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Abstract

We provide the details of the proof of the average theorem and the restric-
tion theorem. Emphasis has been placed on the relation between the decay of
the Fourier transform of the measure carried on a submanifold and the gain
in regularity. The relation between the restriction theorem and a Strichartz
estimate is also explained.

Theorem 1 (Average theorem). Let S be a smooth submanifold of Rn, dσ be the in-
duced Lebesgue measure on it, and dµ(x) = η(x)dσ(x) where η ∈ C∞

c (Rn). Suppose
for some α > 0

d̂µ(ξ) = O(|ξ|−α)

as |ξ| → ∞. Define the average operator by

Af(x) =
∫

S
f(x− y)dµ(y).

Then

(a) A maps L2(Rn) to L2
α(Rn).

(b) A maps L
2α+2
2α+1 (Rn) to L2α+2(Rn).

Proof. The proof of (a) is easy; just observe that if |d̂µ(ξ)| ≤ C|ξ|−α, then together
with the trivial bound |d̂µ(ξ)| ≤ C that holds by the finiteness of the measure dµ,
we have

|d̂µ(ξ)| ≤ C(1 + |ξ|2)−α/2.

Thus

∫
Rn

(1 + |ξ|2)α|Âf(ξ)|2dξ =
∫

Rn

(1 + |ξ|2)α|f̂(ξ)|2|d̂µ(ξ)|2dξ

≤ C2

∫
Rn

|f̂(ξ)|2dξ,
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which implies that
‖Af‖L2

α
≤ C‖f‖L2 .

To prove (b), we proceed in a number of steps.

Localizing the average operator

First we localize the average operator as follows. By means of a partition of
unity, we may assume without loss of generality that the support of dµ lies in a
coordinate chart U of S (the average operator is a finite sum of such in any case).
By a change of coordinate, restricting to a smaller coordinate patch if necessary, we
may assume that S is the graph of a function F (x′) there, i.e. S is defined by

S = {(x′, xn) ∈ Rn−1 × R : xn = F (x′)}.

Then
dµ(x) = η1(x′)

√
1 + |∇F (x′)|2dx′

there, where η1 is a smooth function with compact support on Rn−1. For simplicity,
we write this as

dµ(x) = φ(x′)dx′

with φ ∈ C∞
c (Rn−1). In this local coordinate system,

Af(x) =
∫

Rn−1

f(x′ − y′, xn − F (y′))φ(y′)dy′.

The idea is that we can embed it in an analytic family of operators and apply the
complex interpolation theorem, which we state as follows:

Theorem 2 (Interpolation of Operators). Suppose α > 0, and that for each complex
number s in the strip −α ≤ <(s) ≤ 1, Ts is a linear operator defined on simple func-
tions on Rn such that for any fixed simple functions f and g, Φ(s) =

∫
Tsf(x)g(x)dx

is analytic and bounded (as a function of s) in the open strip −α < <(s) < 1 and
is continuous on the closure of the strip. Suppose further that there are exponents
p0, p1, q0, q1 ∈ [1,∞] such that{

‖T−α+itf‖Lq0 ≤ ‖f‖Lp0

‖T1+itf‖Lq1 ≤ ‖f‖Lp1

uniformly for t ∈ R. Then
‖T0f‖Lq ≤ ‖f‖Lp

where
1
p

=
1− θ

p0
+

θ

p1
,

1
q

=
1− θ

q0
+
θ

q1
, and θ =

α

α+ 1
.

In particular, T0 extends uniquely to a bounded operator Lp → Lq with norm at most
1.
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Embedding in an analytic family of operators

To embed A in an analytic family of operators, first observe that Af can be
written as

Af(x) =
∫

Rn

f(x− y)δ0(yn − F (y′))φ(y′)dy.

