
Fourier Analysis and Oscillatory Integrals

Problems from the course by Elias Stein

7/30/07 - 8/2/07

These solutions were put together by the participants of the 2006 Princeton summer school in
analysis and geometry. Thanks to Kiril Datchev, the original version is available from his web-
page, http://math.berkeley.edu/∼datchev. The participants of the same program in 2007 has
contributed some alternative solutions and additional remarks.

1. Suppose f ∈ L1(Rd). Show that f̂ is continuous and that f̂ → 0 as ξ →∞.

(a) Continuity: Suppose ξn → ξ. We want f̂(ξn) → f̂(ξ), or∫
f(x)e−2πix·ξndx→

∫
f(x)e−2πix·ξdx

For each x, we have
f(x)e−2πix·ξn → f(x)e−2πix·ξ

and moreover, since |e−2πix·ξ| = 1, it follows that,

|f(x)e−2πix·ξ| ≤ |f(x)| ∈ L1.

We can therefore apply the Dominated Convergence Theorem to yield the desired conclusion.

Alternative solution. To prove continuity of f̂ , it is natural to ask a harder question and
try obtaining some quantitative bounds for the decay of f̂(ξ + h) − f̂(ξ) as h → 0. If f is
Schwartz, then f̂ is also Schwartz, so

f̂(ξ + h)− f̂(ξ) = O(|h|)

as h → 0 for such f . In general, such an inequality cannot be expected for a general L1

function f (why?); however, given a general L1 function f , one could approximate it by a
Schwartz function g in the L1 norm, i.e. one could pick a Schwartz function g such that

‖f − g‖L1 < ε.

1



Then

|f̂(ξ + h)− f̂(ξ)| ≤ |f̂(ξ + h)− ĝ(ξ + h)|+ |ĝ(ξ + h)− ĝ(ξ)|+ |ĝ(ξ)− f̂(ξ)|
≤ 2‖f − g‖L1 +O(|h|)
≤ 2ε+O(|h|),

and letting h→ 0 and ε→ 0, we get f̂(ξ + h) → f̂(ξ) as h→ 0.

Remark. It was observed in the problem session that this second proof actually proves the
uniform continuity of f̂ for a general L1 function f . Also, one might use instead of the
Schwartz functions the L1 functions with compact support; such are still dense in L1 and
|f̂(ξ + h) − f̂(ξ)| ≤ ‖f(x)(e2πih·x − 1)‖L1 ≤ R|h|‖f‖L1 = O(|h|) for such f , where R is the
size of the support of f .

(b) That
lim
ξ→∞

f̂(ξ) = 0 :

Explicit calculation shows that this is true if f is the characteristic function of an n-
dimensional interval. For example, in the one-dimensional case, if f = χ[a,b], then

f̂(ξ) =

∫ ∞

−∞
f(x)e−2πiξxdx =

∫ b

a

e−2πiξxdx =

∫ b

a

cos(−2πξx)dx+ i

∫ b

a

sin(−2πξx)dx

which equals
1

2πξ
((sin 2πbξ − sin 2πaξ) + i(cos 2πbξ − cos 2πaξ)),

a quantity that approaches 0 as ξ approaches ∞. (By the way, this is the most basic instance

of a van der Corput’s estimates: the proof shows
∣∣∣∫ b

a
eiξxdx

∣∣∣ ≤ 4/|ξ| independent of a and b,

which is the van der Corput’s estimate for the case where the phase function φ(x) = x.) It
follows that the same conclusion holds for finite linear combinations of such characteristic
functions. Now such “simple” functions are dense in L1, so we argue as follows: we want to
show that

| lim
ξ→∞

f̂(ξ)| < ε

for arbitrary ε > 0. If {gn} is a sequence of simple functions converging to f in the L1-norm,
then by what we have just seen,

| lim
ξ→∞

f̂(ξ)| = | lim
ξ→∞

f̂(ξ)− lim
ξ→∞

ĝn(ξ)|

for each n. But
| lim

ξ→∞
f̂(ξ)− lim

ξ→∞
ĝn(ξ)| = lim

ξ→∞
|f̂(ξ)− ĝn(ξ)|,

which, by the linearity of the Fourier transform, is equal to

lim
ξ→∞

|(f − gn)∧(ξ)|.
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By continuity of (f − gn)∧ (see part (a) above), we have

lim
ξ→∞

|(f − gn)∧(ξ)| ≤ sup |(f − gn)∧(ξ)| = ‖(f − gn)∧‖∞ ≤ ‖(f − gn)‖1 < ε

for n sufficiently large, as was to be shown.

Alternative solution. One could also approximate using compactly supported smooth func-
tions, or Schwartz functions.

2. Suppose f ∈ L1(Rd). Prove

(a)
∫
|f(x + h) − f(x)|dx → 0 as |h| → 0. Let ε > 0 be given. Choose fε continuous and

compactly supported such that ||f − fε||1 < ε/3 (|| · ||1 denotes the L1 norm). Now

||f(x+h)−f(x)||1 ≤ ||f(x+h)−fε(x+h)||1+ ||fε(x+h)−fε(x)||1+ ||fε(x+h)−f(x)||1

The first and last terms are already bounded by ε/3. We need only choose h such that

|fε(x+ h)− fε(x)| <
ε

3M

where M is the measure of the support of fε. But this is possible because a compactly
supported continuous function is uniformly continuous. Since this is possible for any
ε > 0, the proof is complete.

(b) If
∫
|f(x+ h)− f(x)|dx ≤ A|h|α as |h| → 0, then f̂(ξ) = O(|ξ|−α), ξ →∞.

The condition on the Fourier Transform is deduced as follows:

A|h|α ≥
∫
|f(x+ h)− f(x)|dx ≥ |

∫
e−2πixξ(f(x+ h)− f(x))dx| = |f̂(ξ)(e2πiξh − 1)|

This means that

|f̂(ξ)||e
2πiξh − 1

|h|α
| ≤ A (1)

For sufficiently small |h| this is true for all ξ; suppose that the threshold is |h| < ε. We
now choose h such that e2πiξh 6= 1 and write

|f̂(ξ)||ξ|α ≤ A
(|h||ξ|)α

|e2πiξh − 1|

We will now show that when |ξ| > 1/ε, we can find h with |h| < ε such that

(|h||ξ|)α

|e2πiξh − 1|
≤ C

To do this, let h = ξ
2|ξ|2 . This makes the numerator (1/2)α and the denominator 2.

This completes the proof.

Remark. The question basically asks one to deduce some sort of decay for the Fourier
transform f̂ given some smoothness of f . If we knew ∇f ∈ L1, then we can integrate
by parts to obtain |f̂(ξ)| = |

∫
f(x) 1

−2πξj

∂
∂xj
e−2πixξdx| ≤ c‖∇f‖L1/|ξj|. Now we do not
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have such strong pointwise differentiability condition; we just have a condition involving
the difference quotients of f . But the idea is that we can still perform some discrete
integration by parts, a version that works for difference quotients, to obtain the same
kind of bounds. Note that∫

(f(x+ h)− f(x))g(x)dx =

∫
f(x)(g(x− h)− g(x))dx,

if each term in the integrand is integrable. Apply this to our f and take g(x) = e−2πixξ,
we get∫

(f(x+ h)− f(x))e−2πixξdx =

∫
f(x)(e−2πi(x−h)ξ − e−2πixξ)dx = f̂(ξ)(e2πihξ − 1),

as we had above, and noting that we are free to choose h so that e2πihξ − 1 is bounded
away from 0, we are done.

(c) If α > 1 in (b), then f = 0 a.e.

From (1) above we see that for ξ fixed

|f̂(ξ)||(2πiξh|h|−α +O(|h|2−α))| ≤ A

If α > 1 this is only possible if f̂(ξ) = 0. This implies f = 0 a.e.

Alternative solution. As was suggested in the problem session, one could prove, without
Fourier analysis, that if

∫
|f(x+ h)− f(x)|dx ≤ A|h|α as |h| → 0 for some α > 1, then

the distributional derivatives of f are all zero, and thus f is constant; being in L1 we
must have f = 0 a.e. To see that all distributional derivatives of f are zero, note that
if φ ∈ C∞

c , then

∣∣∣∣∫ f(x)
φ(x)− φ(x− h)

|h|
dx

∣∣∣∣ =

∣∣∣∣−∫ f(x+ h)− f(x)

|h|
φ(x)dx

∣∣∣∣
≤ C

∫
|f(x+ h)− f(x)|

|h|
dx

= O(|h|α−1) → 0

as h→ 0. However, the left hand side converges to
∫
f(x) ∂

∂xj
φ(x)dx as h→ 0 along the

xj direction; this is a consequence of the dominated convergence theorem, since f ∈ L1

and φ ∈ C∞
c . This shows that all distributional derivatives of f are zero.

