
AN INTRODUCTION TO SEVERAL COMPLEX VARIABLES

(1ST DRAFT)

PO-LAM YUNG

In this note we provide some background for the inhomogeneous Cauchy-Riemann equa-
tion and the ∂-Neumann problem on domains in Cn+1, n ≥ 1. The emphasis will be on the
existence and the regularity of weak solutions.

1. The inhomogeneous Cauchy-Riemann equation

Let Ω be a bounded domain in Cn+1 with smooth boundary, n ≥ 1. We shall use the
standard Euclidean coordinates on Ω: z = (z1, . . . , zn+1),

zj := xj + iyj , j = 1, . . . , n+ 1.

We have the (1, 0) forms
dzj := dxj + idyj

and the (0, 1) forms
dzj := dxj − idyj .

We also have the holomorphic vector �elds

∂

∂zj
:=

1
2

(
∂

∂xj
− i

∂

∂yj

)
and the anti-holomorphic vector �elds

∂

∂zj
:=

1
2

(
∂

∂xj
+ i

∂

∂yj

)
.

(The coe�cients were chosen so that the dzj and dzj 's are dual to the ∂
∂zj

and ∂
∂zj

's.) A

(0, q) form is an alternating tensor product of q (0, 1) forms, and a (0, 0) form is just a
function. A basis of (0, q) forms is given by {dzI} where I runs over all strictly increasing
multi-indices of length q and dzI := dzi1 ∧ · · · ∧ dziq

if I = (i1, . . . , iq). The (complex)
vector space of (0, q) forms at a point carries a Hermitian inner product 〈·, ·〉 that makes the
preceding basis an orthogonal one at every point. The vector space of all (0, q) forms on Ω
with L2 coe�cients, denoted L2

(0,q)(Ω), is then equipped with a Hermitian inner product

(u, v) =
∫

Ω

〈u, v〉dz

which makes it a Hilbert space, where dz is the standard Euclidean measure on Cn+1.

We shall now de�ne the Cauchy-Riemann operator ∂. In distribution, it is given by

∂u :=
∑

I

n+1∑
j=1

∂uI

∂zj
dzj ∧ dzI if u =

∑
I

uIdzI .

Hereafter sums like
∑

I will always mean sums over strictly increasing multi-indices. It
sends (0, q) forms to (0, q + 1) forms. In particular, a function u is holomorphic if and only
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if ∂u = 0. Since we shall be working with the Hilbert space L2
(0,q)(Ω) in a moment, from

now on, however, unless otherwise speci�ed, we shall take ∂ to be the (unbounded) linear
operator

∂ : L2
(0,q)(Ω) → L2

(0,q+1)(Ω)
with domain

Dom(∂) = {u ∈ L2
(0,q)(Ω): the distributional ∂u ∈ L2

(0,q+1)(Ω)}

so that the Hilbert space operator ∂ agrees with the distributional ∂ whenever the former
is de�ned.

Another often useful reformulation of the de�nition of ∂ is the following. If Z1, . . . , Zn+1

is a basis of anti-holomorphic vector �elds at each point of Ω, and ω1, . . . , ωn+1 is the dual
basis of (0, 1) forms to Z1, . . . , Zn+1, then one can de�ne the distributional ∂ by requiring

∂u =
n+1∑
j=1

(Zju)ωj for all functions u

and that
∂(u ∧ v) = (∂u) ∧ v + (−1)qu ∧ (∂v) for all forms u and v

whenever u is a (0, q) form. We can then de�ne the Hilbert space operator ∂ as above, and

again from now on the symbol ∂ shall refer to the Hilbert space operator.

One important property of the ∂ operator is that it forms a complex : in other words,
Range(∂) ⊆ Dom(∂), and

∂ ◦ ∂ = 0.
One fundamental question in several complex variables is to solve the following inhomoge-
neous Cauchy-Riemann equation for u ∈ L2

(0,q)(Ω):

(1) ∂u = f, u ⊥ kernel of ∂.

In other words, we want to solve the above equation weakly for u ∈ L2
(0,q)(Ω), assuming

f ∈ L2
(0,q+1)(Ω) is given. Since ∂ forms a complex, this equation can only have a solution

when the compatibility condition ∂f = 0 is satis�ed, which we shall always assume from
now on. Another way of viewing this is that this system of equations is over-determined,
and some compatibility conditions must be imposed on the given data. The orthogonality
condition on u was made to ensure that the solution is unique (if it exists). The existence
of weak solution to this inhomogeneous Cauchy-Riemann equation is our main concern in
this section.

1.1. Pseudoconvexity. It turns out that solutions to the inhomogeneous Cauchy-Riemann
equation may or may not exist in such a general formulation. To ensure the existence of
solutions, one needs to impose some geometric condition on the boundary of Ω. This is
usually formulated in terms of pseudoconvexity, a concept to which we now turn.