It is profitable to introduce a cut-off function ψ in the yn variable; indeed

Af(x) =
∫

Rn

f(x− y)δ0(yn − F (y′))ψ(yn − F (y′))φ(y′)dy,

where ψ ∈ C∞
c (R) with ψ ≡ 1 near 0 and ψ = 0 outside (−1, 1). The point is

that there is a way to embed the distribution δ0 on R into an analytic family of
distributions. Consider the distribution

g ∈ S(R) 7→ js(g) :=
∫

R

1
Γ(s)

ts−1
+ g(t)dt,

where t+ = max{t, 0} and s is a complex parameter. The integral converges if
Re s > 0. It can be analytically continued to Re s > −1 by integration by parts;
indeed for Re s > 0,

js(g) =
∫

R

1
Γ(s)

ts−1
+ g(t)dt =

∫ ∞

0

1
sΓ(s)

d

dt
(ts)g(t)dt = −

∫ ∞

0

1
Γ(s+ 1)

tsg′(t)dt,

the last of which converges if Re s > −1. Hence we can take the last integral as the
definition of js when Re s > −1. In particular, when s = 0, the distribution is

j0(g) = −
∫ ∞

0

1
Γ(1)

t0g′(t)dt = −
∫ ∞

0
g′(t)dt = g(0),

hence j0 is just δ0. More generally, we can define the distribution for Re s > −k by
the (convergent) integral

js(g) = (−1)k

∫
R

1
Γ(s+ k)

ts+k−1g(k)(t)dt.

This gives us an analytic family of distributions, in the sense that js(g) is a holomor-
phic function of s for each Schwartz function g on R. As a result, we are tempted
to define an analytic family of operators by

Tsf(x) =
∫

Rn

f(x− y)js(yn − F (y′))ψ(yn − F (y′))φ(y′)dy,

say for Schwartz functions f , with js acting on the yn variable. This can be written
as

Tsf = f ∗Ks,

where Ks is the distribution defined by

Ks(y) = js(yn − F (y′))ψ(yn − F (y′))φ(y′). (1)
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For Re s > 0, Ks(y) is just the function given by

Ks(y) =
1

Γ(s)
(yn − F (y′))s−1

+ ψ(yn − F (y′))φ(y′).

(Here we already see why it was good to incorporate ψ in our formula for A; it is
only by introducing this harmless factor that Ks has compact support in the yn

variable, or at least has some decay as yn →∞.) Note also that the distribution K0

is just dµ.

Boundedness of Ks

Now when Re s = 1, Ks(y) is a nice bounded function of y; indeed then

|Ks(y)| ≤
C

Γ(s)
,

and hence Ts maps L1 to L∞ with norm at most CΓ(s)−1. Note that

1
Γ(s)

=
sinπs
π

Γ(1− s),

so when Re s = 1,
1

Γ(s)
≤ CeIm s,

which grows exponentially with Im s as Im s → ∞. As a result, the maps Ts does
not quite satisfy the conditions of the interpolation that we stated above; this can
be taken care of easily though, so let’s not worry about it for now.

Fourier transform of Ks

Next we would like to obtain an L2 theory for Ts for appropiate values of s. Thus
we need to compute and estimate K̂s(ξ). First, suppose Re s > 0, so that Ks(y) is
a nice integrable function of y. Then

K̂s(ξ)

=
1

Γ(s)

∫
Rn

(yn − F (y′))s−1
+ ψ(yn − F (y′))φ(y′)e−2πiy·ξdy

=
1

Γ(s)

∫
Rn−1

(∫
R
(yn − F (y′))s−1

+ ψ(yn − F (y′))e−2πiynξndyn

)
φ(y′)e−2πiy′·ξ′dy′

=
1

Γ(s)
I(s, ξn)

