2. (The Cousin I Problem for Domains in \mathbb{C})

Part (1) is trivial; we will deal with part (2). Let $\left\{\varphi_{j}\right\}$ be a partition of unity relative to the cover $\left\{U_{j}\right\}$. On each U_{j}, define a smooth function g_{j} by

$$
g_{j}=\sum_{i} \varphi_{i} h_{j, i}
$$

To see that g_{j} is well-defined, first note that since φ_{i} is supported inside U_{i}, the function $\varphi_{i} h_{j, i}$, which is a priori only defined on $U_{i} \cap U_{j}$, can be extended by 0 on $U_{j} \backslash\left(U_{i} \cap U_{j}\right)$ in a smooth manner. Then, since the cover $\left\{U_{i}\right\}$ is locally finite, in a neighborhood of any point p of U_{j} the sum defining g_{j} is a finite sum of smooth functions and thus is itself smooth near p.
These functions g_{j} form a cochain with respect to the cover $\left\{U_{j}\right\}$. Computing the coboundary, we see that $g_{j}-g_{k}=\sum_{i} \varphi_{i}\left(h_{j, i}-h_{k, i}\right)=\left(\sum_{i} \varphi_{i}\right)\left(h_{j, k}\right)=h_{j, k}$ on $U_{j} \cap U_{k}$, since $\sum_{i} \varphi_{i}=1$. The second equality used the cocycle conditions on h, giving $h_{j, i}-h_{k, i}=h_{j, i}+h_{i, k}=-h_{k, j}=h_{j, k}$.
This means that we have split the cocycle $\left\{h_{j, k}\right\}$ over the sheaf of smooth functions on Ω; we want to split it over the sheaf of holomorphic functions. To do this, we want to add a "correcting" cochain $\left\{r_{j}\right\}$ to $\left\{g_{j}\right\}$ such that the following two conditions hold: $\bar{\partial} r_{j}=\bar{\partial} g_{j}$ on U_{j}, and $\delta\left\{r_{j}\right\}=0$, where δ is the coboundary operator. If such r_{j} exist, then $\left\{f_{j}\right\}:=\left\{g_{j}-r_{j}\right\}$ is a cochain of holomorphic functions whose coboundary is still $\left\{h_{j, k}\right\}$, and we will be done. Thus, we have reduced the problem to the existence of these r_{j}.
Note that the coboundary condition on $\left\{r_{j}\right\}$ amounts to saying that $r_{j}=r_{k}$ on $U_{j} \cap U_{k}$, or equivalently that the functions r_{j} are the restrictions of a globally defined smooth function r on Ω. Similarly, there is a globally defined 1 -form ω on Ω such that the forms $\bar{\partial} g_{j}$ are just the restrictions of ω to U_{j}; this is because $\bar{\partial} g_{j}-\bar{\partial} g_{k}=\bar{\partial} h_{j, k}=0$ on $U_{j} \cap U_{k}$. By Theorem 1.1 in Prof. Nagel's notes, we can solve the equation $\bar{\partial} r=\omega$ on Ω. Then if $r_{j}:=\left.r\right|_{U_{j}}$, we have $\bar{\partial} r_{j}=\left.\omega\right|_{U_{j}}=\bar{\partial} g_{j}$ as desired, finishing the proof.
6. (Solving $\bar{\partial}$ with compact support)

In the forward direction, suppose such a ψ exists, and let R be large enough that the support of ψ is contained in $|z|<R$ (this ensures the support of φ is contained in this set too). Let $n \geq 0$; then $\iint_{|z| \leq R} \varphi(z) z^{n} d z \wedge d \bar{z}=\iint_{|z| \leq R} \frac{\partial \psi}{\partial \bar{z}} z^{n} d z \wedge d \bar{z}=\iint_{|z| \leq R} d\left(\psi(z) z^{n} d z\right)$. By Stokes' theorem, this equals $\int_{|z|=R} \psi(z) z^{n} d z=0$ since the circle $|z|=R$ lies outside the support of ψ.
Conversely, suppose this integral vanishes for all $n \geq 0$. We at least know how to solve $\frac{\partial \psi}{\partial \bar{z}}=\varphi$ in the smooth (non-compactly supported) setting; let ψ be such a solution. We want to find an entire function h which agrees with ψ outside some compact set; then $\psi-h$ still solves our equation but is compactly supported.
Choose R large enough that the support of φ is contained in the disc $|z| \leq R$. The same chain of equalities used above to prove the forward direction still hold, and we have $0=\int_{|z|=R} \psi(z) z^{n} d z$. To compute this integral, we can use the parametrization $z=R e^{2 \pi i t}, 0 \leq t \leq 1$ to get the identity $0=-2 \pi i R^{n+1} \int_{0}^{1} \psi\left(R e^{2 \pi i t}\right) e^{2 \pi i(n+1) t} d t$. Let $f_{R}(t)=\psi\left(R e^{2 \pi i t}\right)$; then this integral is $-2 \pi i R^{n+1}$ times the $(-n-1)^{s t}$ Fourier coefficient of $f_{R} .-2 \pi i R^{n+1}$ is nonzero, so we see that all the negative Fourier coefficients of f_{R} vanish.
The periodic function f_{R} is smooth, so by a general theorem from Fourier analysis, f_{R} equals its Fourier series everywhere and this series converges absolutely. Thus, if a_{k} is the $k^{t h}$ Fourier coefficient of f_{R}, we have $f_{R}(t)=\sum_{k=0}^{\infty} a_{k} e^{2 \pi i k t}$, and $\sum\left|a_{k}\right|<\infty$. We will define a power series related to this Fourier series: let $g(z)=\sum_{k=0}^{\infty} a_{k}\left(\frac{z}{R}\right)^{k}$. The absolute convergence of $\sum\left|a_{k}\right|$ and the Weierstrass M-test imply that g converges uniformly on the closed disc $|z| \leq R$; thus g is continuous on this disc
(and holomorphic inside it). For any $z=R e^{2 \pi i t}$ on the circle $|z|=R$, we have $g(z)=\sum a_{k} e^{2 \pi i k t}=$ $f_{R}(t)=\psi\left(R e^{2 \pi i t}\right)=\psi(z)$.
Let p be any point on the circle $|z|=R$ and consider the function $g-\psi$ near p. Let U be a small neighborhood of p which is symmetric with respect to $|z|=R$. We know that $g-\psi$ is holomorphic on $U \cap\{|z|<R\}$, continuous on $U \cap\{|z| \leq R\}$, and zero (in particular, real-valued) on $U \cap\{|z|=R\}$. By the Schwartz reflection principle, $g-\psi$ can be analytically continued to all of U. Since ψ is holomorphic on U already, g can be analytically continued to all of U. The functions g and ψ are now holomorphic on domains which cover all of \mathbb{C} and whose intersection contains a circle segment on which $g=\psi$. Therefore, $g=\psi$ on the whole intersection of their domains of analyticity, so they patch together to give an entire function. If we let h be this entire function, we are done.
To prove the final claim, let φ be any bump function with integral 1 on \mathbb{C}, and let $n=0$. Then $\iint \varphi(z) d z \wedge d \bar{z} \neq 0$, so the equation $\frac{\partial \psi}{\partial \bar{z}}=\varphi$ does not admit a smooth solution ψ with compact support.

