+1)}\left|\tilde{T}_{\theta}\right|$. As a result, (12) implies

$$
\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \tilde{\tilde{T}}_{\theta}\right\|_{L^{p / 2}\left(\mathbb{R}^{n+1}\right)} \lesssim(\log R)^{e(p / 2)} R^{4 \sigma+2 \kappa(p / 2)-2 n+\frac{4(n+1)}{p}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{p / 2}\left|\tilde{T}_{\theta}\right|\right)^{2 / p}
$$

Since $2 \kappa(p / 2)-2 n+\frac{4(n+1)}{p}=\max \left\{\frac{4(n+1)}{p}-2 n, 0\right\}$, this implies $K\left(\frac{p}{2}, 4 \sigma+\max \left\{\frac{4(n+1)}{p}-2 n, 0\right\}+\varepsilon\right)$ for any $\varepsilon>0$, and that the same holds with $\varepsilon=0$ if $\frac{p}{2} \neq \frac{n+1}{n}$.

We now proceed to the proof of Theorem 2. It is well-known that $K\left(\frac{p}{2}, \kappa\right)$ implies a corresponding Nikodym maximal estimate; see Tao [4]. We need a small extension of that. We begin with the following lemma.

Lemma 4. Suppose $1 \leq q \leq \infty, \kappa \geq 0$ and $K(q, \kappa)$ holds. For $\theta \in \mathcal{P}_{R}$, let $w_{\theta} \in \mathbb{R}^{n}$ be an arbitrary vector with $\left|w_{\theta}\right| \leq 2$, and let

$$
T_{\theta}^{\prime}:=\left(c_{\theta}, 0\right)+\left\{(x, t) \in \mathbb{R}^{n+1}:\left|x+t w_{\theta}\right| \leq R^{-1},|t| \leq 1\right\}
$$

where c_{θ} is the center of the square θ. Then for any non-negative coefficients $\left\{a_{\theta}\right\}_{\theta \in \mathcal{P}_{R}}$, we have

$$
\begin{equation*}
\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{T_{\theta}^{\prime}}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \lesssim q, \kappa R^{\kappa}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{q}\left|T_{\theta}^{\prime}\right|\right)^{1 / q} . \tag{14}
\end{equation*}
$$

More generally, let T_{θ}^{*} be the infinite cylinder

$$
T_{\theta}^{*}:=\left(c_{\theta}, 0\right)+\left\{(x, t) \in \mathbb{R}^{n+1}:\left|x+t w_{\theta}\right| \leq R^{-1}\right\} .
$$

Then for $N \geq \frac{n+2}{q}$,

$$
\begin{equation*}
\left\|\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}(1+|t|)^{-N} \mathbf{1}_{T_{\theta}^{*}}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \lesssim_{q, \kappa} R^{\kappa}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{q}\left|T_{\theta}^{\prime}\right|\right)^{1 / q} . \tag{15}
\end{equation*}
$$

The following proof is essentially in Tao [4].

Proof. Suppose $1 \leq q \leq \infty, \kappa \geq 0$ and $K(q, \kappa)$ holds. For $\theta \in \mathcal{P}_{R}$, let $T_{\theta, \text { top }}^{\prime}$ be the intersection of T_{θ}^{\prime} with the strip $\{1 / 2 \leq|t| \leq 1\}$ in \mathbb{R}^{n+1}. We first show that

$$
\begin{equation*}
\int_{\mathbb{R}^{n+1}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{T_{\theta, \text { top }}^{\prime}}(x, t)\right)^{q} d x d t \lesssim q, \kappa R^{\kappa q} \sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{q}\left|T_{\theta}^{\prime}\right| . \tag{16}
\end{equation*}
$$