3. The result in Problem 1 cannot essentially be improved. Prove that there is an F ∈ L1(Rd)
such that for every ε > 0, F̂ (ξ) 6= O(|ξ|−ε) as ξ →∞
In Rd, Let F (x) =

∑∞
n=2

1
n(log n)2

nde−π|x|2n2
. Since each nde−π|x|2n2

integrates to 1 over Rd

(substitute nx for x in the Gaussian integral), and since
∑∞

n=2
1

n(log n)2
converges (compare

the sum to the integral of − 1
x(log x)2

which is the derivative of 1
log x

), we see by the monotone

convergence theorem that F is in L1(Rd). The Fourier transform of nde−π|x|2n2
is e−π|x|2/n2
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(see the Appendix). Now by the dominated convergence theorem, the fourier transform of
F (x) is G(x) =

∑∞
n=2

1
n(log n)2

e−π|x|2/n2
. Then for any x ∈ Rd with |x| ≥ 2, we have

G(x) =
∞∑

n=2

1

n(log n)2
e−π|x|2/n2 ≥

∑
n≥|x|

1

n(log n)2
e−π|x|2/n2 ≥ e−π

∑
n≥|x|

1

n(log n)2
≥ e−π 1

log |x|
,

where the last inequality comes from comparing the sum
∑

n≥|x|
1

n(log n)2
to the integral∫

y≥|x|
1

y(log y)2
dy. It is easy to show using L’Hospital’s rule that 1

log |x| is not O(|x|−ε) for

any ε > 0, so the same holds for G(x).

Alternative solution. One good way to construct an L1 function is to take a sequence of L1

functions fj, each with norm 1, and let F =
∑
ajfj, where

∑
|aj| < ∞. Indeed then each

f̂j has L∞ norm bounded by 1, and we can make them narrow non-negative bumps around

any point that has height 1; then each aj f̂j contributes a height aj around a prescribed

point ξj, and if ξj goes to infinity fast enough, then the decay of F̂ at infinity is worse
than any O(|ξ|−α). (This last idea was due to the participants of the summer school 2007.)
To be more precise, let g be a Schwartz function whose Fourier transform is non-negative,
compactly supported in the unit ball and has value 1 at the origin, and ξj be a sequence of
points to be determined, but which goes to infinity very rapidly as j →∞. Then ĝ(ξ − ξj)
is supported near ξj. Let fj be the L1 function whose Fourier transform is ĝ(ξ− ξj); each fj

has the same L1 norm, namely the L1 norm of g. Now let aj be, say, j−2. Then

F̂ (ξk) =
∑

aj f̂j(ξk) ≥ akf̂k(ξk) = ak = k−2.

Hence if ξk goes to infinity rapidly enough, say ξk = kk, then F̂ (ξ) is not O(|ξ|−α) for any
α > 0.

Remark. Even in the original solution, the Gaussian function is not essential. If g is any L1

function whose Fourier transform is non-negative and ĝ(ξ) ≥ 1 for all |ξ| < 1, then letting
fj ∈ L1 be such that f̂j(ξ) = ĝ(ξ/j), we have all ‖fj‖L1 being equal, and F =

∑
ajfj would

be in L1 as long as each aj ≥ 0 and
∑
aj < ∞. Now f̂j is becoming fatter and fatter, and

thus F̂ (m) ≥
∑∞

j=m aj f̂j(m) =
∑
aj ĝ(m/j) ≥

∑∞
j=m aj. Thus if we could find a non-negative

sequence aj for which
∑∞

j=1 aj <∞ and
∑∞

j=m aj decays slower than any negative power of
m, say

∑∞
j=m aj ≥ 1/ logm, then we are done. But this could easily be done, by taking a

telescoping series; indeed if we set aj = 1
log j

− 1
log(j+1)

for large j, then the conditions are

satisfied, and F as such would be in L1 and yet having Fourier transform that decays slower
than any negative power of |ξ|. A trickier choice of aj would be aj = 1

j(log j)2
.

4. (a) Suppose f ∈ L2
k(Rd), and k > d/2. Show that f can be corrected on a set of measure

zero to become continuous.

Let f ∈ L2
k(Rd) with k > d/2. Then, by definition, f̂(ξ)(1 + |ξ|2)k/2 ∈ L2(Rd). By the

Schwarz-Cauchy inequality it follows that

f̂(ξ) = (f̂(ξ)(1 + |ξ|2)k/2) · (1 + |ξ|2)−k/2 ∈ L1(Rd)
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Using Problem 1 above, it follows that
ˆ̂
f lies in the same equivalence class of L∞(Rd) as

some continuous function, so
ˆ̂
f (and hence also f), can be modified on a set of measure

zero to become continuous.

Remark. If k > d/p, then every f ∈ Lp
k(Rd) can be modified on a set of measure zero

to become continuous: this is the General Sobolev Theorem, proved on pp. 270-271 of
Partial Differential Equations by L.C. Evans. More on Sobolev spaces can be found in
Chapter 6.5 of Stein’s Harmonic Analysis.

(b) Give an example of f ∈ L2
1(R2) which cannot be corrected to be continuous.

Let f(x) = logα(1/|x|))χ(x), where χ ∈ C∞
0 (R2), supp(χ) ⊂ B(0, 2); χ ≡ 1 near 0, and

α ∈ (0, 1/2). Since lim
|x|→0

f(x) = +∞, f can’t be modified on a set of measure zero to

be continuous.

Claim. f ∈ L2
1(R2)

Proof. We use polar coordinates on R2∫
R2

|f(x)|2dx ≤ C

∫ ∞

0

log2α(1/r)rdr

We will show
lim

r→0+
log2α(1/r)r = 0 (2)

from which it will follow that the the latter integral is finite. But this limit is the same
as

lim
x→∞

logα x

x
= lim

x→∞

α logα−1 x(1/x)

1
= 0

where we have used L’Hospital’s rule. Now (2) holds.

Let j ∈ {1, 2}. Then, near 0, ∂jf(x) = ∂j logα(1/|x|) = −α logα−1(1/|x|) xj

2|x|2 So

|∂jf(x)| ≤ C logα−1(1/|x|) 1

|x|

for x 6= 0 sufficiently small. Using polar coordinates, it will follow that ∂jf ∈ L2(R2) if
we manage to show that∫ 1/2

0

log2(α−1)(1/r)
rdr

r2
=

∫ 1/2

0

log2(α−1)(1/r)
dr

r
< +∞ (3)

Observe that d
dr

log2α−1(1/r) = −(2α − 1) log2(α−1)(1/r)/r for 0 < r < 1/2. Also
2α− 1 < 0 by construction, hence

lim
ε→0+

log2α−1(1/r)
∣∣r=1/2

r=ε
= log2α−1 2

So (3) immediately follows.
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Thus it follows that f ∈ L2
1(R2).

Alternative solution. x 7→ log log |x| is in L2
1 near the origin in R2, but cannot be

modified to be continuous at the origin.

5. (a) Show that

J− 1
2
(r) = lim

k→− 1
2

Jk(r) =

√
2

π

cos r

r
1
2

and

J 1
2
(r) =

√
2

π

sin r

r
1
2

.

Proof:

We take the Bessel functions Jk(r) to be defined as

Jk(r) =

(
r
2

)k
Γ(k + 1

2
)
√
π

∫ 1

−1

eirs(1− s2)k− 1
2ds,

where Γ(z) =
∫∞

0
tz−1e−t is the usual Γ function and satisfies Γ(1) = 0! = 1.

For the second identity, we calculate

∫ 1

−1

eirs(1− s2)
1
2
− 1

2ds =

∫ 1

−1

(cos(rs) + i sin(rs))ds

=

∫ 1

−1

cos(rs)ds+

∫ 1

−1

i sin(rs)ds

= 2

∫ 1

0

cos(rs)ds+ 0

= 2
sin(r)

r
,

which implies

J 1
2
(r) =

(
r
2

) 1
2

Γ(1)
√
π

∫ 1

−1

eirs(1− s2)
1
2
− 1

2ds

=

(
r

1
2

√
1

2π

)(
2
sin(r)

r

)
=

√
2

π

sin(r)

r
1
2

as wanted.

