CONSEQUENCES OF THE REVERSED SQUARE FUNCTION ESTIMATE
FOR THE PARABOLOID IN R»*!

PO-LAM YUNG

Fix n > 1. Following Carbery [1], we explain how a reversed square function estimate for the
paraboloid in R™*! implies a Kakeya estimate in R*™!, and a local smoothing estimate for the
Schrédinger equation in R™ 1.

Notations. For R > 1, let Pr be the covering of the unit ball By in the frequency space R™ by
squares of side lengths 2R™" with centers at R™'Z" N [~1,1]". For € Pg, let Ry be a truncated
neighborhood of the paraboloid in R™ given by

Ry :={(&, ¢ +7) e R g€ b, |r| <R}

Definition. For 2 < p < co and o > 0, we denote by RS(p,o) the following statement: For any
R > 1, and any family of functions {Fp}oep, on R™ 1 with support of Fy contained in Ry for

every 0 € Pr, we have
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Definition. For 2 < p < oo and s > 0, we denote by LS(p, s) the following statement: For any
R > 1 and any Schwartz function g on R™ whose Fourier transform is supported on the annulus
{R < [£| < 2R}, we have
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Definition. For 1 < ¢ < 0o and k > 0, we denote by K(q, k) the following statement: For any
R > 1, and any family of cylinders T in R*™ of dimensions R~ x --- x R~ x 1 that point in
R~ separated directions, we have
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where {ar}rer is any collection of non-negative real numbers indexed by T.
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In dimension n = 1, it is known that the reversed square function estimate RS(p, ) holds on R"*!
for all 2 < p < oo and all o > o(p), the local smoothing estimate LS(p,s) holds on R"*! for all
2 < p < oo and all s > s(p), and the Kakeya maximal estimate K(q,x) holds on R"*! for all
1 < ¢ < ooand all K> k(q). In dimensions n > 1, it is conjectured that RS(p, o) holds for all
2<p<ooandall o0 >oc(p), LS(p,s) holds for all 2 < p < oo and all s > s(p), and that K(q, k)
holds for all 1 < ¢ < co and all k > k(g); none of them is known in full, despite numerous partial
results.

Below we prove the following theorems.

Theorem 1. Let 2 < p < oo and o > 0. Then RS(p, o) implies K (&, 4a+max{@ —2n,0} +¢)
for any e >0, and if p # w, this holds for e =0 as well.

Theorem 2. Let 2 < p < 00, 0 > 0 and kK > 0. Then RS(p,0) and K(§,k) together implies
LS(p,o+5).

Combining Theorems 1 and 2, we see that if p. is the critical exponent 2(n7j1), then

“RS(pe, o) is true for all o > 07 = “LS(p, s) is true for all s > 07,

which implies the full local smoothing conjecture for all 2 < p < oo by interpolating against the
trivial L? and L bounds.

The proof of Theorem 1 relies on the following simple Kakeya bound, for cylinders with a common
center.

Lemma 1. Let 1 < g < oo, R > 1 and T be a family of cylinders in R™"*, of dimensions

R 'x---x R7! x 1, that point in R~ separated directions. If all T € T are centered at the origin,
then for any non-negative coefficients {ar}rer, we have

_ntl 1/q
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Proof. We decompose the unit ball in R"*! into the union of the ball B(0, R™!), centered at
the origin and of radius R™!, and the annuli Ay, over k = 1,...,logy R, where A, = {(z,t) €
R 27k < f(x,1)| < 277D} First,

q q q ntl
1 < |B(0,R7Y)| ~ T Rra—(n+1) < § : n |T|an7(n+1)
/B(Ole) (%CLT T) (TZE;TGT) (TZE;TGT ) TeT N

by Holder’s inequality. Next, for k = 1,...,logy R, we choose mj, many cylinders 1,15, ...,Ty,, € T

with my, < 27¥"R" so that T1, .. ., T, covers the intersection of Ay with the support of ) . arlr,
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and every T € T satisfies Z(T,T;) < 2¥R~" for only O(1) many 4’s. Then by Holder’s inequality,

/Ak ZaTlT S%( Z aT)q|Ak;ﬂTi|

TeT i=1  TeT,/(T,T;)<2FR-1

(Y a)emr

i=1  T€T, /(T,T;)<2*R-1

< gkl(ng—(n+1)) Z al|T|.