Indeed, we perform a projective change of variables $(y, s):=I(x, t)$ where

$$
I(x, t):=(x / t, 1 / t) .
$$

The Jacobian is $\lesssim 1$ on the support of the integrand, and

$$
I\left(T_{\theta, \text { top }}^{\prime}\right)=\left(-w_{\theta}, 0\right)+\left\{(y, s) \in \mathbb{R}_{7}^{n+1}:\left|y-s c_{\theta}\right| \leq|s| R^{-1}, 1 \leq|s| \leq 2\right\} \subset \bar{T}_{\theta}
$$

where

$$
\bar{T}_{\theta}:=\left(-w_{\theta}, 0\right)+2\left\{(y, s) \in \mathbb{R}^{n+1}:\left|y-s c_{\theta}\right| \leq R^{-1},|s| \leq 1\right\}
$$

is a cylinder of dimensions $\simeq R^{-1} \times \cdots \times R^{-1} \times 1$, pointing in the direction $\left(c_{\theta}, 1\right)$; such directions are $\simeq R^{-1}$ separated as θ varies over \mathcal{P}_{R}. Thus

$$
\int_{\mathbb{R}^{n+1}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{T_{\theta, \text { top }}^{\prime}}(x, t)\right)^{q} d x d t \lesssim \int_{\mathbb{R}^{n+1}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{\bar{T}_{\theta}}(y, s)\right)^{q} d y d s
$$

and (16) follows from our assumption $K(q, \kappa)$.
Next, for $k \geq 1$, let $T_{\theta, k}^{\prime}$ be the intersection of T_{θ}^{\prime} with the strip $\left\{2^{-(k+1)} \leq|t| \leq 2^{-k}\right\}$ in \mathbb{R}^{n+1}. We show that

$$
\begin{equation*}
\int_{\mathbb{R}^{n+1}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{T_{\theta, k}^{\prime}}(x, t)\right)^{q} d x d t \lesssim q, \kappa 2^{-k} R^{\kappa q} \sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{q}\left|T_{\theta}^{\prime}\right| \tag{17}
\end{equation*}
$$

We perform a change of variables by dilation in the t variable, via $t^{\prime}=2^{k} t$ so that the left hand side of (17) becomes

$$
\begin{equation*}
2^{-k} \int_{\mathbb{R}^{n+1}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{T_{\theta, k}^{\prime \prime}}\left(x, t^{\prime}\right)\right)^{q} d x d t^{\prime} \tag{18}
\end{equation*}
$$

where $T_{\theta, k}^{\prime \prime}$ is the cylinder $T_{\theta, k}^{\prime}$ dilated by 2^{k} in the t direction, i.e.

$$
T_{\theta, k}^{\prime \prime}=\left(c_{\theta}, 0\right)+\left\{\left(x, t^{\prime}\right) \in \mathbb{R}^{n+1}:\left|x+t^{\prime}\left(2^{-k} w_{\theta}\right)\right| \leq R^{-1}, 1 / 2 \leq\left|t^{\prime}\right| \leq 1\right\} .
$$

Note that $\left|2^{-k} w_{\theta}\right| \leq 1$ since $\left|w_{\theta}\right| \leq 1$. Thus (16) implies that (18) is bounded by the right hand side of (17), as desired.

Summing (16) and (17) over $k \in \mathbb{N}$, and then taking q-th root, we obtain (14).
An easy modification of the above proof gives also (15). Indeed, for $\theta \in \mathcal{P}_{R}$, let $T_{\theta, \text { top }}^{*}$ be the intersection of T_{θ}^{*} with the strip $\{|t| \geq 1 / 2\}$ in \mathbb{R}^{n+1}. Then for $N \geq(n+2) / q$, we show that

$$
\begin{equation*}
\int_{\mathbb{R}^{n+1}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}|t|^{-N} \mathbf{1}_{T_{\theta, \text { top }}^{*}}(x, t)\right)^{q} d x d t \lesssim q, \kappa R^{\kappa q} \sum_{\theta \in \mathcal{P}_{R}} a_{\theta}^{q}\left|T_{\theta}^{\prime}\right| . \tag{19}
\end{equation*}
$$