∫
Rn−1

φ(y′)e−2πi(y′·ξ′+F (y′)ξn)dy′

=
1

Γ(s)
I(s, ξn)d̂µ(ξ) (2)

where
I(s, ξn) =

∫
R
ts−1
+ ψ(t)e−2πitξndt;

this follows from the change of variable yn −F (y′) 7→ yn and that dµ(y) = φ(y′)dy′.
Now when Re s ≤ 0, Ks is a distribution with compact support, so K̂s(ξ) is the
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function defined by 〈e−2πiy·ξ,Ks(y)〉 which depends analytically on s. Furthermore,
Γ(s)−1I(s, ξn) also has an analytic continuation to the right half plane by integration
by parts, just as we analytically continued the distribution js. Since both sides of
(2) can be analytically continued to the whole complex plane, the identity continues
to hold even when Re s ≤ 0, and we shall see that K̂s(ξ) is a bounded function of ξ
on the vertical line Re s = −α, thereby giving us the desired L2 theory of Ts that
allows us to apply complex interpolation.

Estimating I(s, ξn)

Now we estimate I(s, ξn): first for Re s > 0 we have the trivial bound

|I(s, ξn)| ≤
∫

R
tRe s−1
+ |ψ(t)|dt ≤ C

∫ 1

0
tRe s−1dt ≤ CRe s. (3)

Actually via an integration by parts, we can obtain a better decay for large |ξn| if
Re s > 1: in that case

I(s, ξn) =
∫ ∞

0
ts−1ψ(t)

1
−2πiξn

d

dt

(
e−2πitξn

)
dt

=
1

2πiξn

∫ ∞

0

d

dt
(ts−1ψ(t))e−2πitξndt

the boundary terms vanishing since Re s > 1 and ψ vanish at infinity. This shows
that then

|I(s, ξn)| ≤ C

|ξn|

∫ ∞

0

∣∣∣∣ ddt(ts−1ψ(t))
∣∣∣∣ dt ≤ C

|ξn|
.

Indeed the larger Re s is, the more integration by parts one can perform and the
better decay one obtains as |ξ| → ∞: if Re s > k for some positive integer k, then
arguments analogous to above give

|I(s, ξn)| ≤ C

|ξn|k
. (4)

It turns out that one can get a better estimate than the trivial one even if we just
have Re s ∈ (0, 1]: the idea is that one can in effect perform an integration by parts
Re s times even though Re s is not an integer. More precisely, one splits the integral

I(s, ξn) =
∫ ε

0
+

∫ ∞

ε
ts−1ψ(t)e−2πitξndt = A+B,

ε < 1. The first term is estimated by

|A| ≤
∫ ε

0
tRe s−1|ψ(t)|dt ≤ CRe sε

Re s.

The second term can be integrated by parts:

B =
∫ ∞

ε
ts−1ψ(t)

1
−2πiξn

d

dt

(
e−2πitξn

)
dt

=
1

2πiξn

(
εs−1ψ(ε)e−2πiεξn +

∫ ∞

ε

d

dt
(ts−1ψ(t))e−2πitξndt

)
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so

|B| ≤ CεRe s−1

|ξn|
+

C

|ξn|

∫ ∞

ε

∣∣∣∣ ddt(ts−1ψ(t))
∣∣∣∣ dt ≤ CRe sε

Re s−1

|ξn|
.

Hence

|I(s, ξn)| ≤ |A|+ |B| ≤ CRe s

(
εRe s +

εRe s−1

|ξn|

)
.

Note that we are free to choose ε here. The first term is big when ε is small, while
the second term is big when ε is large. One optimizes the expression by choosing ε
such that the two terms are of the same order, say by setting

εRe s =
εRe s−1

|ξn|
,

i.e. ε = |ξn|−1. Then
|I(s, ξn)| ≤ CRe s|ξn|−Re s, (5)

a better decay than the trivial one when |ξn| goes to infinity. (5) was proven just
now for Re s ∈ (0, 1], but if Re s ∈ (k, k + 1], then one can integrate by parts k
times just as we did when we improved from estimate (3) to (4) and that allows one
to see that (5) actually holds on the whole right half plane Re s > 0. Together with
the trivial estimate, we see that

|I(s, ξn)| ≤ CRe s(1 + |ξn|)−Re s (6)

when Re s > 0.