TeT
It follows that
logo R
1 ) (an (n+1) 2k ng—(n+1)) > T
[ (S + 3 > atiz.
TET TET
Our desired conclusion then follows from the estimates
log, R Rnq—(n+1) if L‘H <g< oo
Rra—(n+1) o Z ok(ng—(n+1)) <4 S logR if g = L‘H
k=1 1 if 1 <g< 2t
O
We will apply Lemma 1 to bound H Y oTeT aTlTHLq(RnH) for T ={Typ: 0 € Pr}, where
Ty := {(z,t) € R": |z + 2tcy| < R71, |t < 1} (4)

for 6 € Pp; here cy denotes the center of the square 6. Indeed, we need the following slightly more
general estimate, which is what we actually need in proving Theorem 1.

Lemma 2. Let 1 < ¢ < o0 and R > 1. For 6 € Pg, define Ty by (4) where cy is the center of the
square 0. Then for any non-negative coefficients {ag}tocp, and any N > n+ 1, we have

+

max{0,n— 2+L 1/q
H Z ag(l + R|z + 2tcg| + [t]) N‘LqR ey (log R)“DR {On=" }< Z ag\Tg|) .
0€Pr 0ePr

Nq

Proof of Lemma 2. Note that by Minkowski inequality,

La(Rn+1) S Z (1+ ‘mD_NH Z aeng,m‘

mezZn+1 0cPr

H > ag(1+ Rl + 2tco| + |t]) N’
0cPr

La(Rn+1)

where Tp,,, == Tp +m/(R71,0) + m"(—2cg, 1) for m = (m/,m") € Z" x Z. The above LY norm is
independent of m’ by translation invariance. For |m”| > 1, the cylinders Ty (g, are disjoint, so

H Z aengym‘ LaRn+1) ( Z ag|T9|)1/q

0cPr 0cPr
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Since N > n + 1, it follows that

B 1/q
| 3= aot+ Rl 2t i)™ S (2 abmol) | 2 eotn |,
0cPr

0cPr 0€Pr
n+1

_nfl 1/
Sq (log R)e(q)RmaX{U,n 4 ( Z ag|T9‘> q
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where we invoked Lemma 1 in the last inequality. O

The following wave packet computation will be useful both for proving Theorems 1 and 2.

Lemma 3. Let ® be a Schwartz function on R™ whose Fourier transform is compactly supported
on [—1,1]". For R> 1 and 6 € Pg, let ®y be given by

Oy(z) := (I)(R_lx)e%m'c"

where cg is the center of the square 6. Then

n

6_%@9(:6) _ 627ri(x~09+t|092)/ 6(5)6%112—1(x+2tce)-§e2mR—2t\g|2dé (5)
In particular,
e I By (z) = 2@ eotleol ) p(RY (2 + 2tcg)) + O(R2L), (6)
and if n(t) is a Schwartz function on R, then
[n(R™2)e™ 5 @g(2)] S (1+ B+ 2tcp| + R2[H) ™Y (7)

for every positive integer N.

Proof. Note that

_itA

e 2r ‘I)g(x) = Rn/ &)(R(g — cg))ezﬂi($'§+t|§|2)d§.

We Taylor expand the phase t|¢|? + z - € around & = ¢y, and obtain

e—gf (1)9($) _ eQm‘(:c-cG—i-t\c6|2)Rn / &\)(R(f N 09))627ri(ac+2t09)-(§—ce)e27rit|§—09|2d£

which gives (5). We then Taylor expand the last exponential in (5) via
MR =1+ O(R7t)l¢?)

and that gives (6). Since

Ag e2miR ™! (a+2tcp)-€

(2miR~ Yz + 2tcg|)?’

we may integrate by parts on the right hand side of (5), and obtain, for every positive integer N,
that

627”-34 (z42tco)-€ _

‘ _itA

o~ Q)g(x)‘ <y (14 R+ R72) Yz + 2t V.