For the first identity, assume k > −1
2
. In the above definition of the Bessel functions

Jk(r), we have that as k approaches −1
2

from the right, Γ(k + 1
2
) approaches +∞ and
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the (1 − s2)k− 1
2 term makes the integral blow up near s = 1. So, we try to get these

terms to balance using integration by parts.

We use the formula Γ(k + 3
2
) = (k + 1

2
)Γ(k + 1

2
) (which is valid for k > −1

2
), and as

before we write eirs = cos(rs)+i sin(rs) and break the integral into two. The first is the

integral of the even function cos(rs)(1−s2)k− 1
2 , so it is twice the integral on [0, 1] of the

same thing. The second is the integral on [−1, 1] of the odd function sin(rs)(1−s2)k− 1
2 ,

and is thus 0. We are left with

Jk(r) =

(
r
2

)k
Γ(k + 3

2
)
√
π

2(k +
1

2
)

∫ 1

0

cos(rs)(1− s2)k− 1
2ds.

Since

lim
k→− 1

2

(
r
2

)k
Γ(k + 3

2
)
√
π

=

√
2

π
r−

1
2 ,

it suffices to show that

lim
k→− 1

2

2(k +
1

2
)

∫ 1

0

cos(rs)(1− s2)k− 1
2ds = cos(r).

On any interval [0, 1− ε], cos(rs)(1− s2)k− 1
2 is bounded uniformly in k, so we see that

lim
k→− 1

2

2(k +
1

2
)

∫ 1−ε

0

cos(rs)(1− s2)k− 1
2ds = 2(0) ·

∫ 1−ε

0

cos(rs)(1− s2)−
1
2
− 1

2ds = 0.

For [1− ε, 1] we integrate by parts to get

2(k +
1

2
)

∫ 1

1−ε

cos(rs)(1− s2)k− 1
2ds =

=

∫ 1

1−ε

(
cos(rs)

−s

)(
(k +

1

2
)(1− s2)k− 1

2 (−2s)

)
ds

=

[(
cos(rs)

−2s

)(
(1− s2)k+ 1

2

)]1

1−ε

−
∫ 1

1−ε

(
cos(rs)

−s

)′

(1− s2)k+ 1
2ds

=
cos(r(1− ε))

1− ε
(2ε− ε2)k+ 1

2 −
∫ 1

1−ε

(
cos(rs)

−s

)′

(1− s2)k+ 1
2ds,

which in the limit as k → −1
2

becomes

cos(r(1− ε))

1− ε
−
∫ 1

1−ε

(
cos(rs)

−s

)′

ds.
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Letting ε→ 0, the integral term goes to 0 while the boundary term converges to cos(r)
as wanted. Alternatively, just evaluate the integral to see that the whole expression is
cos(r).

(b) (
r−nJn(r)

)′
= −r−nJn+1(r),

n a non-negative integer.

We do this for both definitions of the Bessel functions. Assuming

Jn(r) =

(
r
2

)n
Γ(n+ 1

2
)
√
π

∫ 1

−1

eirs(1− s2)n− 1
2ds,

we calculate

(r−nJn(r))
′
=

d

dr

[
r−n

(
r
2

)n
Γ(n+ 1

2
)
√
π

∫ 1

−1

eirs(1− s2)n− 1
2ds

]

=
d

dr

[ (
1
2

)n
Γ(n+ 1

2
)
√
π

∫ 1

−1

eirs(1− s2)n− 1
2ds

]

=

(
1
2

)n
Γ(n+ 1

2
)
√
π

∫ 1

−1

(is)eirs(1− s2)n− 1
2ds

=
−i
(

1
2

)n+1

Γ(n+ 3
2
)
√
π

∫ 1

−1

eirs

(
(n+

1

2
)(1− s2)n− 1

2 (−2s)

)
ds

=
i
(

1
2

)n+1

Γ(n+ 3
2
)
√
π

∫ 1

−1

(ir)eirs(1− s2)n+ 1
2ds,

where in the last step we integrate by parts, and all boundary terms are 0. From this
we obtain

(r−nJn(r))
′
=

i2r
(

1
2

)n+1

Γ(n+ 3
2
)
√
π

∫ 1

−1

eirs(1− s2)n+ 1
2ds

= −r−n

(
r
2

)n+1

Γ(n+ 3
2
)
√
π

∫ 1

−1

eirs(1− s2)n+ 1
2ds

= r−nJn+1(r).

The second definition of the Bessel functions is

Jn(r) =
1

2π

∫ 2π

0

eir sin θe−inθdθ.
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In this case we calculate

(r−nJn(r))
′
=

d

dr

[
r−n

2π

∫ 2π

0

eir sin θe−inθdθ

]
= −r

−n

2π

n

r

∫ 2π

0

eir sin θe−inθdθ +
r−n

2π

∫ 2π

0

(i sin θ)eir sin θe−inθdθ.

Meanwhile,

−r−nJn+1(r) = −r
−n

2π

∫ 2π

0

eir sin θe−i(n+1)θdθ

= −r
−n

2π

∫ 2π

0

e−iθeir sin θe−inθdθ

= −r
−n

2π

∫ 2π

0

(cos θ − i sin θ)eir sin θe−inθdθ

= −r
−n

2π

∫ 2π

0

(cos θ)eir sin θe−inθdθ +
r−n

2π

∫ 2π

0

(i sin θ)eir sin θe−inθdθ.

Attempting to equate this with what we calculated for (r−nJn(r))
′
, we may cancel

the second integral from each expression, as well as a factor of − r−n

2π
. We now use

integration by parts on the first term of the second expression:

∫ 2π

0

(cos θ)eir sin θe−inθdθ =
1

ir

∫ 2π

0

(
ir cos θeir sin θ

)
e−inθdθ

=

[
1

ir
eir sin θe−inθ

]2π

0

+
in

ir

∫ 2π

0

eir sin θe−inθdθ

= 0 +
n

r

∫ 2π

0

eir sin θe−inθdθ,

where now we use that n ∈ N because this forces e−in·0 = e−in·2π = 1, making the
boundary term evaluate to −1

ir
(1− 1) = 0. Staring at the equations for a moment,

we’re done.

Remark. For non-negative integers n, there had been two apparently different defi-
nitions of Jn(r), and we have seen that both definitions satisfy the same recurrence
relation d

dr
(r−nJn(r)) = −r−nJn+1(r). Hence they are both determined by J0(r). Now

it is easy to check that both definitions of J0(r) agree; just make a change of variable.
Hence the two definitions of Jn(r) are actually the same.
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6. Supply the details of the proof of the interpolation theorem.

Observe that if we have instead ||T0+it(f)||q0 ≤ A||f ||p0 and ||T1+it(f)||q1 ≤ B||f ||p1 , the
theorem can be applied to Ts/(A

1−sBs) to obtain a sharp bound for Tθ.

Proof. Let simple functions f and g with ||f ||p = ||g||q′ = 1 be given. (Here ′ denotes the
conjugate exponent.) Define

fs = |f |α(s)p sgn(f) and gs = |g|α(s)q′ sgn(g)

where α(s) = (1 − s)/p0 + s/p1, β(s) = (1 − s)/q′0 + s/q′1, and sgn(f) is the function such
that f = |f | sgn(f). A direct calculation shows that fθ = f and that gθ = g. Let

Ψ(s) =

∫
Ts(fs)gsdµ

1)|Ψ(0 + it)| ≤ 1. In fact

|Ψ(0 + it)| ≤
∫
|T0+it(|f |p/p0+ip((1−t)/p0+t/p1) sgn(f))| |g|q′/q′0dµ (definition)

≤ |||T0+it(|f |p/p0+ip((1−t)/p0+t/p1) sgn(f))|||q0|||g|q
′/q′0||q′0 (Hölder’s 6=)

≤ |||f |p/p0||p0|||g|q
′/q′0||q′0 = 1 (by hypothesis)

2)|Ψ(1 + it)| ≤ 1. This calculation is the same as the previous one, except that the roles of
the subscripts 0 and 1 are interchanged.

3)Ψ(s) is analytic in the strip. In fact, suppose f =
∑
anχn and g =

∑
bnχn, where an

and bn are complex coefficients and χn are characteristic functions of measurable sets in M .
Then we have

Ψ(s) =
∑
m

∑
n

|am|α(s)p sgn(am)|bn|β(s)q′ sgn(bn)

∫
Ts(χm)χndµ

Here we have used the linearity of Ts to pull the s dependence of the functions fs and gs

out of the integrand. Since the integral is now analytic in s by hypothesis, we have a sum
of analytic functions which is again analytic.