Next we estimate I(s, ξn) when Re s ≤ 0. Here we need a different integration
by parts to reduce the estimate to the case Re s ∈ (0, 1]. By analytic continuation,
if Re s ∈ (−k,−k + 1] for some positive integer k, then

1
Γ(s)

I(s, ξn) =
(−1)k

Γ(s+ k)

∫ ∞

0
ts+k−1 d

k

dtk
(ψ(t)e−2πitξn)dt

where then Re (s+ k) ∈ (0, 1]. It follows from the proof of (6) that∣∣∣∣ 1
Γ(s)

I(s, ξn)
∣∣∣∣ ≤ CRe (s+k)

Γ(s+ k)
(1+|ξn|)k(1+|ξn|)−Re (s+k) ≤ CRe se

Im s(1+|ξn|)−Re s. (7)

Back to L2 theory

Putting things back together, note that by the assumed decay d̂µ = O(|ξ|−α)
and by the finiteness of the measure dµ, we have

|d̂µ(ξ)| ≤ C(1 + |ξ|)−α.

From (7), we see that if we were to find a vertical line on the complex s plane on
which K̂s(ξ) = Γ(s)−1I(s, ξn)d̂µ(ξ) is bounded as a function of ξ, then the best that
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we can do is to go to the straight line Re s = −α; we could not hope to go beyond
the left hand side of that. Indeed on this line

|K̂s(ξ)| ≤ CRe se
Im s(1 + |ξn|)−Re s(1 + |ξ|)−α ≤ Cαe

Im s

This proves that Ts is bounded from L2 to L2 if Re s = −α, with norm at most
Cαe

Im s. Again, this does not quite satisfy the hypothesis of the complex interpola-
tion theorem, but we shall take care of that now.

Conclusion with complex interpolation

Indeed it suffices to modify slightly the definition of Ts to apply the complex
interpolation theorem as stated. Let

T̃sf(x) = es
2
Tsf(x).

Then T̃0 is still the average operator A, but now one takes advantage of that∣∣∣es2
∣∣∣ = e(Re s)2−(Im s)2

which decays more rapidly then e−Im s as Im s→∞. Hence one has now{
‖T̃−α+itf‖L2 ≤ Cα‖f‖L2

‖T̃1+itf‖L∞ ≤ C‖f‖L1

It follows from the complex interpolation theorem that T̃0 = A maps L
2α+2
2α+1 bound-

edly to L2α+2.

Theorem 3 (Restriction theorem). Let S, dµ and α be as in the average theorem.
Then the Fourier transform maps Lp(Rn) to L2(S, dµ),

p =
2(α+ 1)
α+ 2

.

Proof. Let f be a Schwartz function.

R∗R duality lemma

First, ∫
S

∣∣∣f̂(ξ)
∣∣∣2 dµ(ξ) =

∫
S
f̂(ξ)f̂(ξ)dµ(ξ)

=
∫

Rn

∫
Rn

∫
S
f(y)e−2πiy·ξf(x)e−2πix·ξdµ(ξ)dydx

=
∫

Rn

(∫
Rn

f(y)d̂µ(y − x)dy
)
f(x)dx.

This is just another way of saying that if Rf = f̂
∣∣∣
S

then

〈Rf,Rf〉L2(S,dµ) = 〈R∗Rf, f〉L2(Rn)
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with
R∗Rf = f ∗ d̂µ(− ·).