Together with the rapid decay of 1 at infinity, we obtain the upper bound (7). (|
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Proof of Theorem 1. Suppose 2 < p < o0, 0 > 0 and RS(p,o) holds. We want to establish
K(£, 40 + max{ nH —2n,0} + ¢) for every ¢ > 0. By rescaling by a factor of R? in both =
and ¢, we may con81der families of cylinders of dimensions R x --- x R x R?, that point in R~!
separated directions. Without loss of generality assume that the central axis of each cylinder in the
family makes an angle < 7/4 with the ¢ axis. By replacing the cylinders by slightly larger ones in a
direction that differs by O(R™1!), and splitting a fat cylinder into O(1) thinner cylinders and using
the Minkowski inequality, we may also assume, without loss of generality, that T = {Tg: 0 e PR}

where for 6 € Pg,
2

Tg = z29 + Rng;
4dn
here Ty is as in (4) and zj is an arbitrary point in R**!. We will also assume that the cylinders
intersect, and hence we may assume that |zg] < R? for all # € Pp. For each § € Pr we will
construct a wave packet Fy so that Fg is supported in 0 and so that |Fy| = 1 on Ty. Each F, will

in turn be the superposition of wave packets whose frequencies are even more localized, via

Fy(x,t) = Y Faa,t) (8)

BEP 2, BCH

where each ﬁ\g is supported in 3. We may then apply (1) (with R replaced by R?) to
Z Sgaéan = Z Z EgaémFB(:ﬂ,t) (9)
PR 0€PR BEPz2,BCO

where {€p }pecp, is a random choice of signs +1, and {ag }pecp, is a family of non-negative coefficients;
further applying Klintchine’s inequality on the left hand side, we will be able to show that

H Z <o R4a+max{@72n,0}+s( Z p/2‘T0|) (10)

0| Lp/2(Rn+1) ~Pp
0ePr 0ePr

n+1

for every € > 0, from which K(%,40 + max{ —2n,0} + ) will follow.

To carry this out in detail, let ®(x) be as in Lemma 3, and 7(¢) be a Schwartz function on R
whose Fourier transform is compactly supported on [—1, 1]. In addition, suppose ®(z) is real-valued,
®(z) > 1 for |z| <1, and |n(t)| > 1 for |t| < [-1,1]. For R>> 1 and (8 € Ppe, define

Bs(z) = B(R2a)c?™oes

as in Lemma 3; for 6 € Pp, let ey be a random sign +1 and write zy as (yg, sg). Now define, for
each 0 € Pg, a function Fy(x,t) by (8), where for 5 € Pge and 3 C 6, Fg(x,t) is defined via

Fg(x —yg, t — sp) := €9R7"n(R*4t)e*%<I>5(:c).
Then the Fourier transform of Fj is
eg R AR (7 — [¢*)B(R? (€ — c))em (mvottso)
which is supported on Jig. Furthermore, for each 0 € Pg,
[Fo(z,t) = | Y Fala,t)| 2 15, (x,0). (11)

BEPR2,BCH
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Indeed, by (6),

ST Fsw—yet—se)= Y. R (R @t BNG(R2 (2 + 2teg)) + O(R™H).
ﬁGPRQ,ﬁCQ ﬁG'PRQ,ﬂCQ

But we may rewrite the phase in the sum by “Taylor expanding cg around cy”, and obtain
z-cg+tlegl* = x - co +tlcg|® + (x4 2tep) - (cg — cp) + tles — ol
It follows that

Z Fﬁ(m_y07t_89)

BEPp2, BCH

_ 627ri(z-09+t|ce|2)R—nn(R—4t) Z 627ri((z+2t09)~(cg—ce)+t|69—05|2)(I)(R—Q(l, + 2t05)) + O(R_4t).
5E7DR2,,3C9