From these three facts it follows that |Ψ(s)| ≤ 1 in the strip. In particular |Ψ(θ)| ≤ 1.
We now fix θ and regard Ψg(θ) as a bounded linear functional on g ∈ Lq′(M), where now
|Ψg(θ)| ≤ ||g||q′ . This means that the norm of Tθ(f) as a linear functional on Lq′(M) is
bounded by 1, from which it follows that ||Tθ(f)||q ≤ 1. For f with p-norm different from 1,
we apply this last inequality to f/||f ||p and obtain ||Tθ(f)||q ≤ ||f ||p as desired.

7. Let Ff = f̂ and suppose
F : Lp(R) → Lq(Rn) (4)

is bounded, say
‖f̂‖q ≤ A‖f‖p (5)

where the constant A is independent of f .
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(a) Show that necessarily 1/p+ 1/q = 1.

Fix f ∈ Lp such that ‖f̂‖q 6= 0. Fix δ > 0. Define g(x) = f(δx). We get

‖g‖p =

(∫
|f(δx)|pdx

)1/p

=

(∫
δ−d|f(x)|pdx

)1/p

= δ−d/p‖f‖p

This gives us that g ∈ Lp and so we know that ĝ ∈ Lq. We get

ĝ(ξ) =

∫
e−2iπx·ξf(δx)dx = δ−d

∫
e−2iπ(δx)·(ξ/δ)f(δx)d(δx) = δ−df̂(ξ/δ)

We get ‖ĝ‖q = δ−d+d/q‖f‖q. Using (5) we get

δ−d+d/q‖f̂‖q = ‖ĝ‖q ≤ A‖g‖p = Aδ−d/p‖f‖p (6)

Using (5) and (6), we get
δd(1/q+1/p−1) ≤ 1 (7)

Letting δ in (7) tend towards 0 and ∞, we get that 1/p+ 1/q = 1.

Remark. Such a scaling argument (or dilation argument) is very useful in determining
the only possible relations between the exponents of an inequality that holds for ‘all’
functions. For instance, except with a twist, this argument shows that in the restriction
theorem ‖f̂‖Lq(Sn−1) ≤ C‖f‖Lp(Rn) for the sphere, the only possible exponents are those

(p, q) which satisfy q = (n−1)p′

n+1
.

(b) Show that necessarily 1 ≤ p ≤ 2.

Consider f(x) = e−πδ|x|2 where δ = α+ iβ, α > 0, β ∈ R. Then

‖f‖p =

(∫
|e−πδ|x|2|pdx

)1/p

=

(∫
e−παp|x|2dx

)1/p

= (αp)−
d
2p (8)

Also

‖f̂‖q =

(∫ ∣∣∣|δ|−d/2e−π|x|2/δ
∣∣∣q dx)1/q

=

(∫ ∣∣∣|δ|−d/2e−π|x|2α/|δ|2
∣∣∣q dx)1/q

=

(∫
|δ|−dq/2e−π|x|2qα/|δ|2dx

)1/q

= |δ|−d/2
(
αq|δ|−2

)−d/(2q)
(∫

e−π|x|2dx

)1/q

(9)

Thus

|δ|−d/2+d/qα−d/(2q)q−d/(2q) ≤ Aα−d/(2p)p−d/(2p)

A−1αd/(2p)−d/(2q)q−d/(2q)pd/(2p) ≤ |δ|d(1/2−1/q) (10)

by fixing α > 0 and letting β →∞, we get |δ| → ∞. To get (10) to hold, we must have
q ≥ 2, which is just 1 ≤ p ≤ 2 (by part a).
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8. Carry out the proof (via polar coordinates on the sphere Sd−1) that:

(a)

d̂σ(ξ) = 2
sin(2π|ξ|)

|ξ|
, d = 3.

Observe that since dσ is radial, d̂σ is also radial. Thus d̂σ(ξ) = d̂σ(0, 0, |ξ|). Write for
x ∈ S2 that x = (cos θ sinφ, sin θ sinφ, cosφ). Then

d̂σ(0, 0, |ξ|) =

∫
S2

e−2πix3|ξ|dσ(x)

=

∫ π

0

∫ 2π

0

e−2πi|ξ| cos φ sinφdθdφ

= 2π
e−2πi|ξ| cos φ

2πi|ξ|

∣∣∣∣π
0

= 2
sin(2π|ξ|)

|ξ|
.

(b) More generally,

(̂dσ)(ξ) = 2π|ξ|−
d−2
2 J d−2

2
(2π|ξ|)

using the formula for the Bessel function Jk, for k > −1/2.

Again, dσ is radial. Therefore

d̂σ(ξ) =

∫
Sd−1

e−2πixd|ξ|dσ(x)

=

∫ π

0

∫
Sd−2

e−2πi|ξ| cos φ(sinφ)d−2dσd−2dφ

= |Sd−2|
∫ 1

−1

e−2πi|ξ|s(1− s2)
d−2
2 ds

= 2π|ξ|−
d−2
2 J d−2

2
(2π|ξ|).

where the second to last equality makes use of the change of variable s = cosφ.

9. Give an example of a C∞ closed curve in R2 to that if dσ is the arc-length measure on it,
then d̂σ(ξ) 6= o(1) as |ξ| → ∞.

Indeed any C∞ closed curve that contains a straight line segment cannot have d̂σ = o(1) as
|ξ| → ∞, if dσ is the arc-length measure on it. This is because we can consider a measure
dµ on the curve given by

dµ(x) = f(x)dσ(x),

where f is a compactly supported smooth function on R2 whose support only intersects the
curve in the straight line segment. Then

d̂µ(ξ) = f̂ ∗ d̂σ(ξ).
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Assume on the contrary that d̂σ(ξ) = o(1) as |ξ| → ∞. Then since f̂(ξ) = o(1) as |ξ| → ∞
as well, we have d̂µ(ξ) = o(1) as |ξ| → ∞. But this is impossible, since dµ, being a finite
measure supported on a line segment, has Fourier transform being constant along straight
lines that are perpendicular to that segment. This proves our claim.

10. Consider Jn(r) with n integral. Show

(a) |Jn(r)| ≤ Ar−1/2, uniformly in n and r, if r > cn, for any fixed c > 1.

We will use the following van der Corput estimate (see p334 of Harmonic Analysis
by E. M. Stein): If φ is real valued and Ck in (a, b), and satisfies |φ(k)| ≥ 1 (and φ′

monotonic for k = 1), then we have∣∣∣ ∫ b

a

eiλφ(x)dx
∣∣∣ ≤ Ckλ

−1/k

Ck independent of a, b and φ. Because n is an integer, we use the formula

Jn(r) =
1

2π

∫ 2π

0

eir sin θe−inθdθ.

Observe that if in the hypotheses of the estimate we have |φ(k)| ≥ ε rather than |φ(k)| ≥
1, this only changes the leading constant by a factor of ε−1/k. Now r is in the role of λ,
and f(θ) = sin θ−n

r
θ is in the role of φ. Using r > cn, we see that f ′(θ) > cos θ−1/c > εc

if θ ∈ [0, θc] ∪ [2π − θc, 2π], where θc is a constant depending on c only. Note also
f ′(θ) = cos θ − n/r < −1/2 if |θ − π| < π/3. Hence on these intervals, the total
contribution of the integrals are 16(εcr)

−1, a decay better than desired. (Caution: We
actually have to divide the integral from 2π/3 to 4π/3 into two halves, namely from
2π/3 to π and then from π to 4π/3, because the phase function is not monotonic on
the big interval. That does not harm our estimate though.) Now f ′′(θ) = sin θ, so
over the rest of [0, 2π] that is not covered above, we have |f ′′(θ)| > εc. Apply van der
Corput’s estimate on each of the intervals, we get the bound C2(εcr)

−1/2, so overall we
get a bound Acr

−1/2 for Jn(r), with Ac depending only on c but not on n nor r.

(b) |Jn(r)| ≤ An−N , for each N , if n > cr, for any fixed c > 1.

For this we use the nonstationary phase principle. Let f(θ) = θ − r
n

sin θ, and observe
that

f ′(θ) = 1− r

n
cos θ ≥ 1− r

n
≥ 1− 1

c
.