To see this, we perform the same projective change of variables $(y, s):=I(x, t)$. This time it will be crucial that $d x d t=s^{-(n+2)} d y d s$, and we still have $I\left(T_{\theta, \text { top }}^{*}\right) \subset T_{\theta, \text { top }}$ because

$$
I\left(T_{\theta, \text { top }}^{*}\right)=\left(-w_{\theta}, 0\right)+\left\{(y, s) \in \mathbb{R}^{n+1}:\left|y-s c_{\theta}\right| \leq|s| R^{-1},|s| \leq 2\right\} .
$$

Thus

$$
\int_{\mathbb{R}^{n+1}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta}|t|^{-N} \mathbf{1}_{\theta, \text { top }}^{*}(x, t)\right)^{q} d x d t \lesssim \int_{\mathbb{R}^{n+1}}\left(\sum_{\theta \in \mathcal{P}_{R}} a_{\theta} \mathbf{1}_{T_{\theta, \text { top }}}(y, s)\right)^{q} s^{N q-(n+2)} d y d s
$$

and the factor $s^{N q-(n+2)}$ can be bounded by $2^{N q-(n+2)} \lesssim 1$ when $N \geq(n+2) / q$. (19) then follows. Together with (17), we obtain the desired conclusion (15).

We need a slightly more general version of Lemma 4, where we allow infinitely many cylinders rather than just $\simeq R^{n}$ cylinders based on $[-1,1]^{n} \times\{0\}$.

Lemma 5. Suppose $1 \leq q \leq \infty, \kappa \geq 0$, and $K(q, \kappa)$ holds. For $\mu \in R^{-1} \mathbb{Z}^{n}$, let $w_{\mu} \in \mathbb{R}^{n}$ be an arbitrary vector with $\left|w_{\mu}\right| \leq 2$. Then any non-negative coefficients $\left\{a_{\mu}\right\}_{\mu \in R^{-1} \mathbb{Z}^{n}}$ and any $N>2 n+\frac{n+2}{q}$, we have

$$
\begin{equation*}
\left\|\sum_{\mu \in R^{-1} \mathbb{Z}^{n}} a_{\mu}\left(1+R\left|x-\mu+t w_{\mu}\right|+|t|\right)^{-N}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \lesssim_{q, \kappa} R^{\kappa}\left(\sum_{\mu \in R^{-1} \mathbb{Z}^{n}} a_{\mu}^{q} R^{-n}\right)^{1 / q} \tag{20}
\end{equation*}
$$

Proof. For $\mu \in R^{-1} \mathbb{Z}^{n}$ let T_{μ}^{*} be the infinite cylinder

$$
T_{\mu}^{*}:=(\mu, 0)+\left\{(x, t) \in \mathbb{R}^{n+1}:\left|x+t w_{\mu}\right| \leq R^{-1}\right\}
$$

We first show that for $N>n+\frac{n+2}{q}$, we have

$$
\begin{equation*}
\left\|\sum_{\mu \in R^{-1} \mathbb{Z}^{n}} a_{\mu}(1+|t|)^{-N} \mathbf{1}_{T_{\mu}^{*}}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)} \lesssim q, \kappa R^{\kappa}\left(\sum_{\mu \in R^{-1} \mathbb{Z}^{n}} a_{\mu}^{q} R^{-n}\right)^{1 / q} \tag{21}
\end{equation*}
$$

For $m \in \mathbb{Z}^{n+1}$, let Q_{m} be the unit cube in \mathbb{R}^{n+1} centered at m. If $m=\left(m^{\prime}, m^{\prime \prime}\right)$ then for T_{μ}^{*} to intersect Q_{m} we must have $\left|\mu-m^{\prime}\right| \lesssim 1+\left|m^{\prime \prime}\right|$. Thus

$$
\left\|\sum_{\mu \in R^{-1} \mathbb{Z}^{n}} a_{\mu}(1+|t|)^{-\frac{n+2}{q}} \mathbf{1}_{T_{\mu}^{*}}\right\|_{L^{q}\left(Q_{m}\right)} \lesssim \sum_{n^{\prime} \in \mathbb{Z}^{n},\left|n^{\prime}-m^{\prime}\right| \lesssim 1+\left|m^{\prime \prime}\right|}\left\|_{\mu \in R^{-1} \mathbb{Z}^{n},\left|\mu-n^{\prime}\right| \leq 1} a_{\mu}(1+|t|)^{-\frac{n+2}{q}} \mathbf{1}_{T_{\mu}^{*}}\right\|_{L^{q}\left(Q_{m}\right)}
$$