(Recall that given an L2(dµ) function g defined on S, R∗g(x) is the function defined
on Rn such that

〈Rf, g〉L2(S,dµ) = 〈f,R∗g〉L2(Rn)

say for all Schwartz function f , where again Rf = f̂
∣∣∣
S
. But

〈Rf, g〉L2(S,dµ) =
∫

S
f̂(ξ)g(ξ)dµ(ξ)

=
∫

S

∫
Rn

f(x)e−2πix·ξg(ξ)dxdµ(ξ)

=
∫

Rn

f(x)
∫

S
g(ξ)e2πix·ξdµ(ξ)dx

=
〈
f(x),

∫
S
g(ξ)e2πix·ξdµ(ξ)

〉
L2(Rn)

,

so
R∗g(x) =

∫
S
g(ξ)e2πix·ξdµ(ξ)

for g ∈ L2(S, dµ). (One can thus think of R∗ as an extension operator.) It follows
that

R∗Rf(x) =
∫

S
f̂(ξ)e2πix·ξdµ(ξ) =

∫
Rn

f(y)d̂µ(y − x)dy

as claimed.)

To prove that R maps Lp to L2, it suffices to show that R∗R maps Lp(Rn) to
Lp′(Rn), i.e.

‖f ∗ d̂µ(− ·)‖Lp′ (Rn) ≤ C‖f‖Lp(Rn),

because
‖Rf‖2

L2(S,dµ) ≤ ‖R∗Rf‖Lp′ (Rn)‖f‖Lp(Rn).

Embedding into an analytic family of operators

Now
R∗Rf(x) =

∫
Rn

f(x− y)d̂µ(−y)dy.

Again we would like to embed this into an analytic family of operators. Let Ks

be an analytic family of distributions with K0 = dµ as in (1) in the proof of the
average theorem. Then it is natural to define, motivated by the proof of the average
theorem, that

Tsf(x) = es
2

∫
Rn

f(x− y)K̂s(−y)dy.

This integral converges for all complex values of s, since we observed that K̂s(y) is
a function that grows at most polynomially in y for each fixed complex value of s,
and f is Schwartz.
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L2 theory

Observe that
T̂sf(ξ) = es

2
f̂(ξ)Ks(−ξ)

and recall that ∣∣∣es2
Ks(−ξ)

∣∣∣ ≤ C

if Re s = 1. Hence when Re s = 1, Ts maps L2 to L2 with norm at most C.

L1 theory

Next recall that ∣∣∣es2
K̂s(ξ)

∣∣∣ ≤ Cα

if Re s = −α. Hence when Re s = −α, Ts maps L1 to L∞ with norm at most Cα.

Conclusion with complex interpolation

It follows from the complex interpolation theorem now that R∗R = T0 maps
Lp(Rn) boundedly to Lp′(Rn), p = 2(α+1)

α+2 . Hence the Fourier transform extends to
a map from Lp(Rn) to L2(S, dµ).

Corollary 1. Let S, dµ, α be as in the restriction theorem. Then the extension
operator

R∗g(x) =
∫

S
g(ξ)e2πix·ξdµ(ξ)

maps L2(S, dµ) boundedly to Lq(Rn), with

q =
2(α+ 1)

α
.

Proof. Note that the q in this corollary is the conjugate exponent to p in the re-
striction theorem. We have seen R maps Lp(Rn) to L2(S, dµ), p = 2(α+1)

α+2 . As a
result, ∣∣〈f,R∗g〉L2(Rn)

∣∣ =
∣∣〈Rf, g〉L2(S,dµ)

∣∣
≤ ‖Rf‖L2(S,dµ)‖g‖L2(S,dµ)

≤ C‖f‖Lp(Rn)‖g‖L2(S,dµ)

so by duality
‖R∗g‖Lq(Rn) ≤ C‖g‖L2(S,dµ),

q being the conjugate exponent to p, i.e. q = 2(α+1)
α .

We shall now give some applications of the above theorems. Here we shall be
dealing with non-compact submanifolds of an Euclidean space, and the measure in-
volved will not be the one that is induced from the Lebesgue measure of the under-
lying Euclidean space. The proofs illustrate how one handles such non-compactness
by introducing cut-off functions.