Again let Ω be a bounded domain in Cn+1 with smooth boundary. First we should
introduce the important concept of holomorphic tangent vectors on the boundary ∂Ω of Ω.
Remember that a vector at z ∈ Cn+1 is said to be holomorphic if it is a complex linear
combination of

∂

∂zj

∣∣∣∣
z

, j = 1, . . . , n+ 1;

the set of all such is denoted as T
(1,0)
z (Cn+1), and is a complex vector space of dimension

n+ 1. Now for each z ∈ ∂Ω, let CTz(∂Ω) := Tz(∂Ω)⊗ C be the complexi�ed tangent space
at z to ∂Ω (in other words, the space of all vectors at z with complex coe�cients whose real
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and imaginary parts are both tangent to ∂Ω), and let T
(1,0)
z (∂Ω) be the intersection of this

complexi�ed tangent space with T
(1,0)
z (Cn+1). T (1,0)

z (∂Ω) is then a complex vector space of
dimension n, and elements of this space will be called holomorphic tangent vectors to ∂Ω at
z.

Fix now a smooth de�ning function ρ for Ω. This means that

Ω = {z ∈ Cn+1 : ρ(z) < 0},
with |dρ| 6= 0 at every point on ∂Ω. If z ∈ ∂Ω, the matrix(

∂2ρ

∂zj∂zk
(z)
)

1≤j,k≤n+1

de�nes a Hermitian form on T
(1,0)
z (Cn+1), and the Levi form Lz at z is de�ned to be the

restriction of this Hermitian form to T
(1,0)
z (∂Ω). More explicitly, if Z =

∑n+1
j=1 aj

∂
∂zj

and

W =
∑n+1

j=1 bj
∂

∂zj
are tangent to ∂Ω at z, then

Lz(Z,W ) :=
n+1∑

j,k=1

ajbk
∂2ρ

∂zj∂zk
(z).

Clearly the Levi form is also a Hermitian form, and if it is non-negative de�nite at some
z ∈ ∂Ω, we say that ∂Ω is pseudoconvex at z; strongly pseudoconvex if it is positive de�nite.
If ∂Ω is pseudoconvex at every point, then we say Ω is pseudoconvex ; similarly for strongly
pseudoconvexity.

Note that while the de�nition of the Levi form above depends on the choice of the de�n-
ing function ρ, whether or not a domain is pseudoconvex (or strongly pseudoconvex) is
independent of the choice of the de�ning function.

The name pseudoconvex was chosen because every (smooth) convex domain is pseudo-
convex. c.f. Exercise 4.

There is actually a notion of pseudoconvexity when the domain is not smooth, but we
shall not discuss that.

1.2. Hilbert space reformulation. In the following, we shall prove the existence of weak
solutions to the inhomogeneous Cauchy-Riemann equation (1) on all bounded pseudoconvex
domains with smooth boundaries. To do so, we shall need the theory of closed operators
on Hilbert spaces. Recall that a densely de�ned linear operator T : H1 → H2 between two
Hilbert spaces is said to be closed if its graph is closed in H1 ×H2. It is easy to check that
the operator ∂ : L2

(0,q)(Ω) → L2
(0,q+1)(Ω) we de�ned is a closed operator. At this point it is

convenient to introduce the Hilbert space adjoint of ∂, denoted by

∂
∗
: L2

(0,q+1)(Ω) → L2
(0,q)(Ω).

Then ∂
∗
is also densely de�ned, linear and closed.

Now one can check that the orthogonal complement of (the closure of) the range of ∂ in

L2
(0,q+1)(Ω) is the kernel of ∂

∗
. Hence

(2) L2
(0,q+1)(Ω) = Kernel(∂

∗
)⊕ Range(∂)

where ⊕ denotes an orthogonal direct sum. Going back to the inhomogeneous Cauchy-
Riemann equation, suppose f ∈ L2

(0,q+1)(Ω) is given with ∂f = 0. We want to �nd u ∈
L2

(0,q)(Ω)∩Dom(∂) such that ∂u = f . If we can �nd such u, then by orthogonally projecting
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onto the orthogonal complement of the kernel of ∂ (which is a closed subspace of L2
(0,q)(Ω)),

one can easily obtain a solution of the inhomogeneous Cauchy-Riemann equation (1). To

�nd such an u amounts to showing that f ∈ Range(∂), to which we now turn.

Suppose f ∈ L2
(0,q+1)(Ω) with ∂f = 0. Using (2) we decompose

f = f1 + f2, f1 ∈ Kernel(∂
∗
), f2 ∈ Range(∂).