which by (15) is

$$
\begin{aligned}
& \lesssim_{q, \kappa} R^{\kappa} \sum_{n^{\prime} \in \mathbb{Z}^{n},\left|n^{\prime}-m^{\prime}\right| \lesssim 1+\left|m^{\prime \prime}\right|}\left(\sum_{\mu \in R^{-1}} \sum_{\mathbb{Z}^{n},\left|\mu-n^{\prime}\right| \leq 1} a_{\mu}^{q} R^{-n}\right)^{1 / q} \\
& \lesssim R^{\kappa}\left(\sum_{\mu \in R^{-1} \mathbb{Z}^{n},\left|\mu-m^{\prime}\right| \lesssim 1+\left|m^{\prime \prime}\right|} a_{\mu}^{q} R^{-n}\right)^{1 / q}\left(1+\left|m^{\prime \prime}\right|\right)^{n(q-1) / q}
\end{aligned}
$$

As a result, raising both sides to power q and summing over $m^{\prime} \in \mathbb{Z}^{n}$, we obtain

$$
\left\|\sum_{\mu \in R^{-1} \mathbb{Z}^{n}} a_{\mu}(1+|t|)^{-\frac{n+2}{q}} \mathbf{1}_{T_{\mu}^{*}}\right\|_{L^{q}\left(\mathbb{R}^{n} \times\left(m^{\prime \prime}+[-1 / 2,1 / 2]\right)\right)} \lesssim q, \kappa\left(1+\left|m^{\prime \prime}\right|\right)^{n} R^{\kappa}\left(\sum_{\mu \in R^{-1} \mathbb{Z}^{n}} a_{\mu}^{q} R^{-n}\right)^{1 / q}
$$

from which (21) follows upon multiplying by $\left(1+\left|m^{\prime \prime}\right|\right)^{-\left(N-\frac{n+2}{q}\right)}$ and then summing over $m^{\prime \prime}$. Finally, the left hand side of (20) is bounded by

$$
\sum_{m^{\prime} \in \mathbb{Z}^{n}}\left(1+\left|m^{\prime}\right|\right)^{-\left(N-N^{\prime}\right)}\left\|_{\mu \in R^{-1} \mathbb{Z}^{n}} a_{\mu}(1+|t|)^{-N^{\prime}} \mathbf{1}_{m^{\prime}\left(R^{-1}, 0\right)+T_{\mu}^{*}}\right\|_{L^{q}\left(\mathbb{R}^{n+1}\right)}
$$

The L^{q} norm above is independent of m^{\prime}, and is controlled by (21) as long as $N^{\prime}>n+\frac{n+2}{q}$. The sum over m^{\prime} is finite as long as $N-N^{\prime}>n$. Thus (20) follows when $N>2 n+\frac{n+2}{q}$.

Lemma 5 can be reformulated in terms of a Nikodym maximal function via duality. For $R \gg 1$ and $w \in \mathbb{R}^{n}$ with $|w| \leq 2$, let

$$
T_{w}:=\left\{(x, t) \in \mathbb{R}^{n+1}:|t| \leq 1,|x+t w| \leq R^{-1}\right\}
$$

note that $\left|T_{w}\right| \simeq R^{-n}$ uniformly in w. Let \mathfrak{N}_{R} be the Nikodym maximal function, defined by

$$
\mathfrak{N}_{R} g(y):=\sup _{w \in \mathbb{R}^{n},|w| \leq 2} \frac{1}{R^{-n}} \int_{\substack{(y, 0)+T_{w} \\ 9}}|g(x, t)| d x d t, \quad y \in \mathbb{R}^{n}
$$