9



Corollary 2 (Strichartz estimate for the linear Schrodinger equation). Let f(x) be
a Schwartz function on Rn. If

u(x, t) =
∫

Rn

f̂(ξ)e2πi(x·ξ+t|ξ|2)dξ

so that u solves the linear Schrodinger equation(
2πi

∂

∂t
−∆x

)
u(x, t) = 0

with initial value
u(x, 0) = f(x),

then
‖u‖Lq(dxdt) ≤ C‖f‖L2(dx)

with
q =

2(n+ 2)
n

.

Proof. The crucial submanifold here is the hypersurface

S = {(ξ, τ) ∈ Rn+1 : τ = |ξ|2}.

The induced Lebesgue measure on the hypersurface is dσ =
√

1 + 4|ξ|2dξ, but the
essential property for us would be its behaviour near the origin. We would like
to apply the average theorem and the restriction theorem, but our surface-carried
measure dσ does not have compact support. Therefore we need to introduce a cut-off
function and let the support go to infinity. The non-isotropic dilations,

(x, t) 7→ (λx, λ2t)

that preserve the hypersurface, will also play a role.

Let η ∈ C∞
c (Rn) with η(0) = 1, and let dµ = η(ξ)dσ = η(ξ)

√
1 + 4|ξ|2dξ. Then

since S has nowhere vanishing Gaussian curvature, d̂µ(x, t) decays like

d̂µ(x, t) = O(|(x, t)|−
n
2 ),

so we can apply Corollary 1 with α = n/2.

The corollary to the restriction theorem says that if

Tf(x, t) =
∫

Rn

f̂(ξ)e2πi(x·ξ+t|ξ|2)η(ξ)
√

1 + 4|ξ|2dξ

then
‖Tf‖Lq(dxdt) ≤ C‖f̂‖L2(dξ) = C‖f‖L2(dx),
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where q = 2(n+2)
n . Now pointwisely

u(x, t) = lim
λ→+∞

∫
Rn

f̂(ξ)e2πi(x·ξ+t|ξ|2)η

(
ξ

λ

) √
1 + 4

∣∣∣∣ ξλ
∣∣∣∣2dξ

= lim
λ→+∞

∫
Rn

λnf̂(λξ)e2πi(λx·ξ+λ2t|ξ|2)η(ξ)
√

1 + 4|ξ|2dξ

= lim
λ→+∞

T (fλ)(λx, λ2t)

where fλ(x) = f(λ−1x). Hence for q = 2(n+2)
n ,

‖u‖Lq(dxdt) ≤ lim inf
λ→+∞

‖T (fλ)(λx, λ2t)‖Lq(dxdt) (Fatou’s lemma)

= lim inf
λ→+∞

λ
−n+2

q ‖T (fλ)‖Lq(dxdt) (Scale invariance)

≤ lim inf
λ→+∞

Cλ
−n+2

q ‖fλ‖L2(dx) (Restriction theorem)

= lim inf
λ→+∞

Cλ
−n+2

q λ
n
2 ‖f‖L2(dx) (Scale invariance)

= C‖f‖L2(dx)

since
−n+ 2

q
+
n

2
= 0

for this value of q. Hence we are done.

Corollary 3 (Averaging along a paraboloid). Let f(x) be a Schwartz function on
Rn. If

Af(x) =
∫

Rn−1

f(x′ − y′, xn − |y′|2)dy′

then
‖Af‖Lp′ (Rn) ≤ C‖f‖Lp(Rn)

with
p =

n+ 1
n

.