Note that as a result f2 ∈ Kernel(∂). Since we already have f ∈ Kernel(∂), we have

f1 ∈ Kernel(∂) as well. If we could show that

(i) Kernel(∂) ∩Kernel(∂
∗
) = 0 on L2

(0,q+1)(Ω), and
(ii) Range(∂) is closed in L2

(0,q+1)(Ω),

then f1 = 0, hence f = f2 ∈ Range(∂) as desired. Hence we are reduced to showing (i) and
(ii). This can be accomplished in one stroke if we could show the following basic estimate
(q ≥ 0):

(3) ‖f‖L2 ≤ C(‖∂f‖L2 + ‖∂∗f‖L2), f ∈ L2
(0,q+1)(Ω) ∩Dom(∂) ∩Dom(∂

∗
).

In fact it is clear that (3) implies (i), and from (3) it follows that

‖f‖L2 ≤ C‖∂∗f‖L2

for all f ∈ L2
(0,q+1)(Ω)∩Dom(∂

∗
) orthogonal to the kernel of ∂

∗
, so the range of ∂

∗
is closed

in L2
(0,q)(Ω), and (ii) follows. (c.f. Exercise 7.) Hence it is tempted to prove the basic

estimate on domains Ω that are pseudoconvex.

1.3. The basic estimate. It turns out that while the basic estimate for (0, q + 1) forms
can be established relatively easily on strongly pseudoconvex domains (or a slightly bigger
class of domains that satis�es the condition called Z(q + 1)), in general one should proceed
di�erently. (c.f. however Exercise 13.) Instead of working with the Euclidean measure dz
on Ω, we shall work with the weighted Euclidean measure e−φ(z)dz, where φ(z) is a smooth
function on Ω. Note that L2

(0,q)(Ω) is still a Hilbert space under the twisted inner product

(4) (u, v)φ :=
∫

Ω

〈u, v〉e−φdz,

and that the new Hilbert space norm, which we denote as ‖ · ‖φ, is comparable to the old

L2 norm. Also, ∂ : L2
(0,q)(Ω) → L2

(0,q+1)(Ω) is still closed under this new inner product, and

we can still de�ne the Hilbert space adjoint of ∂ : L2
(0,q)(Ω) → L2

(0,q+1)(Ω) under this new

inner product, which we denote by

∂
∗
φ : L2

(0,q+1)(Ω) → L2
(0,q)(Ω).

The upshot is that we can run all the previous argument, and show that if for some φ, the
weighted basic estimate

(5) ‖f‖φ ≤ C(‖∂f‖φ + ‖∂∗φf‖φ), f ∈ L2
(0,q+1)(Ω) ∩Dom(∂) ∩Dom(∂

∗
φ)

holds for all q ≥ 0 (where ‖ · ‖φ denotes the L2 norm under the measure e−φdz), then the
inhomogeneous Cauchy-Riemann equation (1) can be solved weakly.

So suppose now that Ω is a bounded pseudoconvex domain with smooth boundary. We
shall content ourselves to proving an a priori version of the weighted basic estimate (5)
for a suitable φ. In other words, we shall just prove the estimate for (0, q + 1) forms

f ∈ Dom(∂) ∩ Dom(∂
∗
φ) that are smooth up to the boundary. The real estimate for all
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f ∈ L2
(0,q+1)(Ω) ∩ Dom(∂) ∩ Dom(∂

∗
φ) can then be shown using a density argument, which

we shall not give.

To prove the desired a priori estimate, �rst note that if f is smooth up to the boundary,

then it is always in Dom(∂); and it is in Dom(∂
∗
φ) if and only if

(6)

n+1∑
j=1

fjJ ′
∂ρ

∂zj
= 0 on ∂Ω

for all strictly increasing multi-indices J ′ of length q, where ρ is a de�ning function of Ω
with the additional property that |∇ρ| = 1 on the boundary (so that ∇ρ is the outward

unit normal). Hereafter we shall write fjJ ′ = εJ,jJ′fJ if j /∈ J ′, where J is the strictly

increasing multi-index that is a permutation of (j, J ′1, . . . , J
′
q), and ε

J,jJ′ is the sign of this

permutation. We shall also let fjJ′ = 0 if j ∈ J ′. To prove (6), let f ∈ Dom(∂
∗
φ) be smooth

up to boundary. Then there exists g ∈ L2
(0,q)(Ω) such that

(f, ∂h)φ = (g, h)φ

for all h ∈ L2
(0,q)(Ω) ∩Dom(∂). Now remember the integration by parts formula:∫

Ω

∂u

∂zj
vdz = −

∫
Ω

u
∂v

∂zj
dz +

∫
∂Ω

uv
∂ρ

∂zj
dσ.

Hence

(f, ∂h)φ =
∫

Ω

∑
J′

n+1∑
j=1

fjJ′
∂hJ′

∂zj
e−φdz

= −

n+1∑
j=1

∂(fjJ′e
−φ)

∂zj
eφdzJ′ , h


φ

+
∫

∂Ω

∑
J′

∑
j

fjJ′hJ′
∂ρ

∂zj
dσ

for all (0, q) forms h that are smooth up to the boundary. In particular this has to be true
for all h that are smooth and has compact support, so

(7) ∂
∗
φf = −

∑
J′

∑
j /∈J′

∂(fjJ′e
−φ)

∂zj
eφdzJ′ ,

and it follows that the boundary integral in the previous identity has to vanish for all h that
are smooth up to boundary. This proves (6), and the converse is easier. (Note incidentally
that the boundary condition (6) does not depend on the choice of the weight φ, although

∂
∗
φ certainly does.)