More generally, for $N>2 n+\frac{n+2}{q}$, let

$$
\mathfrak{N}_{R}^{*} g(y):=\sup _{w \in \mathbb{R}^{n},|w| \leq 2} \frac{1}{R^{-n}} \int_{\mathbb{R}^{n+1}}|g(x, t)|(1+R|x-y+t w|+|t|)^{-N} d x d t, \quad y \in \mathbb{R}^{n} .
$$

Lemma 6. Suppose $1 \leq q \leq \infty, \kappa \geq 0$ and $K(q, \kappa)$ holds. Let $q^{\prime}=q /(q-1)$ be the conjugate exponent to q. Then for any $R \gg 1$,

$$
\begin{equation*}
\left\|\mathfrak{N}_{R} g\right\|_{L^{q^{\prime}}\left(\mathbb{R}^{n}\right)} \lesssim q, \kappa R^{\kappa}\|g\|_{L^{q^{\prime}}\left(\mathbb{R}^{n+1}\right)} \tag{22}
\end{equation*}
$$

and for $N>2 n+\frac{n+2}{q}$,

$$
\begin{equation*}
\left\|\mathfrak{N}_{R}^{*} g\right\|_{L^{q^{\prime}}\left(\mathbb{R}^{n}\right)} \lesssim q, \kappa R^{\kappa}\|g\|_{L^{q^{\prime}}\left(\mathbb{R}^{n+1}\right)} . \tag{23}
\end{equation*}
$$

Proof. Since $\mathfrak{N}_{R} g(y) \lesssim \mathfrak{N}_{R}^{*} g(y)$, clearly (23) implies (22). Thus we prove only (23).
For $\mu \in R^{-1} \mathbb{Z}^{n}$ we have

$$
\mathfrak{N}_{R}^{*} g(y) \simeq \mathfrak{N}_{R}^{*} g(\mu)
$$

for every $y \in \mathbb{R}^{n}$ with $|y-\mu| \leq R^{-1}$. This is because for such y 's, we have

$$
(1+R|x-y+t w|+|t|)^{-N} \simeq(1+R|x-\mu+t w|+|t|)^{-N} .
$$

Thus

$$
\left\|\mathfrak{N}_{R}^{*} g\right\|_{L^{q^{\prime}}\left(\mathbb{R}^{n}\right)} \simeq\left(\sum_{\mu \in R^{-1} \mathbb{Z}^{n}} \mathfrak{N}_{R}^{*} g(\mu)^{q^{\prime}} R^{-n}\right)^{1 / q}
$$

To compute the latter, let $\left\{a_{\mu}\right\}_{\mu \in R^{-1} \mathbb{Z}^{n}}$ so that $\sum_{\mu \in R^{-1} \mathbb{Z}^{n}} a_{\mu}^{q} R^{-n}=1$. Then picking $w_{\mu} \in \mathbb{R}^{n}$ with $\left|w_{\mu}\right| \leq 2$ so that

$$
\mathfrak{N}_{R}^{*} g(\mu) \simeq \frac{1}{R^{-n}} \int_{\mathbb{R}^{n+1}}|g(x, t)|\left(1+R\left|x-\mu+t w_{\mu}\right|+|t|\right)^{-N} d x d t,
$$

we have

$$
\sum_{\mu \in R^{-1} \mathbb{Z}^{n}} a_{\mu} \mathfrak{N}_{R}^{*} g(\mu) R^{-n}=\int_{\mathbb{R}^{n+1}}|g(x, t)| \sum_{\mu \in R^{-1} \mathbb{Z}^{n}} a_{\mu}\left(1+R\left|x-\mu+t w_{\mu}\right|+|t|\right)^{-N} d x d t
$$

which by Hölder and Lemma 5 is bounded by

$$
\lesssim_{q, \kappa} R^{\kappa}\|g\|_{L^{q}\left(\mathbb{R}^{n+1}\right)}
$$

if $N>2 n+\frac{n+2}{q}$. This completes the proof of (23).

Proof of Theorem 2. Let $2 \leq p \leq \infty, \sigma \geq 0$ and $\kappa \geq 0$ be such that $R S(p, \sigma)$ and $K\left(\frac{p}{2}, \kappa\right)$ holds. The local smoothing estimate $L S\left(p, \sigma+\frac{\kappa}{2}\right)$ can now be deduced in a few strokes.