Proof. Again let dµ = η(y′)
√

1 + 4|y′|2dy′ be a measure carried on the paraboloid
{yn = |y′|2}, where η ∈ C∞

c (Rn−1). Then d̂µ(ξ) = O(|ξ|−
n−1

2 ) because S has
nowhere vanishing Gaussian curvature. Hence the average theorem says that if

Tf(x) =
∫

Rn−1

f(x′ − y′, xn − |y′|2)η(y′)
√

1 + 4|y′|2dy′,

then
‖Tf‖Lp′ (Rn) ≤ C‖f‖Lp(Rn)

with
p =

n+ 1
n

.
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Now pointwisely

Af(x) =
∫

Rn−1

f(x′ − y′, xn − |y′|2)dy′

= lim
λ→+∞

∫
Rn−1

f(x′ − y′, xn − |y′|2)η
(
y′

λ

) √
1 + 4

∣∣∣∣y′λ
∣∣∣∣2dy′

according to the dominated convergence theorem. However,∫
Rn−1

f(x′ − y′, xn − |y′|2)η
(
y′

λ

) √
1 + 4

∣∣∣∣y′λ
∣∣∣∣2dy′

=λn−1

∫
Rn−1

f(x′ − λy′, xn − λ2|y′|2)η(y′)
√

1 + 4|y′|2dy′

=λn−1T (fλ)(λ−1x′, λ−2xn)

where
fλ(x) = f(λx′, λ2xn)

is the dilation of f by the relevant non-isotropic dilation. Hence

‖Af‖Lp′ (Rn) ≤ lim inf
λ→+∞

λn−1‖T (fλ)(λ−1x′, λ−2xn)‖Lp′ (Rn) (Fatou’s lemma)

= lim inf
λ→+∞

λn−1λ
n+1
p′ ‖T (fλ)‖Lp(Rn) (Scale invariance)

≤ lim inf
λ→+∞

Cλn−1λ
n+1
p′ ‖fλ‖Lp(Rn) (Average theorem)

= lim inf
λ→+∞

Cλn−1λ
n+1
p′ λ

−n+1
p ‖f‖Lp(Rn) (Scale invariance)

= C‖f‖Lp(Rn)

since
n− 1 +

n+ 1
p′

− n+ 1
p

= 0

when p = n+1
n . This completes the proof.

Corollary 4 (Strichartz estimate for linearized KdV equation). Let f(x) be a
Schwartz function on R. If

u(x, t) =
∫

Rn

f̂(ξ)e2πi(xξ+tξ3)dξ

so that u solves the linearized KdV equation(
4π2 ∂

∂t
− ∂3

∂3x

)
u(x, t) = 0

with initial value
u(x, 0) = f(x),

then
‖u‖L8(dxdt) ≤ C‖f‖L2(dx).
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Proof. The proof is the same as that of Corollary 2, except now that the relevant
submanifold is the curve S = {(ξ, ξ3) : ξ ∈ R} in R2 and the curvature of S vanishes
at the origin. The best possible decay for d̂µ is now

d̂µ(ξ) = O(|ξ|−
1
3 ),

so if we apply Corollary 1 as in the proof of Corollary 2 with α = 1/3 we obtain

‖u‖L8(dxdt) ≤ C‖f‖L2(dx).

Corollary 5 (Averaging along a curve of finite type). Let f(x) be a Schwartz func-
tion on R2. If

Af(x) =
∫

R
f(x1 − t, x2 − tk)dt

then
‖Af‖Lp′ (R2) ≤ C‖f‖Lp(R2)

with
p =

2k + 2
k + 2

.

Proof. Again the proof is the same as that of Corollary 3, except now that the
relevant submanifold is the curve S = {(t, tk) : t ∈ R} in R2. The curvature of S
vanishes at the origin. However, since it is a curve of finite type k, we still have a
certain decay for d̂µ; indeed

d̂µ(ξ) = O(|ξ|−
1
k ),

so if we apply Theorem 1 with α = 1/k as in the proof of Corollary 3 we obtain

‖Af‖Lp′ (R2) ≤ C‖f‖Lp(R2)

with
p =

2k + 2
k + 2

.
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