Now to prove the a priori weighted basic estimate, let f ∈ Dom(∂
∗
φ) be a (0, q + 1) form

smooth up to the boundary (q ≥ 0). Observe that

‖∂f‖2
φ =

∫
Ω

∑
J,K

n+1∑
j,k=1

εjJ,kK ∂fJ

∂zj

∂fK

∂zk
e−φdz.

Here εjJ,kK is 0 unless j /∈ J , k /∈ K and the ordered pair jJ := (j, J1, . . . , Jq+1) is a
permutation of kK := (k,K1, . . . ,Kq+1), in which case it is the sign of this permutation.
When the latter happens and j 6= k, we can choose a (strictly increasing) multiindex J ′

of length q such that J is a permutation of kJ ′ and K is a permutation of jJ ′, where the
permutations have opposite signs. Hence

‖∂f‖2
φ =

∫
Ω

∑
J

∑
j /∈J

∣∣∣∣∂fJ

∂zj

∣∣∣∣2 e−φdz −
∫

Ω

∑
J′

∑
j 6=k

∂fjJ′

∂zk

∂fkJ ′

∂zj
e−φdz.
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If we now allow in the second sum also the terms where j = k, then we commit an error
that can be absorbed into the �rst term, which gives

‖∂f‖2
φ =

∫
Ω

∑
J

n+1∑
j=1

∣∣∣∣∂fJ

∂zj

∣∣∣∣2 e−φdz −
∫

Ω

∑
J′

n+1∑
j,k=1

∂fjJ ′

∂zk

∂fkJ′

∂zj
e−φdz.

Next by (7),

‖∂∗φf‖2
φ =

∫
Ω

∑
J′

n+1∑
j,k=1

∂(fjJ ′e
−φ)

∂zj

∂(fkJ ′e
−φ)

∂zk
eφdz

The leading term of this formula (where the derivatives do not hit e−φ) looks so much like

the second term of the formula we had for ‖∂f‖2
φ, except that the derivatives

∂
∂zj

and ∂
∂zk

are swapped. This suggests that we should integrate by parts in ∂
∂zj

and ∂
∂zk

. We �rst

integrate by parts in ∂
∂zj

and get

‖∂∗φf‖2
φ =−

∫
Ω

∑
J′

n+1∑
j,k=1

fjJ ′
∂2(fkJ ′e

−φ)
∂zj∂zk

dz −
∫

Ω

∑
J′

n+1∑
j,k=1

fjJ ′
∂(fkJ ′e

−φ)
∂zk

∂φ

∂zj
dz

+
∫

∂Ω

∑
J′

n+1∑
j,k=1

fjJ′
∂(fkJ ′e

−φ)
∂zk

∂ρ

∂zj
dσ

The boundary term vanishes by (6) since f ∈ Dom(∂
∗
φ). Next we integrate by parts in ∂

∂zk
:

‖∂∗φf‖2
φ =

∫
Ω

∑
J′

n+1∑
j,k=1

∂fjJ ′

∂zk

∂(fkJ ′e
−φ)

∂zj
dz −

∫
∂Ω

∑
J′

n+1∑
j,k=1

fjJ′
∂(fkJ ′e

−φ)
∂zj

∂ρ

∂zk
dσ

+
∫

Ω

∑
J′

n+1∑
j,k=1

∂fjJ ′

∂zk
fkJ ′

∂φ

∂zj
e−φdz +

∫
Ω

∑
J′

n+1∑
j,k=1

fjJ′fkJ ′
∂2φ

∂zj∂zk
e−φdz

+
∫

∂Ω

∑
J′

n+1∑
j,k=1

fjJ′fkJ ′
∂φ

∂zj

∂ρ

∂zk
e−φdσ

=
∫

Ω

∑
J′

n+1∑
j,k=1

∂fjJ ′

∂zk

∂fkJ ′

∂zj
e−φdz +

∫
Ω

∑
J′

n+1∑
j,k=1

fjJ′fkJ ′
∂2φ

∂zj∂zk
e−φdz

−
∫

∂Ω

∑
J′

n+1∑
j,k=1

fjJ′
∂fkJ ′

∂zj

∂ρ

∂zk
e−φdσ

But now since f ∈ Dom(∂
∗
φ), by (6) again, the vector �eld

n+1∑
j,k=1

fjJ′
∂

∂zj

is always tangent to ∂Ω. Hence
n+1∑
j=1

fjJ′
∂

∂zj

(
n+1∑
k=1

fkJ ′
∂ρ

∂zk

)
= 0 on ∂Ω.