Since |eg — cg| < R™1/2, for any (z,t) € R—QTQ, we have
B 4n

Re( Z 62771'((;13+2tca)~(c5—ce)-l-t\CQ—cB|2)(I)(R—2(m+2tcﬁ))>

BEP 2, BC0
= > cos(2r[(@ + 2tcy) - (cp — o) +tleg — cs*) PR (x + 2tcp))
,BG'PRQ,ﬁCQ
3T _9
> cos (= > (R (x+ 2tep))
5E'PR27,3C9

Z>R™.
As a result, we obtain

>o Fslw—unt—s0)| 2 1z, (a0)
BEPR2, BCO

verifying (11). We now apply (1) (with R replaced by R?) to (9), and obtain
Np o R2

H Z 59% Fg(x t)) f— ( Z ag Z |Fﬁ($,t)\2)1/2‘

0cPr 0€PRr BEPR2,BCO

Lp(Rn+1)

Applying Klintchine’s inequality to the p-th power of the left hand side, and then taking p/2-th
root, we obtain

2
H Z @l By O oy Tor B a0 3 1B P, (02)
0€Pr 0€Pr 5673R275C9
By (11), the left hand side of (12) is bounded below by
>
H Z agl To LP/2(Rn+1)
0ePr
By (7), the LP/? norm right hand side of (12) is bounded above by
2n 2 —41,\—N
<y H Sag S RM(14 R 2o+ 2tes| + R ‘W -~ (13)

0cPr 6E'PR27,3C9
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for every positive integer N, because |zg| < R?; once we get rid of 29, if N > n + 1, we may rescale
and apply Lemma 2 (with R replaced by R?) and bound (13) by

2/ e ot 2t D) ~ \2/
RQ;@ (p/2) ( Z Z (aeR—Zn)p/QRQ(n—iQ)) P R2 (p/2)—2n+ > ( Z a§/2|T9|> P
0€Pr BEPz2,BCH 0cPr
using R"R2("2) ~ R2+1)|Ty|. As a result, (12) implies

o+2k n 4("+1>
| = ans, < (log R W2 R0/ -2 55 (52 iy Y37
0ePRr 0cPr

Lp/2(]Rn+1)

Since 2k(p/2) — 2n+ 4(n+1) = max {12+t n+1) —2n, 0}, this implies K (5§ 4a+max{ n+1 —2n,0} +¢)
for any € > 0, and that the same holds with e = 0 if £ # ”TH O

We now proceed to the proof of Theorem 2. It is well-known that K (%, ) implies a corresponding
Nikodym maximal estimate; see Tao [4]. We need a small extension of that. We begin with the
following lemma.

Lemma 4. Suppose 1 < g < oo, k > 0 and K(q, k) holds. For 0 € Pg, let wg € R™ be an arbitrary
vector with |wg| < 2, and let

Ty = (c9,0) + {(x,t) € R™™: |w+ tuwy| < RV, [t] <1}
where cg is the center of the square 0. Then for any non-negative coefficients {ag}tocpy, we have

H Z aolr La(Rn+1) S RK( Z CLg’Té!)l/q- (14)

0ePr 0ePr

More generally, let Ty be the infinite cylinder
Ty = (cp,0) + {(z,t) e R": |z + twyg| < R7'}.
Then for N > RTH’

1/q
K q /
| > aott+ 1)1 | sy Sa B (X agimyl) (15)
0ePr 0cPr

The following proof is essentially in Tao [4].