First, by rescaling, let f be a Schwartz function on \mathbb{R}^{n} whose Fourier transform is supported on the annulus $\{1 / 2 \leq|\xi| \leq 1\}$. Then $L S\left(p, \sigma+\frac{\kappa}{2}\right)$ will follow if we can show that

$$
\begin{equation*}
\left\|e^{-\frac{i t \Delta}{2 \pi}} f\right\|_{L^{p}\left(\mathbb{R}^{n} \times\left[0, R^{2}\right]\right)} \lesssim R^{\frac{2}{p}} R^{\sigma+\frac{\kappa}{2}}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} . \tag{24}
\end{equation*}
$$

To prove (24) we decompose f as follows. Let φ be a smooth function with compact support on $[-1,1]^{n}$ so that

$$
\sum_{\nu \in \mathbb{Z}^{n}} \varphi(\xi-\nu)=1 \quad \text { for all } \xi \in \mathbb{R}^{n}
$$

Then for any $|\xi| \simeq 1$, we have

$$
\begin{equation*}
\sum_{\theta \in \mathcal{P}_{R}} \varphi\left(R\left(\xi-c_{\theta}\right)\right)=1 \tag{25}
\end{equation*}
$$

where c_{θ} is the center of the square θ. If $\theta \in \mathcal{P}_{R}$, we define f_{θ} to be the Schwartz function given by

$$
\widehat{f}_{\theta}(\xi):=\varphi\left(R\left(\xi-c_{\theta}\right)\right) \widehat{f}(\xi) ;
$$

(25) then gives

$$
f=\sum_{\theta \in \mathcal{P}_{R}} f_{\theta}
$$

Let $\eta(t)$ be a Schwartz function on \mathbb{R} so that $|\eta(t)| \geq 1$ for all $t \in[0,1]$, and so that $\widehat{\eta}(\tau)$ is supported on $[-1,1]$. Then for $t \in\left[0, R^{2}\right]$,

$$
\left|e^{-\frac{i t \Delta}{2 \pi}} f(x)\right| \leq\left|\sum_{\theta \in \mathcal{P}_{R}} \eta\left(R^{-2} t\right) e^{-\frac{i t \Delta}{2 \pi}} f_{\theta}(x)\right|
$$

and for each $\theta \in \mathcal{P}_{R}$, the function $\eta\left(R^{-2} t\right) e^{-\frac{i t \Delta}{2 \pi}} f_{\theta}(x)$ has (space-time) Fourier transform

$$
R^{2} \widehat{\eta}\left(R^{2}\left(\tau-|\xi|^{2}\right)\right) \varphi\left(R\left(\xi-c_{\theta}\right)\right) \widehat{f}(\xi)
$$

which is supported in \mathfrak{R}_{θ}. Thus from our assumption $R S(p, \sigma)$, we obtain that

$$
\begin{equation*}
\left\|e^{-\frac{i t \Delta}{2 \pi}} f(x)\right\|_{L^{p}\left(\mathbb{R}^{n} \times\left[0, R^{2}\right]\right)} \lesssim_{p, \sigma} R^{\sigma}\left\|\left(\sum_{\theta \in \mathcal{P}_{R}}\left|\eta\left(R^{-2} t\right) e^{-\frac{i t \Delta}{2 \pi}} f_{\theta}(x)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \tag{26}
\end{equation*}
$$

Next, we use our assumption $K\left(\frac{p}{2}, \kappa\right)$ to deduce that

$$
\begin{equation*}
\left\|\left(\sum_{\theta \in \mathcal{P}_{R}}\left|\eta\left(R^{-2} t\right) e^{-\frac{i t \Delta}{2 \pi}} f_{\theta}(x)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n+1}\right)} \lesssim_{p, \kappa} R^{\frac{2}{p}} R^{\frac{\kappa}{2}}\left\|\left(\sum_{\theta \in \mathcal{P}_{R}}\left|f_{\theta}(x)\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \tag{27}
\end{equation*}
$$