In particular,
n+1∑

j,k=1

fjJ′
∂fkJ ′

∂zj

∂ρ

∂zk
= −

n+1∑
j,k=1

fjJ′fkJ ′
∂2ρ

∂zj∂zk
on ∂Ω.
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Hence

‖∂f‖2
φ + ‖∂∗φf‖2

φ =
∫

Ω

∑
J

n+1∑
j=1

∣∣∣∣∂fJ

∂zj

∣∣∣∣2 e−φdz +
∫

Ω

∑
J′

n+1∑
j,k=1

fjJ ′fkJ ′
∂2φ

∂zj∂zk
e−φdz(8)

+
∫

∂Ω

∑
J′

n+1∑
j,k=1

fjJ ′fkJ ′
∂2ρ

∂zj∂zk
e−φdσ.

The �rst term on the right hand side is certainly non-negative, and if we remember that Ω
is pseudoconvex and that

∑n+1
j=1 fjJ′

∂
∂zj

∈ T
(1,0)
z (∂Ω), we see that the boundary integral is

non-negative as well. If we now take φ = |z|2, we get the desired a priori weighted estimate
(5) because with this φ,

∂2φ

∂zj∂zk
= δjk,

and the second term on the right hand side of the previous equation becomes ‖f‖2
φ.

Note how pseudoconvexity enters crucially into the proof of this basic estimate. Note also
incidentally that in the above basic estimate, the ∂

∂zj
derivatives of all the components of f

are automatically controlled by ‖∂f‖2
φ +‖∂∗φf‖2

φ. This is not the case for the
∂

∂zj
derivatives;

thus these two kinds of derivatives play a fundamentally di�erent role in any deeper analysis
of the inhomogeneous Cauchy-Riemann equation.

Another remark is that while it is relatively easy to choose the weight φ in our current
setting, if we carry out an analogous analysis on a domain embedded in a complex manifold
rather than Cn+1, it will not be as clear what weight φ we should pick. The correct setting
is then to work on a special class of complex manifolds called Stein manifolds, named after
Karl Stein.

To sum up, assuming one knows how to pass to the real estimate using a density argument,
we have shown the existence of weak solution in L2

(0,q)(Ω) of the inhomogeneous Cauchy-

Riemann equation (1) whenever Ω is bounded pseudoconvex with smooth boundary, and

whenever f ∈ L2
(0,q+1)(Ω) satis�es ∂f = 0.

2. The ∂-Neumann problem

There is another important partial di�erential equation in several complex variables that is
closely related to the inhomogeneous Cauchy-Riemann equation. It is called the ∂-Neumann
problem, and it is such called because, as we shall see in the next Section, the most di�cult
component of this system of equations involves a boundary condition that is given by a
complex normal derivative. To formulate the problem, we de�ne an (unbounded) linear
operator

� : L2
(0,q)(Ω) → L2

(0,q)(Ω)

with domain

Dom(�) := {u ∈ L2
(0,q)(Ω): u ∈ Dom(∂) ∩Dom(∂

∗
), ∂u ∈ Dom(∂

∗
), ∂

∗
u ∈ Dom(∂)}

which is clearly dense in L2
(0,q)(Ω). (From now on, unless otherwise speci�ed, we shall again

just put the standard Euclidean inner product on L2
(0,q)(Ω).) For u ∈ Dom(�), we de�ne

�u := (∂∂
∗

+ ∂
∗
∂)u.
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This is usually called the Kohn Laplacian. One can check that it is an unbounded self-adjoint
operator on L2

(0,q)(Ω) for all q ≥ 0. The ∂-Neumann problem is to solve for u ∈ Dom(�)
such that

(9) �u = f

given f ∈ L2
(0,q)(Ω).

For this equation to have a solution, again we may need some compatibility conditions
on f . Since � is self-adjoint, we have an orthogonal direct sum

L2
(0,q)(Ω) = Kernel(�)⊕ Range(�)

for all q ≥ 0. Hence for the equation (9) to have a solution, i.e. for f ∈ L2
(0,q)(Ω) to be in

Range(�), we need at least f to be orthogonal to the kernel of � on L2
(0,q)(Ω). The kernel

of �, however, is easily checked to be just Kernel(∂)∩Kernel(∂∗), and we have already seen
from our analysis of the inhomogeneous Cauchy-Riemann equation that this is trivial on
L2

(0,q)(Ω) when q ≥ 1. When q = 0, the kernel of � is just the kernel of ∂, i.e. the space

of holomorphic functions on Ω. Hence to solve (9), we shall require f to be orthogonal to
holomorphic functions when q = 0, but we shall not require any orthogonality condition on
f when q ≥ 1.