Proof. Suppose 1 < g < 0o, k > 0 and K(q, k) holds. For 6 € Pg, let T} top Pe the intersection of
Ty, with the strip {1/2 < |[¢| < 1} in R""!. We first show that

/ ( Z aglyy  (w,1) ) dxdt Sq R™ Z ad|Tyl. (16)
Rn+1
0€Pr 0€Pr
Indeed, we perform a projective change of variables (y, s) := I(x,t) where
I(z,t) := (x/t,1/t).
The Jacobian is < 1 on the support of the integrand, and

I(T§ 4op) = (—w,0) +{(y,5) € R""': |y —sc| < [s|R7,1 < |s| <2} C Tp
7



where
Ty := (—wp,0) + 2{(y,5) € R"*': |y — sco| < R7,[s| < 1}

1x ... x R7! x 1, pointing in the direction (cg, 1); such directions

are ~ R~! separated as 6 varies over Pr. Thus

/Rn+1 (QEZ’PR aelTé’%p (ﬂf,t))qudt S /]Rn+1 ( Z aelT" (v, S))qdyds

0€Pr

is a cylinder of dimensions ~ R~

and (16) follows from our assumption K(q, k).

Next, for k > 1, let T}, be the intersection of Tj with the strip {27*+1) < |¢| < 27k} in R+,
We show that

/ ( 3 aply (m,t))qudt Sen 27FRST QT (17)
Rt 0ePr .

0€Pr

We perform a change of variables by dilation in the ¢ variable, via ¢’ = 2¥¢ so that the left hand
side of (17) becomes

—k n\? !
2 /Rn+1 ( > aolyy, (ot )) dwdt (18)
0ePr
where T}/, is the cylinder T}, dilated by 2* in the ¢ direction, i.e.
ik =(co,0) + {(z,t) e R" |l + ¢/ (27 wy)| < RV, 1/2 < ¢ < 1)

Note that [27*wjy| < 1 since |wg| < 1. Thus (16) implies that (18) is bounded by the right hand
side of (17), as desired.

Summing (16) and (17) over k € N, and then taking ¢-th root, we obtain (14).

An easy modification of the above proof gives also (15). Indeed, for § € Pg, let Ty top P€ the
intersection of Tj with the strip {|¢| > 1/2} in R""!. Then for N > (n + 2)/q, we show that

q
[ (X aolt ™1y, (00) dndt S RS a1y (19)
R N gepy 0ePr
To see this, we perform the same projective change of variables (y, s) := I(z,t). This time it will

be crucial that dxdt = s*(””)dde, and we still have I (Te*’top

) C Ty top because
Ty 0p) = (—wp,0) + {(y,5) € R": |y — scp| < [s|R7T, |s| <2}
Thus
q q
/ (Y wlti ™y, (@.1) dodt S / (Y @t w:s)) N Dayds,
Rt e RS gepn -

0cPr

and the factor sV9=("*2) can be bounded by 2V9=("+2) <1 when N > (n+2)/q. (19) then follows.
Together with (17), we obtain the desired conclusion (15). O

We need a slightly more general version of Lemma 4, where we allow infinitely many cylinders

rather than just ~ R"™ cylinders based on [—1,1]" x {0}.
8



Lemma 5. Suppose 1 < q < oo, k > 0, and K(q,x) holds. For y € R™'Z", let w, € R"
be an arbitrary vector with |w,| < 2. Then any non-negative coefficients {a,},cr-1zn and any
N >2n+ ”TJ“Q, we have

_ ~\Vag
| 3w B prr ], e B (X air) (@)
pER-17Zn pER-1Zn

Proof. For € R™YZ" let T}, be the infinite cylinder
T = (1,0) + {(2,8) € R o+ tw,| < R},
We first show that for N > n + ”TH, we have

1/q

—N K -n

H S a1+t Vig - gq,ﬁR( 3 alR ) . (21)
neER-17" HwER—17Zn

For m € Z""1 let Q,, be the unit cube in R™*! centered at m. If m = (m/,m”) then for Ty to
intersect @, we must have |p —m’| <1+ |m”|. Thus

_n+2 _n+2
DI C Rl RS ND DU I DR
WERIZ" O n'€Z™, [0/ —m/|S1+|m”|  peRTIZ™, |u—n'|<1
which by (15) is