This allows us to apply repeated integrations by parts in the following manner:∫ 2π

0

einf(θ)dθ =

∫ 2π

0

einf(θ) inf
′(θ)

inf ′(θ)
dθ = einf(θ) 1

inf ′(θ)

∣∣∣∣2π

θ=0

−
∫ 2π

0

einf(θ)

(
1

inf ′(θ)

)′
dθ.

The boundary terms cancel because f(2π) − f(0) = 2π, while f ′(θ) is 2π-periodic.
The new integrand is now manifestly O(n−1). To obtain better powers of n, we repeat
this integration by parts. The boundary terms are of the form einf(θ)g(θ), where g(θ)
is a function of f ′(θ) and its derivatives, and hence continue to give no contribution.
Meanwhile each successive integration by parts gives an additional factor of n−1 in the
integral.
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(c) |Jn(r)| ≤ Ar−1/3, uniformly for all n and r.

Here we again use r for λ, and f(θ) = sin θ − n
r
θ for φ. This time we observe that

|f ′′(θ)| + |f ′′′(θ)| ≥ c for some c > 0 independent of n and r. We can now decompose
(0, 2π) into subintervals, on each of which we have a lower bound on either |f ′′| or on
|f ′′′|. We break up our integral into several pieces using a partition of unity as before,
and this time each piece is bounded by either Cr−1/2 or by Cr−1/3. So overall we get
Ar−1/3, A independent of n and r.

11. Let I0(λ) =

∫ b

a

eiλΦ(x)dx. In obtaining the estimate I0(λ) = O(λ−1), show that the condition

that Φ′ is monotonic cannot be relaxed.

Let λ = 1. The real part of the integrand is then cos(Φ(x)). Suppose that Φ′ ≥ 1 oscillates
so that it is large when cos(Φ(x)) < 0 and is small when cos(Φ(x)) > 0. This implies that
Φ(x) escapes quickly when cos(Φ(x)) < 0 and changes slowly when cos(Φ(x)) > 0. Hence
the measure of the set where cos(Φ(x)) > 0 is much larger than the measure of the set where
cos(Φ(x)) < 0. Thus the real part of the integral is unbounded as b→∞.

12. Write out a proof of “Morse’s Lemma”: If Φ(0) = |∇Φ(0)| = 0 and ∇2Φ(0) has nonvanishing
determinant, then there is a smooth change of variables x → y, so that near the origin
Φ(x) = y2

1 + y2
2 + · · ·+ y2

q − (y2
q+1 + · · ·+ y2

d).

Lemma (Morse’s Lemma). Given that 0 is a nondegenerate critical point of a smooth real
function f on a manifold M , that is |∇f(0)| = 0 and det(∇2f(0)) 6= 0, and that f(0) = 0,
there is a local coordinate system (yi) such that f(y) = y2

1 + y2
2 + · · ·+ y2

q − (y2
q+1 + · · · + y2

d)
around the origin.

In the proof we use the inverse function theorem and the following simple lemma.

Lemma (Hadamard’s Lemma). Let f : U → R be Ck for some k ≥ 1 defined on a convex
neighborhood U of 0 ∈ Rm, and f(0) = 0. The there exist functions gi ∈ Ck−1, i = 1, . . . ,m
defined on U such that f(x1, . . . , xm) =

∑m
i=1 xigi(x1, . . . , xm) and gi(0) = ∂f

∂xi
(0).

Proof. Note that

f(x1, . . . , xm) =

∫ 1

0

df(tx1, . . . , txm)

dt
dt =

∫ 1

0

m∑
i=1

∂f

∂xi

(tx1, . . . , txm)xidt

Thus gi(x1, . . . , xm) =
∫ 1

0
∂f
∂xi

(tx1, . . . , txm)dt satisfies the required conditions.

Proof of Morse’s Lemma. Let (x1, . . . , xm) be a coordinate neighborhood around 0. By
the above lemma, we can write f(x1, . . . , xm) =

∑m
i=1 xigi(x1, . . . , xm). Since we have

|∇f | = 0, gi(0) = ∂f
∂xi

(0) = 0. Thus we can apply Hadamard’s lemma to each gi, getting

gi(x1, . . . , xm) =
∑m

j=1 xjhij(x1, . . . , xm) and

f(x1, . . . , xm) =
m∑

i,j=1

xixjhij(x1, . . . , xm)
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Without loss of generality, assume hij = hji. Otherwise we could define h̃ij = 1
2
(hij + hji),

resulting in h̃ij = h̃ji and f =
∑
xixjh̃ij. Note that by Hadamard’s lemma, we have

hij(0) = 1
2

∂2f
∂xi∂xj

(0), so (hij(0)) is nonsingular.

We now proceed by induction. Suppose there is a neighborhood U1 ⊂ U parametrized by
coordinates (ui) around 0 and a diffeomorphism φ, xi = φi(u1, . . . , um) such that

(f ◦ φ)(u) = ±u2
1 ± u2

2 ± · · · ± u2
r−1 +

∑
i,j≥r

uiujHij(u1, . . . , um) (11)

and (Hij) symmetric for all u ∈ U1. Note that since (hij(0)) is nonsingular and φ is a
diffeomorphism, we have

0 6= det
(
φ′(0)T (hij(0))φ′(0)

)
where the right hand side is equal to the matrix form of (11) with Hij evaluated at 0. Thus
at least one entry of Hij(0), i, j ≥ r is nonzero and by a linear change of the last n − r
coordinates we can make Hrr(0) 6= 0. By continuity, Hrr(u) 6= 0 in some neighborhood
U2 ⊂ U1 of 0. Let g(u1, . . . , um) =

√
|Hrr(u)|, a function definted on U2. Consider the

following coordinate change:

vi = ui i 6= r

vr = g(u1, . . . , um)
(
ur +

∑
i>r

uiHir(u1,...,um)
Hrr(u1,...,um)

)
i = r

The Jacobian of this transformation at u = 0 is simply g(0) 6= 0 so by the inverse function
theorem there is a neighborhood U3 ⊂ U2 of 0 on which the above coordinate change, which
we denote v = ψ(u), is a diffeomorphism. Note that now we have

vrvr = ±Hrr(u)urur ± 2
∑
i>r

uruiHri(u) +
∑
i,j>r

uiujHir(u)Hjr(u)

|Hrr(u)|

so that the ur terms in (11) can be replaced by vrvr minus a sum over indices larger than r,
leading to

(f ◦ φ ◦ ψ−1)(v) = ±v2
1 ± · · · ± v2

r +
∑
i,j>r

vivjH̃ij(v1, . . . , vm)

with H̃ij smooth and symmetric. This completes the induction step of the proof.

Remark. If Φ is a homogeneous quadratic polynomial and ∇2Φ(0) non-degenerate, then
one can diagonalize Φ rather easily. The point is even for a general Φ, as long as Φ(0) =
|∇Φ(0)| = 0, we can write it as in the Hadamard’s lemma such that it looks like a ‘variable
coefficient quadratic polynomial’. The proof for the case of a homogeneous quadratic poly-
nomial then carry through, as long as we are working near 0, where the coefficients can be
thought of as ‘roughly constant’.

13. Show that the averages theorem (in R3, A : L4/3 → L4) cannot be improved.

Let ε > 0 be given. We will find f ∈ L4/3(R) such that A(f) =
∫

S2 f(x−y)dσ(y) 6∈ L4+ε(R).
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We first observe that χB(0,2)|x|−α ∈ L1(R3) ⇔ 3 > α. So

χB(0,2)|x|−α ∈ L4/3(R3) iff α < 9/4 (12)

We will take f(x) = χB(0,2)|x|−α, where α < 9/4 is to be determined later. Then f ∈ L4/3

by (12). Now we observe that Af(x) is radial. In fact, if ρ : R3 → R3 is a rotation, then

Af(ρx) =

∫
S2

χB(0,2)(ρx− y)

|ρx− y|α
dσ(y) =

∫
S2

χB(0,2)(ρx− ρz)

|ρx− ρz|α
dσ(z)

=

∫
S2

χB(0,2)(x− z)

|x− z|α
dσ(z) = Af(x)

Let r ∈ (0, 3) be given. Let x = (0, 0, r). Then, using spherical coordinates, we get, for
α 6= 2,

Af(x) =

∫
S2

dσ(y)

|x− y|α
=

∫ 2π

0

∫ π

0

sinϕdϕdθ

(1− 2r cosϕ+ r2)α/2
= 2π

∫ π

0

sinϕdϕ

(1− 2r cosϕ+ r2)α/2

=
2π

2r

∫ (1+r)2

(1−r)2

du

uα/2
=
π((1 + r)2−α − (1− r)2−α)

(1− α/2)r

We expect Af to be very large when |x| ≈ 1. Now the function x 7→ ( 1
|x|(1 + |x|)2−α)4+ε is

integrable for |x| near 1. So, we want to find α such that
∫
|x|∈[1/2,1]

( 1
|x|(1 − |x|)

2−α)4+εdx =

+∞. In spherical coordinates, this integral is

C

∫ 1

1/2

(
1

r
(1− r))(2−α)(4+ε)r2dr ≥ D

∫ 1

1/2

(1− r)(2−α)(4+ε)r2dr

Now ∫ 1

1/2

(1− r)(2−α)(4+ε)r2dr ≥ 1

4

∫ 1

1/2

(1− r)(2−α)(4+ε)dr =
1

4

∫ 1/2

0

s(2−α)(4+ε)ds

If (2 − α)(4 + ε) = −1, then this integral is +∞ and Af 6∈ L4+ε(R3). However, then
α = 2 + 1

4+ε
, so f ∈ L4/3(R3).