In fact our solution to the inhomogeneous Cauchy-Riemann equation already allows us
to solve the ∂-Neumann problem weakly on bounded pseudoconvex domains with smooth
boundaries. From the above analysis, to solve the ∂-Neumann problem amounts to showing
that � has closed range in L2. Here, however, we shall take a more explicit approach, by
giving an explicit formula for the solution operator to the ∂-Neumann problem in terms of

the relative solution operators of ∂ and ∂
∗
(see below for the de�nitions of these). At this

stage it is best to keep track of the levels of forms on which operators are acting by various
subscripts1. We shall write

∂q : L2
(0,q)(Ω) → L2

(0,q+1)(Ω), ∂
∗
q : L2

(0,q+1)(Ω) → L2
(0,q)(Ω) (0 ≤ q ≤ n)

and
�q = ∂q−1∂

∗
q−1 + ∂

∗
q∂q : L2

(0,q)(Ω) → L2
(0,q)(Ω) (0 ≤ q ≤ n+ 1).

We have seen that the ranges of ∂q are always closed on such domains Ω, and hence so are

the ranges of ∂
∗
q . It follows that for all 0 ≤ q ≤ n,

(10) L2
(0,q+1)(Ω) = Range(∂q)⊕Kernel(∂

∗
q) and L2

(0,q)(Ω) = Range(∂
∗
q)⊕Kernel(∂q).

It is also convenient to introduce the orthogonal projections Bq and B′
q onto the kernels of

∂q and ∂
∗
q respectively, namely

Bq : L2
(0,q)(Ω) → Kernel(∂q), B′

q : L2
(0,q+1)(Ω) → Kernel(∂

∗
q).

(B0 is usually called the Bergman projection; it is just the orthogonal projection onto the
closed subspace of holomorphic functions.) Then there exists bounded linear operators

Kq : L2
(0,q+1)(Ω) → (Kernel(∂q))⊥ ∩Dom(∂q)

and
K ′

q : L2
(0,q)(Ω) → (Kernel(∂

∗
q))

⊥ ∩Dom(∂
∗
q)

(here ⊥ denotes orthogonal complement in the respective L2 spaces) such that

∂qKq = I −B′
q on L2

(0,q+1)(Ω)

1Here the notations are chosen such that ∂q acts on (0, q) forms, ∂
∗
q is the adjoint of ∂q , Kq and K′

q

solve ∂q and ∂
∗
q relatively, Bq and B′

q project onto the kernels of ∂q and ∂
∗
q , �q acts on (0, q) forms, and

Nq solves �q .
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and

∂
∗
qK

′
q = I −Bq on L2

(0,q)(Ω)
for all 0 ≤ q ≤ n, where I is the identity operator on the appropriate level of forms. Kq and

K ′
q are usually called the relative solution operators of ∂q and ∂

∗
q respectively, and they are

adjoints of each other (c.f. Exerise 12).

Now for 0 ≤ q ≤ n+ 1, de�ne a bounded linear operator

Nq : L2
(0,q)(Ω) → L2

(0,q)(Ω)

by

(11) Nq = K ′
q−1Kq−1 +KqK

′
q

where K−1, K
′
−1, Kn+1 and K ′

n+1 are de�ned to be zero. Then Nq maps into Dom(�q),
and

(12) �qNq =

{
I if q ≥ 1
I −B0 if q = 0

.

(c.f. Exercise 15.) Thus for q ≥ 1, u := Nqf ∈ Dom(�q) solves �qu = f weakly for all
f ∈ L2

(0,q)(Ω), and if f ∈ L2
(0,0)(Ω) is orthogonal to holomorphic functions, then u := N0f

solves �0u = f weakly. Of course all these are only true under our standing assumption
that Ω is bounded, smooth and pseudoconvex.

The operator Nq is usually called the ∂-Neumann operator. It is also self-adjoint like �q

(c.f. Exercise 16). We can also de�ne a corresponding operator when we put a weighted L2

inner product on L2
(0,q)(Ω), and as we shall see, this is useful in the study of the existence of

some C∞ solutions to ∂u = f without requiring orthogonality of the solution to the kernel
of ∂ in any sense.

3. Regularity theory

In the previous Section we have seen how the solution to the inhomogeneous Cauchy-
Riemann equation leads to a solution of the ∂-Neumann problem. On the other hand, it is
also well-known that this process can be reversed. In fact if �q has closed range in L2, then

both ∂q and ∂q−1 have closed ranges in L2 (c.f. Exercise 18), whereas we have essentially
shown the converse of this in the previous Section. When the domain is bounded, smooth
and pseudoconvex, we also have the following solution formula

(13) Kq = ∂
∗
qNq+1 and K ′

q = ∂qNq

for all 0 ≤ q ≤ n, expressing the relative solution operators of ∂ and ∂
∗
in terms of the

∂-Neumann operator (c.f. Exercise 19). These formula basically follow from the fact that

∂q−1∂
∗
q−1Nq + ∂

∗
q∂qNq =

{
I if q ≥ 1
I −B0 if q = 0,

and the essence of these formula can be summarized in the following orthogonal decompo-
sition

L2
(0,q)(Ω) = ∂∂

∗
Dom(�)⊕ ∂

∗
∂Dom(�)⊕Kernel(�)

when 0 ≤ q ≤ n+ 1 (with the kernel of � being trivial when q ≥ 1).