Son B° Z ( Z aZR‘") 1/q

n €z, |n'—m!|<14m" | peRZM, [p—n/|<1

<r( > g R) (1 a0,

HERTIZ™, |p—m | S1+|m”|

As a result, raising both sides to power ¢ and summing over m’ € Z", we obtain

n+2 l/q
Y (L) g <o (14 |m" ”R“( Y qR‘”)
H =t naH( D AT | s o1y S (L D) S
HERTIZ pHER™IZ

from which (21) follows upon multiplying by (1 + |m”|)_(N_nT+2) and then summing over m”.
Finally, the left hand side of (20) is bounded by

Z (1+ |m/[)~ (=N Z a,(1+[t)™N Low(r—1,0)47;
m/ezn peR-17Zn

La(Rn+1)

The L9 norm above is independent of m/, and is controlled by (21) as long as N’ > n + "TH. The
sum over m/ is finite as long as N — N’ > n. Thus (20) follows when N > 2n + ”T‘FQ. O

Lemma 5 can be reformulated in terms of a Nikodym maximal function via duality. For R > 1
and w € R"” with |w| <2, let

Ty = {(z,t) e R"™: |t] < 1, |z +tw| < R7'}
note that |T,,| ~ R™™ uniformly in w. Let 9 be the Nikodym maximal function, defined by
1
Nry(y) ==  sup

wern, |lwj<2 B J(y,0+T0
9

lg(x,t)|dzdt, y e R".

L9(Qm)



More generally, for N > 2n + "TH, let

1
Nirg(y) :=  sup = lg(x,t)|(1 + R|z — y + tw| + ]t!)*Ndxdt, y € R™.
weR™, |w|<2 Rn+1

Lemma 6. Suppose 1 < q < oo, k > 0 and K(q,k) holds. Let ¢ = q/(q — 1) be the conjugate
exponent to q. Then for any R> 1,
HngHLq’(Rn) Sak RHHgHqu(Rn+1) (22)
and for N > 2n + "TH,
|‘m7%9||Lq/(Rn) Sas RHHQHLq/(RnH)- (23)

Proof. Since Mry(y) S Np9(y), clearly (23) implies (22). Thus we prove only (23).

For ;1 € R™'Z"™ we have
Nrg(y) ~ Nrg(u)
for every y € R™ with |y — u| < R™!. This is because for such y’s, we have

(1+Rlz—y+tw| +[t) ™ ~ (1 + Rlz — p+tw| + [t) V.

Thus
* * / _ 1/(]
1My = (Y0 Mg R™)
neER-17n
To compute the latter, let {a,},cr-17 so that 3 cp17n aj,R~"™ = 1. Then picking w, € R" with
|w,| < 2 so that

¥ 1 -
MNhg(p) ~ 7t o lg(x, t)|(1 + Rl — p + tw,| + [t]) "N dadt,

we have
* -n __ -N
> aMpg(w R = / gt Y7 ap(+ Rla — ot twy| + |t]) "N dadt
pER-1Zn Ret pER-1Zn

which by Hoélder and Lemma 5 is bounded by

Sax RHHQHLq(RnH)

it N >2n+ "T“. This completes the proof of (23). O

Proof of Theorem 2. Let 2 < p < 00, 0 > 0 and k£ > 0 be such that RS(p,o) and K(£,«) holds.
The local smoothing estimate LS(p,o + §) can now be deduced in a few strokes.

First, by rescaling, let f be a Schwartz function on R™ whose Fourier transform is supported on
the annulus {1/2 < [{| < 1}. Then LS(p, o + §) will follow if we can show that
_itA 2 5
lle™ 27 fll o xio,rz) & BP B7T2 [ f ]| oqen)- (24)
10



To prove (24) we decompose f as follows. Let ¢ be a smooth function with compact support on
[—1,1]™ so that
Z e —v)=1 forall £ €R".
vVEL™
Then for any |£] ~ 1, we have
> G(R(E—cp) =1 (25)
0€ePr
where cg is the center of the square 8. If 8 € Pg, we define fy to be the Schwartz function given by

fo(€) = @(R(E — c9)) f(£);