Alternative solution. Let f(x) = χB(0,ε)(x) in Rd. Then ‖f‖L(d+1)/d = cε
d2

d+1 . Note Af(x) '
cεd−1 when ||x| − 1| < ε/2. Hence ‖Af‖Lp ≥ cεd−1 |{||x| − 1| < ε/2}|

1
p = cεd−1+ 1

p and for

cεd−1+ 1
p ≤ Cε

d2

d+1 to hold as ε→ 0 we need d− 1+ 1
p
≥ d2

d+1
, i.e. p ≤ d+1. So A cannot map

L
d+1

d to any Lp where p > d+1. (The idea here is that characteristic functions are relatively
easy to average, and that simplifies the calculation.)

14. Show that the spherical maximal theorem fails for p ≤ d
d−1

.

We will construct counterexamples depending on p and d, and in each case the spherical
maximal function of our counterexample will be everywhere infinite. If d = 1, the spherical
maximal theorem fails for all p < ∞. Indeed, consider f(x) = χ(x)|x|−ε ∈ Lp(R), where
ε > 0 is sufficiently small and χ is any compactly supported function which is positive near
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the origin. The spheres in this case are pairs of points, and as one of the points approaches
the origin we see that the absolute value of the average increases without bound.

We now assume d ≥ 2, and treat first the case p < d
d−1

, so fix p ∈ [1, d
d−1

), and put

f(x) = χ(x)|x|−
d
p

∣∣∣log−
2
p |x|

∣∣∣ ,
where χ is the characteristic function of the ball centered at 0 with radius 1/2. We first
verify that this function is in Lp by computing as follows:∫

|f |p =

∫
χ(x)|x|−d log−2 |x| = c

∫ 1/2

0

dr

r log2 r
= c

∫ log 1/2

−∞
s−2ds <∞,

where we used polar coordinates, followed by the change of variables log r = s.

We now estimate from below the spherical maximal function at a point x0. Fix x0 ∈ Rd\{0},
ε ∈ (0,min{1/2, |x0|}), and let Dε denote the intersection of the sphere centered at x0 with
radius |x0| − ε

2
with the ball centered at 0 with radius ε. We observe that the area of Dε is

bounded below by cεd−1, where c is a constant proportional to the area of the unit ball in
Rd−1. On the other hand ε

2
≤ |x| ≤ ε for x ∈ Dε, so we may write∫

S

fdσ ≥
∫

Dε

fdσ ≥ cεd−1ε−
d
p

∣∣∣log−
2
p
ε

2

∣∣∣ .
But d−1− d

p
< 0 for p ∈ [1, d

d−1
), so letting ε→ 0 shows that the spherical maximal function

is infinite at x0.

If p = d
d−1

, a more delicate analysis is necessary. We put

f(x) = χ(x)|x|−d+1
∣∣log−1 |x|

∣∣ ,
and observe that, by the same reasoning as before, f ∈ Lp. To see why the spherical
maximal function is infinite, consider the following heuristic argument: Let Dδ,ε denote the
intersection of the sphere centered at x0 with radius |x0|− δ with the ball centered at 0 with
radius ε. For a fixed ε > 0, ε << |x0|, as δ → 0+ the integral over Dδ,ε resembles more and
more closely the integral over a disk of codimension 1 centered at zero and with radius ε.
We then have ∫

S

fdσ ≥
∫

Dε

fdσ ∼ c

∫ ε

0

f(r)rd−2dr = c

∫ ε

0

dr

r log r
= ∞.

The technical difficulty lies in justifying the ‘∼’. We give a brute force treatment of the
integral here without quite following the above line of reasoning, but if anyone knows a
simpler proof, I’d love to hear it. For now, consider the sphere centered at x0 with radius

|x0|, and parametrize the portion of this sphere near the origin using α
def
= ](0, x0, x).

Observe that the surface measure on the sphere is given in terms of α by
∫
f(α)dσ =

c|x0|d−1
∫
f(α)(sinα)d−2dα, which we write more simply as

∫
f(α)dσ = c

∫
f(α)(sinα)d−2dα
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(the constants here will be allowed to depend on x0). Observe that, by the law of sines, we
have |x| = |x0| sin α

cos α
2

= c sin α
2
. Putting this together we see that∫

S

fdσ ≥ c

∫ ε

0

f
(
c sin

α

2

)
(sinα)d−2dα

= c

∫ ε

0

(sinα)d−2(
sin α

2

)d−1
log
(
c sin α

2

)dα
= c

∫ ε

0

(cos α
2
)d−2

sin α
2

log
(
c sin α

2

)dα.
Here we have restricted to a neighborhood of the origin, and simplified our integral using
double angle formulas. We now use the substitution u = c sin α

2
:

= c

∫ c sin ε
2

0

(1− u2)
d−3
2

u log u
du.

This last integral is divergent, which proves that the spherical maximal function is infinite.

15. Suppose that S is a smooth hypersurface in Rd given as a graph S = {x : xd = F (x′),
x′ ∈ Rd−1} with F smooth. Verify the formula giving the induced Lebesgue measure: that
for any continuous f of compact support

lim
ε→0

1

2ε

∫
Sε

f(x)dx =

∫
Rd−1

f(x′, F (x′))(1 + |∇x′F |2)1/2dx′

where Sε = {x : d(x, S) < ε}
We first show that

Sε = {(x′, F (x′)) + t
(∇x′F (x′),−1)

(1 + |∇x′F (x′)|2)1/2
: x′ ∈ Rd−1, t ∈ (−ε, ε)}

This means that Sε is a tubular neighborhood of S obtained by taking points (x′, F (x′)) of S

and adding multiples of Φ(x′) =
(∇x′F (x′),−1)

(1+|∇x′F (x′)|2)1/2 , the unit normal vector to S at (x′, F (x′)).

We first observe that Sε contains this set because each point (x′, F (x′)) + tΦ(x′) in it is no
more than ε away from the point (x′, F (x′)). To see the reverse containment, let a point in
Sε be given, and suppose we have chosen our coordinates so that this point is the origin. We
will show that it is of the form (x′, F (x′)) ± δΦ(x′), where x0 = (x′, F (x′)) is any point at
which the minimal distance is attained and δ is such that |x0| = d(0, S) = δ. This is the same
as showing that the vector pointing to x0 is perpendicular to S, i.e. that it is perpendicular
to any curve in S passing through x0. To see this, let x(t) be a parametrization of a curve
passing through x0 at t = 0, and observe that because t = 0 is a local minimum of |x(t)|2
we have 0 = d

dt

∣∣
t=0
|x(t)|2 = 2x′(0) · x(0). And this dot product being zero expresses exactly

the fact that the vector pointing to x0 is perpendicular to x(t).

Now let g(x′, t) = (x′, F (x′)) + t(Φ1(x
′),Φ2(x

′)) and put φ(x′) = (1 + |∇x′F (x′)|2)1/2. The
Jacobian of g is given by

J(g) =

(
Id +tJ(Φ1) ∇F + t∇Φ2

∇F/φ(x′) −1/φ(x′)

)
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where J(Φ) is the Jacobian of Φ. Now we rewrite our integral using the change of coordinates
given by g∫

Sε

f(x)dx =

∫
g(Rd−1×(−ε,ε))

f(x)dx =

∫
Rd−1

∫ ε

−ε

f((x′, F (x′)) + tΦ(x′))| det(J(g))|dtdx′

We now divide this by 2ε and let ε→ 0. But the fact that f and J(g) are continuous and f
is compactly supported allows us to pass the limit through the integral in x′, so that we get

lim
ε→0

1

2ε

∫ ε

−ε

f((x′, F (x′)) + tΦ(x′))| det(J(g))|dt = f(x′, F (x′))| det(J(g))|
∣∣
t=0

But an argument by induction on the dimension d shows us that

| det(J(g))|
∣∣
t=0

=
1 + |∇F (x′)|2

φ(x′)
= (1 + |∇F (x′)|2)1/2

which gives

lim
ε→0

1

2ε

∫
Sε

f(x)dx =

∫
Rd−1

f(x′, F (x′))(1 + |∇F (x′)|2)1/2dx′

as desired.