In fact the ∂-Neumann problem is usually easier to study than the inhomogeneous
Cauchy-Riemann equation. This is because, as we shall see shortly, that the ∂-Neumann
problem is a boundary value problem, and we have a whole host of tools to tackle such, such
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as pseudodi�erential operators and Poisson operators. On the other hand, the orthogonality
condition u ⊥ Kernel(∂) is rather di�cult to deal with in general, because for instance any
microlocalization or multiplication by cut-o�s kills this property. It should be noted that

when we introduced ∂
∗
into the study of the inhomogeneous Cauchy-Riemann equation, we

were already in essence getting rid of this orthogonality condition by considerations similar
to the ∂-Neumann problem.

From (13), we already see that the regularity of the ∂-Neumann operator Nq+1 implies

some regularity of the relative fundamental solutions Kq of ∂q. It is the regularity of Nq,
q ≥ 1, to which we now turn.

3.1. L2 Sobolev regularity. We shall discuss two aspects of the regularity of Nq, q ≥ 1,
namely regularity in the Sobolev spaces Hk (the space of functions with k weak derivatives
in L2) and sharp regularity in Lp. We shall be rather brief in the former, and content
ourselves to stating a few results with only a very brief indication of proofs.

Again let Ω be a bounded pseudoconvex domain with smooth boundary in Cn+1, n ≥ 1.
We write Hk

(0,q)(Ω) for the space of (0, q) forms on Ω with Hk coe�cients. Our �rst result

makes use of the weighted inner product (4) and the corresponding ∂-Neumann opera-

tor. We shall write ∂
∗
t for the adjoint of ∂ under the weighted inner product with weight

φ(z) := t|z|2, Nt for the corresponding ∂-Neumann operator, and Bt be the corresponding
Bergman projection. (Note however that the Hk Sobolev spaces we use were de�ned using
the unweighted inner product.) The �srt result is then

Theorem 1 (Exact regularity in Hk). For every k ∈ N, there exists Tk > 0 such that

(i) Nt, ∂
∗
tNt, ∂∂

∗
tNt maps Hk

(0,q)(Ω) boundedly into itself whenever t > Tk, q ≥ 1;
(ii) Bt maps Hk

(0,0)(Ω) boundedly into itself whenever t > Tk.

In particular, for every k ∈ N and every f ∈ Hk
(0,q+1)(Ω) with ∂f = 0, q ≥ 0, there exists

a solution u to the equation ∂u = f with u ∈ Hk
(0,q)(Ω), because then one can just take

u = ∂
∗
tNtf .

We shall not give the detailed proof of this theorem, except to mention that the main
thrust of the theorem is in bounding k tangential derivatives of the corresponding operators,
and this can be done using the basic estimate and commuting derivatives. For instance, if
say f is localized to a coordinate patch and T k are k tangential derivatives, then the basic
estimate implies

t‖T kNtf‖2
t|z|2 ≤ C(∂T kNtf, ∂T

kNtf)t|z|2 + C(∂
∗
tT

kNtf, ∂
∗
tT

kNtf)t|z|2 .

If one integrate by parts and commute derivatives to let the ∂ and ∂
∗
t operators fall on Nt,

then one can obtain a good estimate of the right hand side plus some error terms, and the
errors can then be absorbed into the left hand side as long as t is su�ciently big.

Note that ∂∂
∗
tNt and Bt in the theorem are just (weighted) L2 orthogonal projections

onto the kernel of ∂ on the appropriate levels of forms. Using their regularity as stated
above, we get as a consequence

Theorem 2 (Existence of classical solutions). For every k ∈ N, q ≥ 0 and every (0, q + 1)
form f on Ω that is C∞ up to the boundary and satis�es ∂f = 0, there exists a solution u
to the equation ∂u = f that is C∞ up to the boundary.
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This is because for each k, we can get, using the �rst theorem, a solution uk to ∂u = f
with uk ∈ Hk. One is tempted to take limit as k goes to in�nity to obtain a classical
solution, but this doesn't quite work because the uk's are de�ned only up to the kernel of
∂, and there is no guarantee that these are close as k → ∞. Nevertheless, if we correct
each of these uk by a suitable element in the kernel of ∂ that is su�ciently regular, one
can then pass to limits in all the Hk spaces. This can be done using the regularity of the
projection operators onto the kernel of ∂ that we described above, and would give a proof
of the theorem. Again we omit the details.