F=> 1

0cPr
Let n(t) be a Schwartz function on R so that |n(¢)| > 1 for all ¢ € [0, 1], and so that 7)(7) is supported
n [—1,1]. Then for ¢ € [0, R?],

5 F@) < | DD n(R2eE fo()],

(25) then gives

and for each § € Pg, the function H(R_2t)€7%f9($) has (space-time) Fourier transform

R*(R*(1 — [€]) o (R(E — c0)) [ (£)
which is supported in PRy. Thus from our assumption RS(p, o), we obtain that

i i /
le™ 5 F (@)l ogoxiomzy Sno B2 ( 2 i E Ry 20
Next, we use our assumption K (§,x) to deduce that
it 1/2 2 . 1/2
|(X mr=2ne 5 @) 7 e BRSO 1e@P) T @D

0€Pr 0cPr

To see this, let & be as in Lemma 3, and satisfy addltlonally the assumption that ® =1 on
the support of @. Then e~ E fg( ) = R "fgxe” E <I>9( ), so from the upper bound (7) of
In(R~2t)e” o <I>9( )|, we obtain that

itA
n(R™*t)e™ 2 fo(2)] Sv / [fo()IR™™(1+ R |z —y + 2tcq| + R72[t]) Ny
Rn
for every positive integer V. Cauchy-Schwarz then gives
_ _itA _ _ _ _
n(R™*t)e™ 2w fo()” Sy / fo@)PR™ (1 + R~ o —y + 2teg| + R72[t)) ™ dy.
R’I’L

To estimate the right hand side of (26), let ¢’ be the dual exponent of ¢ := p/2, and let g € L (R 1)
with | gl| o (rn+1) = 1. We estimate

Lo S w20 p@Pyededt S B [ Y 1f)Pady (29)

0cPr R™ gepr
11



where

Ny g(y) := sup / lg(x, t)|R_(”+2)(1 + R_llx —y+ 2tcg| + R_2|t|)_Nda:dt
0ePgr JR1 1

is a rescaled version of M}. Indeed, applying Lemma 6 to g(R%x, R?t) instead of g(z,t), we obtain,

”mg”Lq’(RnJrl)_)Lq’(Rn) =R 7 Hm}(%||Lq’(Rn+1)_>Lq’(]Rn) Sqn B 7 R".

it N >2n+ ”TH. Thus from (28), we obtain

(/Rm (3 R0 % fy(a) )p/ dudt) e RzR—jRR</7L ( Z ol )p/z x)2/p'
0cPr

(27) follows by taking square roots of both sides, and recalling that ¢’ is the dual exponent of p/2.

Finally, it remains to observe that for any 2 < p < oo, we have

(3 )™

0ePR

< n
oy S Ifllra) (29)

which follows from the following lemma by rescaling by R in the frequency space; combining (26),
(27) and (29) we have our desired local smoothing estimate (24) and hence LS(p,o + %). O

Lemma 7. For any 2 < p < 00, we have

[( o)™

VEL™

< n
Loy Il Lo ()

where &)\V(f) = (& —v) and ¢ is a Schwartz function on R™.

Proof of Lemma 7. The following proof appears, for instance, in Cérdoba [2].

The idea is to write
S lea@r= [ 3 feanmeroay
vezLr 0,1 vezmn
using Parseval. Since
f . (I)V(x>€2m'u-y _ : ,]?(5)(,0(5 _ l/)€27rigc.§e27riy.yd§
and Poisson summation gives
3 o6 — ) =3 By (y + v)e WL,
veZL™ veZL™
we obtain
Zf*q)y( XY — fo— —v)®o(y +v).
vezn vezn
Hence by Cauchy-Schwarz,

[ rea@@ e £ 3 | -y - )Py )l

vEL™ veEZL™
12




which yields

Jor

It follows that

S frave)emofay s [ 1= DR RoEd: = |17 < 0l(2).
Zn

1/2

(3 1ree) ™

vEL™
when 2 < p < 0. O

5 |11+ 1o

: S Il e rey

Lp(Rn Lp/2(Rn
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