To see this, let Φ be as in Lemma 3, and satisfy additionally the assumption that $\widehat{\Phi}=1$ on the support of φ. Then $e^{-\frac{i t \Delta}{2 \pi}} f_{\theta}(x)=R^{-n} f_{\theta} * e^{-\frac{i t \Delta}{2 \pi}} \Phi_{\theta}(x)$, so from the upper bound (7) of $\left|\eta\left(R^{-2} t\right) e^{-\frac{i t \Delta}{2 \pi}} \Phi_{\theta}(x)\right|$, we obtain that

$$
\left|\eta\left(R^{-2} t\right) e^{-\frac{i t \Delta}{2 \pi}} f_{\theta}(x)\right| \lesssim_{N} \int_{\mathbb{R}^{n}}\left|f_{\theta}(y)\right| R^{-n}\left(1+R^{-1}\left|x-y+2 t c_{\theta}\right|+R^{-2}|t|\right)^{-N} d y
$$

for every positive integer N. Cauchy-Schwarz then gives

$$
\left|\eta\left(R^{-2} t\right) e^{-\frac{i t \Delta}{2 \pi}} f_{\theta}(x)\right|^{2} \lesssim_{N} \int_{\mathbb{R}^{n}}\left|f_{\theta}(y)\right|^{2} R^{-n}\left(1+R^{-1}\left|x-y+2 t c_{\theta}\right|+R^{-2}|t|\right)^{-N} d y
$$

To estimate the right hand side of (26), let q^{\prime} be the dual exponent of $q:=p / 2$, and let $g \in L^{q^{\prime}}\left(\mathbb{R}^{n+1}\right)$ with $\|g\|_{L^{q^{\prime}}\left(\mathbb{R}^{n+1}\right)}=1$. We estimate

$$
\begin{equation*}
\int_{\mathbb{R}^{n+1}} \sum_{\theta \in \mathcal{P}_{R}}\left|\eta\left(R^{-2} t\right) e^{-\frac{i t \Delta}{2 \pi}} f_{\theta}(x)\right|^{2} g(x, t) d x d t \lesssim R^{2} \int_{\mathbb{R}^{n}} \sum_{\theta \in \mathcal{P}_{R}}\left|f_{\theta}(y)\right|^{2} \mathfrak{N}_{R}^{* *} g(y) d y \tag{28}
\end{equation*}
$$

where

$$
\mathfrak{N}_{R}^{* *} g(y):=\sup _{\theta \in \mathcal{P}_{R}} \int_{\mathbb{R}^{n+1}}|g(x, t)| R^{-(n+2)}\left(1+R^{-1}\left|x-y+2 t c_{\theta}\right|+R^{-2}|t|\right)^{-N} d x d t
$$

is a rescaled version of \mathfrak{N}_{R}^{*}. Indeed, applying Lemma 6 to $g\left(R^{2} x, R^{2} t\right)$ instead of $g(x, t)$, we obtain,
if $N>2 n+\frac{n+2}{q}$. Thus from (28), we obtain

$$
\left(\int_{\mathbb{R}^{n+1}}\left(\sum_{\theta \in \mathcal{P}_{R}}\left|\eta\left(R^{-2} t\right) e^{-\frac{i t \Delta}{2 \pi}} f_{\theta}(x)\right|^{2}\right)^{p / 2} d x d t\right)^{2 / p} \lesssim p, \kappa R^{2} R^{-\frac{2}{q^{\prime}}} R^{\kappa}\left(\int_{\mathbb{R}^{n}}\left(\sum_{\theta \in \mathcal{P}_{R}}\left|f_{\theta}(x)\right|^{2}\right)^{p / 2} d x\right)^{2 / p} .
$$

(27) follows by taking square roots of both sides, and recalling that q^{\prime} is the dual exponent of $p / 2$.