16. Verify that the intrinsic definition of Gauss curvature (in terms of the Gauss map of the
normals to the unit sphere) agrees with the coordinate dependent definition given for graphs.

We will do this by computing the Gauss curvature according to the intrinsic definition, and
then verifying that this agrees with the definition for graphs.

Let n(x) : S → Rd map each point in the given surface S to a unit normal vector at n;
locally this is well defined up to sign. Recall that the directional derivative of the normal
vector at a point n(x0) in the direction of the tangent vector v is given by ∇n(x0) · v where
the matrix ∇n(x0) has entry (i, j) given by ∂jni(x0). Observe that this matrix maps tangent
vectors to tangent vectors. In fact, if γ(t) is a curve in S passing through x0 at time zero,
then we have

2n(γ(0)) · ∇n(γ(0)) · γ′(0) =
d

dt

∣∣∣
t=0
|n(γ(t))|2 = 0

The first equality follows from the chain rule, and the second from the fact that all the
normal vectors have unit length. Intrinsically, the Gauss curvature is defined to be the
determinant of this matrix as a map from the tangent space to itself. In odd dimensions this
is only uniquely defined up to sign, because our normal vector was only uniquely defined up
to sign, and because det(−A) = (−1)n detA.

We now compute this explicitly in coordinates. Suppose first we wish to compute the Gauss
curvature at the origin and that the surface is given by S = {xd = f(x1, . . . , xd−1)} here with
f(0) = 0 and ∇f(0) = 0. We will reduce the general case to this one later. Let ρ : Rd → Rd

be given by ρ(x) = xd − f(x1, . . . , xd−1). Then S = ρ−1(0), and a unit normal vector may
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be defined by n(x) = ∇ρ(x)
|∇ρ(x)| . But |∇ρ(x)| =

√
1 + |∇f(x1, . . . , xd−1)|2, so |∇ρ(0)| = 1 and

n(0) = (0, . . . , 0, 1).

Now

(∇n(x))i,j = ∂jni(x) = ∂j
∂iρ(x)

|∇ρ(x)|
We are interested in this matrix as a map from the tangent space at the origin to the tangent
space at the origin, so we only allow i and j to range from 1 to d− 1. This gives

(∇n(0))i,j = −∂j∂if(0)

|∇ρ(0)|
+
∂if(0)∂j |∇ρ(x)||x=0

|∇ρ(0)|2
= −∂j∂if(0)

The first term simplifies because |∇ρ(0)| = 1, and the second vanishes because ∇f(0) = 0.

The determinant of this matrix is thus exactly the determinant of the Hessian of f , up to a
sign in odd dimensions, which is exactly coordinate dependent definition of Gauss curvature.
To reduce to the general case to the case just solved, observe that we can find a translation τ
and a transformation M ∈ SL(Rd−1) such that τ sends x0 to 0 and M reorients the surface
so that it is the graph of a function f with f(0) = 0 and ∇f(0) = 0. We must check that the
determinant of the Hessian of f at x0 equals the determinant of the Hessian of f ◦ τ−1 ◦M−1

at 0.

∂i∂j(f ◦ τ−1 ◦M−1)(0) = ∂i

(∑
k

(∂kf) ◦ τ−1 ◦M−1(x) ·M−1
k,j (x)

)∣∣∣∣∣
x=x0

=
∑
k,`

∂`∂kf(x0)M
−1
`,i M

−1
k,j

This means, if ∇2 denotes the Hessian, that ∇2(f ◦ τ−1 ◦ M−1)(0) = M−1∇2f(x0)M
−1.

Taking the determinant of both sides and using the fact detM−1 = 1 we find that the two
determinants match.

17. Consider I(s) =
∫∞

0
us−1f(u)du, where f ∈ C∞(R) and of compact support. Show that the

residue of the meromorphic continuation of I(s) at s = −k is f (k)(0)
k!

We want to calculate the residue of I(s), s ∈ C for each −k, k = 0, 1, 2, . . ., where I(s) is
given by (13)

I(s) =

∫ ∞

0

us−1f(u)du. (13)

Here f ∈ C∞
c and <s > 0. Our first goal is to ensure that we have a meromorphic continua-

tion of the function over the proper domain and then to calculate the residue. If we consider
sI(s),<s > 0, we get (14)

sI(s) = s

∫ ∞

0

us−1f(u)du = usf(u)|∞0 −
∫ ∞

0

usf (1)(u)du = −
∫ ∞

0

usf (1)(u)du (14)
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So, we now have a definition of I(s), 0 ≥ <s > −1 given by (15)

I(s) =
−1

s

∫ ∞

0

usf (1)(u)du. (15)

Continuing by a similar argument, we get the following definition for I(s),−k ≥ <s >
−(k + 1), k = 0, 1, 2, . . . given by (16)

I(s) =

[
k∏

j=0

(
−1

s+ j

)]∫ ∞

0

us+kf (k+1)(u)du (16)

We notice two simple facts about the definition 16. First, the function I(s) is the meromor-
phic extension of our original I(s). Second, I(s) has simple poles at −k, k = 0, 1, 2, . . .. So,
in order to calculate the residue of I(s) at s = −k we must simply compute (17)

lim
s→−k

(s+ k)I(s). (17)

And here is the computation:

lim
s→−k

(s+ k)I(s)

= lim
s→−k

(s+ k)

[
k∏

j=0

(
−1

s+ j

)]∫ ∞

0

us+kf (k+1)(u)du

= lim
s→−k

(−1)

[
k−1∏
j=0

(
−1

s+ j

)]∫ ∞

0

us+kf (k+1)(u)du

=(−1)

[
k−1∏
j=0

(
−1

−k + j

)]∫ ∞

0

f (k+1)(u)du

=
f (k)(0)

k!

This is the desired result.

Remark. Compare with the analytic continuation of the Γ function and the distribution
xs−1

+ /Γ(s).

18. Suppose t 7→ γ(t) is a smooth curve in R3 with non-vanishing torsion (i.e. the vectors
γ′(t), γ′′(t), and γ′′′(t) are linearly independent for each t). Let dσ be the measure carried
on this curve, given by ∫

R3

fdσ =

∫ 1

0

f(γ(t))|γ′(t)|dt

Show that (dσ)̂ (ξ) = O(|ξ|−1/3).

We prove this instead for dµ = φdσ, where φ ∈ C∞
0 such that φ restricted to the curve is

supported in the interior of the curve. We use a partition of unity (which will be specified
later) to write ∫

e−2πix·ξdµ(x) =
∑

n

∫ 1

0

e−2πiγ(t)·ξψn(t)|γ′(t)|dt
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Each of these integrals can be written∫
e−2πiλγ(t)·ηψn(t)|γ′(t)|dt =

∫
eiλΦ(t)ψn(t)|γ′(t)|dt

where λ = |ξ|. This is an oscillatory integral. We know for each t0, either Φ′(t0),Φ
′′(t0), or

Φ′′′(t0) is nonzero from the hypothesis of nonvanishing torsion. This means it is uniformly
nonzero in a neighborhood of t0, so provided our partition of unity is chosen in such a way
that on the supports of the ψn we have one of Φ′, Φ′′ or Φ′′′ bounded away from zero, we
can apply a van der Corput estimate. This tells us that

∫
eiλΦ(t)ψn(t)|γ′(t)|dt = O(λ−1/k),

where k is the order of the derivative which we know is nonvanishing on the support of ψn.
In the worst case we get decay of O(λ−1/3) = O(|ξ|−1/3).

Remark. This is a prototype of the situation where the submanifold does not satisfy the
non-vanishing Gaussian curvature condition, but satisfies a weaker ‘finite type’ condition.
See Chapter 8.3.2 of Stein’s Harmonic Analysis.