Finally, it remains to observe that for any $2 \leq p<\infty$, we have

$$
\begin{equation*}
\left\|\left(\sum_{\theta \in \mathcal{P}_{R}}\left|f_{\theta}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}, \tag{29}
\end{equation*}
$$

which follows from the following lemma by rescaling by R in the frequency space; combining (26), (27) and (29) we have our desired local smoothing estimate (24) and hence $L S\left(p, \sigma+\frac{\kappa}{2}\right)$.

Lemma 7. For any $2 \leq p \leq \infty$, we have

$$
\left\|\left(\sum_{\nu \in \mathbb{Z}^{n}}\left|f * \Phi_{\nu}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

where $\widehat{\Phi_{\nu}}(\xi):=\varphi(\xi-\nu)$ and φ is a Schwartz function on \mathbb{R}^{n}.

Proof of Lemma 7. The following proof appears, for instance, in Córdoba [2].
The idea is to write

$$
\sum_{\nu \in \mathbb{Z}^{n}}\left|f * \Phi_{\nu}(x)\right|^{2}=\int_{[0,1]^{n}}\left|\sum_{\nu \in \mathbb{Z}^{n}} f * \Phi_{\nu}(x) e^{2 \pi i \nu \cdot y}\right|^{2} d y
$$

using Parseval. Since

$$
f * \Phi_{\nu}(x) e^{2 \pi i \nu \cdot y}=\int_{\mathbb{R}^{n}} \widehat{f}(\xi) \varphi(\xi-\nu) e^{2 \pi i x \cdot \xi} e^{2 \pi i \nu \cdot y} d \xi
$$

and Poisson summation gives

$$
\sum_{\nu \in \mathbb{Z}^{n}} \varphi(\xi-\nu) e^{2 \pi i \nu \cdot y}=\sum_{\nu \in \mathbb{Z}^{n}} \Phi_{0}(y+\nu) e^{-2 \pi i(y+\nu) \cdot \xi},
$$

we obtain

$$
\sum_{\nu \in \mathbb{Z}^{n}} f * \Phi_{\nu}(x) e^{2 \pi i \nu \cdot y}=\sum_{\nu \in \mathbb{Z}^{n}} f(x-y-\nu) \Phi_{0}(y+\nu) .
$$

Hence by Cauchy-Schwarz,

$$
\left|\sum_{\nu \in \mathbb{Z}^{n}} f * \Phi_{\nu}(x) e^{2 \pi i \nu \cdot y}\right|^{2} \lesssim \sum_{\substack{\nu \in \mathbb{Z}^{n} \\ 12}}|f(x-y-\nu)|^{2}\left|\Phi_{0}(y+\nu)\right|,
$$

which yields

$$
\int_{[0,1]^{n}}\left|\sum_{\nu \in \mathbb{Z}^{n}} f * \Phi_{\nu}(x) e^{2 \pi i \nu \cdot y}\right|^{2} d y \lesssim \int_{\mathbb{R}^{n}}|f(x-z)|^{2}\left|\Phi_{0}(z)\right| d z=|f|^{2} *\left|\Phi_{0}\right|(x)
$$

It follows that

$$
\left\|\left(\sum_{\nu \in \mathbb{Z}^{n}}\left|f * \Phi_{\nu}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim\left\||f|^{2} *\left|\Phi_{0}\right|\right\|_{L^{p / 2}\left(\mathbb{R}^{n}\right)}^{1 / 2} \lesssim\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

when $2 \leq p \leq \infty$.

References

[1] Anthony Carbery, A Remark on reverse Littlewood-Paley, restriction and Kakeya, arXiv:1507.02515.
[2] Antonio Córdoba, Geometric Fourier analysis, Ann. Inst. Fourier (Grenoble) 32 (1982), no. 3, vii, 215-226.
[3] Gerd Mockenhaupt, Andreas Seeger, and Christopher D. Sogge, Wave front sets, local smoothing and Bourgain's circular maximal theorem, Ann. of Math. (2) 136 (1992), no. 1, 207-218.
[4] Terence Tao, The Bochner-Riesz conjecture implies the restriction conjecture, Duke Math. J. 96 (1999), no. 2, 363-375.