19. Let S be a smooth hypersurface in Rd whose curvature vanishes at one point. Then the
averages theorem, restriction theorem, etc. may fail as stated. For example, take S to be
the curve x2 = xk

1 in the plane, with k an integer > 2. Then the curvature of S vanishes at
the origin only.

(a) Show that in this case the inequality ‖A(f)‖Lq ≤ A‖f‖Lp cannot hold for p = 3/2,
q = 3.

We claim that if A maps Lp(R2) to Lp′(R2), then 1
p
− 1

p′
≤ 1

k+1
. As a result, if A maps

L
3
2 to L3, then 1

3
≤ 1

k+1
, i.e. k ≤ 2. Let f(x) = χ(0,2ε)(x1)χ(0,εk)(x2). Then

‖f‖Lp = cε
k+1

p .

Also for ε small, if x1 ∈ (0, ε) and x2 ∈ (0, εk),

Af(x) ≥
∫ x

1
k
2

0

f(x1 + t, x2 − tk)
√

1 + k2t2k−2dt ≥ cx
1
k
2

so

‖Af‖Lp′ ≥ c

(∫ ε

0

∫ εk

0

(
x

1
k
2

)p′

dx2dx1

) 1
p′

= cε
1+ k+1

p′ .

For
cε

1+ k+1
p′ ≤ Cε

k+1
p

to hold as ε→ 0 we need 1 + k+1
p′
≥ k+1

p
, i.e.

1

p
− 1

p′
≤ 1

k + 1
.

(c.f. Chapter 9, 5.21(b) of Stein’s Harmonic Analysis.)
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Remarks. The characteristic functions are typically easy to average along a submanifold,
so we have chosen to test the given inequality with such. Note also that implicit in the
above solution is the role played by the one-parameter family of non-isotropic dilations
(x1, x2) 7→ (δx1, δ

kx2). These dilations are relevant because they preserve the curve
x2 = xk

1.

(b) Show that ‖R(f)‖L2(S) ≤ A‖f‖Lp(R2) fails for p = 6/5 in this case.

Let ε ∈ (0, 1] and let χε be the characteristic function of the set

{(ξ1, ξ2) : −ε ≤ ξ1 ≤ ε,−εk ≤ ξ2 ≤ εk}

and consider fε = F−1χε. We have on the one hand

‖R(fε)‖L2(S) =

(∫ ε

−ε

√
1 +

(
kxk−1

1

)2
dx1

)1/2

≥
(∫ ε

−ε

dx1

)1/2

= cε1/2.

Meanwhile fε is given by

fε(x) =

∫
e2πix·ξχε(ξ)dξ =

∫ ε

−ε

e2πix1ξ1dξ1

∫ εk

−εk

e2πix2ξ2dξ2 = c
sin(2πx1ε)

x1

sin(2πx2ε
k)

x2

.

We can then compute

‖fε‖L6/5(R2) =

(∫
| sin(2πx1ε)|6/5

|x1|6/5
dx1

∫
| sin(2πx2ε

k)|6/5

|x2|6/5
dx2

)5/6

=

(
ε1/5

∫
| sin(2πx1)|6/5

|x1|6/5
dx1

)5/6(
εk/5

∫
| sin(2πx2)|6/5

|x2|6/5
dx2

)5/6

= ε
1+k
6 ‖f1‖L6/5 .

Letting ε → 0 we see that so long as k ≥ 3, no inequality of the form ‖R(f)‖L2(S) ≤
A‖f‖L6/5(R2) can be true.

Alternative solution. Let f(x) = e−πεx2
1e−πεkx2

2 . Then f̂(ξ) = ε−
k+1
2 e−

πξ21
ε e−

πξ22
εk . Hence

‖Rf‖L2(S) ≥ ε−
k+1
2

(∫ ∞

0

e−
2πξ21

ε e−
2πξ2k

1
εk dξ1

) 1
2

= cε−
k+1
2 ε

1
4 .

For ‖Rf‖L2(S) ≤ C‖f‖Lp(R2) to hold, we need

cε−
k+1
2 ε

1
4 ≤ Cε−

k+1
2p

to hold when ε→ 0. Thus we need −k+1
2

+ 1
4
≥ −k+1

2p
, i.e.

p ≤ 2k + 2

2k + 1
.

If p = 6/5 is allowed, then 6
5
≤ 2k+2

2k+1
, i.e. k ≤ 2. Note again the role played by the

relevant non-isotropic dilations here. c.f. Chapter 9, 5.15(b) and 5.17(a) of Stein’s
Harmonic Analysis.
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20. Let u(x, t) be the standard solution of the Schrödinger equation i∂tu = ∆xu with initial
condition u(x, 0) = f(x) given by

u(x, t) =

∫
Rd

e4π2it|ξ|2e2πix·ξf̂(ξ)dξ

Prove

(a) supx |u(x, t)| ≤ ct−d/2‖f‖1.

Let g(x) = (−4πit)−d/2e|x|
2/4it (with the square root chosen in the right half-plane).

Then ĝ(ξ) = e4π2it|ξ|2 (see the appendix). Now suppose f ∈ C∞
0 (Rd). We write

u(x, t) =

∫
Rd

e2πix·ξf̂ ĝdξ = f ∗ g(x) =

∫
Rd

f(x− y)(−4πit)−d/2e|y|
2/4itdy.

Hence |u(x, t)| ≤ ct−d/2‖f‖1 for all x. A density argument allows us to extend the result
to all f ∈ L1.

(b) When d = 1, sup
x

∫ ∞

0

|∂xu(x, t)|2dt ≤ c‖f‖2
L2

1/2
.

We first compute ∂xu(x, t) =
∫
e4π2itξ2

(2πiξ)e2πixξf̂(ξ)dξ. We then divide the integral
into two pieces and make the change of variable η = ξ2 in each:∫ ∞

0

e4π2itξ2

(2πiξ)e2πixξf̂(ξ)dξ =

∫ ∞

0

e4π2itη(πi)e2πix
√

ηf̂(
√
η)dη

∫ 0

−∞
e4π2itξ2

(2πiξ)e2πixξf̂(ξ)dξ =

∫ 0

∞
e4π2itη(πi)e−2πix

√
ηf̂(−√η)dη

Combining these two and using another change of variable to rescale, we find

∂xu(x, t) =
1

2

∫ ∞

0

e2πitη(i)
(
eix

√
2πηf̂(

√
η/2π)− e−ix

√
2πηf̂(−

√
η/2π)

)
dη

def
=

∫ ∞

−∞
e2πitηϕ(x, η)dη.

Here ϕ is defined in such a way that ϕ(x, η) = 0 for η < 0. Applying now Plancherel’s
theorem we see that∫ ∞

−∞
|∂xu(x, t)|2dt =

∫ ∞

−∞
|ϕ(x, η)|2dη

≤ 1

4

∫ ∞

0

|f̂(
√
η/2π)|2 + |f̂(−

√
η/2π)|2dη

= π

∫ ∞

0

(|f̂(ξ)|2 + |f̂(−ξ)|2)ξdξ

= π

∫ ∞

−∞
|f̂(ξ)|2|ξ|dξ ≤ π‖f‖2

L2
1/2

From this the desired result
∫∞

0
|∂xu(x, t)|2dt ≤ c‖f‖2

L2
1/2

follows.
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Appendix

Let x ∈ R and f(x) = e−πδx2
for δ 6= 0,<(δ) ≥ 0. We compute f̂(ξ) as follows: Observe that f

satisfies the following differential equation

(
d

dx
+ 2πδx)f(x) = 0

Taking the Fourier transform of both sides we see that

(2πiξ + iδ
d

dξ
)f̂(ξ) = 0

We multiply by the integrating factor eπ|ξ|2/δ (our distributions may no longer be tempered at this
point) to get

d

dξ
(eπξ2/δf̂(ξ)) = 0

But a distribution of zero derivative is constant, so that

f̂(ξ) = Ce−πξ2/δ

Now C = f̂(0) =
∫
f(x)dx. If δ is real, this can be computed by a change of variables to be δ−1/2.

If δ is complex, after multiplying and dividing by the square root of δ which lies in the right half
plane, we write the integral as a contour integral over the line Γ given by {z = δ(x) : x ∈ R}:∫ ∞

−∞
e−πδx2

dx = δ−1/2

∫
Γ

e−πz2

dz

Now a deformation of contour shows that this last integral is 1. In the d−dimensional case this
gives us

(e−πδ|x|2 )̂ = δ−d/2e−π|ξ|2/δ

with the square root of δ chosen in the right half plane.
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