One last aspect of Sobolev regularity that we mention here is that as long as Ω is strongly
pseudoconvex (or satisfy some suitable kind of �nite type conditions, which intuitively says
that it is not entirely �at on the boundary), then one actually begins to gain derivatives;
for instance, if Ω is a bounded strongly pseudoconvex domain with smooth boundary, then
the (unweighted) ∂-Neumann operator N satis�es

‖Nf‖Hk+1 ≤ C‖f‖Hk

for all f ∈ Hk
(0,q)(Ω), q ≥ 1, k ≥ 0. Note that while N solves a second order partial

di�erential equation (namely �u = f), it cannot in general gain more than 1 derivative.
This is because of the subelliptic nature of the problem; we shall discuss this further when
we discuss the sharp Lp regularity of N . In fact in these problems whether or not one
gains derivatives and how many derivatives one gain is usually related to the geometry of
the boundary in a very delicate way. The above gain in N has its origin in the following
improvement of our basic estimate when the domain is strongly pseudoconvex, namely

‖f‖2
H1/2 ≤ C(‖∂f‖2

L2 + ‖∂∗f‖2
L2)

for f ∈ L2
(0,q)(Ω) ∩ Dom(∂) ∩ Dom(∂

∗
), q ≥ 1. This is usually called the 1/2-subelliptic

estimate for bounded strongly pseudoconvex domains, and can be deduced from the basic
identity (8).

3.2. A model case: the upper half space. Now we turn to study sharp Lp regularity
of the ∂-Neumann operator Nq; again q ≥ 1. For simplicity, we shall limit ourselves to

studying the ∂-Neumann operator on a model space, namely the upper half-space

Un+1 := {w = (w′, wn+1) ∈ Cn+1 : Im wn+1 > |w′|2}.

This is a natural domain to study because it is biholomorphic to the unit ball in Cn+1,
and is easily checked to be strongly pseudoconvex. In fact this is a prototype of a strongly
pseudoconvex domain, and our analysis that follows can also be carried over to all bounded
strongly pseudoconvex domains with smooth boundaries with an additional e�ort to take
care of the technicalities that arise. (Our methods, and the results that we shall prove, fail
for domains that are just pseudoconvex though.) We shall basically give an explicit solution

formula for the ∂-Neumann operator in terms of operators that are more tractable, and
in particular in terms of operators whose regularity properties are well-understood. The
solution formula is sometimes also called a parametrix for the Kohn Laplacian.

Note that since Un+1 is not compact, we do not expect to get a solution to �u = f in
L2 when f ∈ L2; we shall thus just content ourselves to proving a priori estimates to the
solution of this equation. In other words, we derive estimates of u ∈ Dom(�) assuming

that u is smooth up to the boundary, compactly supported in Un+1, and solves �u = f
classically.
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To begin with, let us describe in more explicit terms the Kohn Laplacian on Un+1. A
basis of (0, 1) forms on Un+1 can be given by

ωj := dwj (1 ≤ j ≤ n) and ωn+1 := 21/2∂ρ = i2−1/2dwn+1 − 21/2
n∑

j=1

wjdwj ,

where ρ := Im wn+1 − |w′|2 is (the negative of) a de�ning function for Un+1, and the
corresponding dual basis of anti-holomorphic vector �elds is then given by

Zj :=
∂

∂wj
− 2iwj

∂

∂wn+1
(1 ≤ j ≤ n) and Zn+1 := −i21/2 ∂

∂wn+1
.

The Euclidean coordinates w, however, is not the best coordinate system on Un+1 in
which we can describe these (0, 1) forms and anti-holomorphic vector �elds; hence we shall
introduce another coordinate system [z, t, ρ] where the de�ning function ρ plays a more
visible role. Let now

z = w′, t = Re wn+1, ρ = Im wn+1 − |w′|2

so that Un+1 = {[z, t, ρ] ∈ Cn × R × R : ρ > 0}. This is not a holomorphic change of
coordinates; in particular t + iρ is not a holomorphic function on Un+1. Hence in this
coordinate system the anti-holomorphic vector �elds is no longer spanned by the ∂

∂zj
's;

instead the previous basis of anti-holomorphic vector �elds is now written

Zj =
∂

∂zj
− izj

∂

∂t
(1 ≤ j ≤ n) and Zn+1 = −i2−1/2

(
∂

∂t
+ i

∂

∂ρ

)
,

and the previous basis of (0, 1) forms is written ωj = dzj (1 ≤ j ≤ n), ωn+1 = 21/2∂ρ.

There are three advantages of using the basis {ωj} and {Zj}. First the �rst n vector

�elds above are tangent to the boundary ∂Un+1 of Un+1, because by de�nition Zjρ = 0 for

j = 1, . . . , n. Second the Zj 's, 1 ≤ j ≤ n+ 1 all commute with each other, i.e.

[Zj , Zk] = 0 for all 1 ≤ j, k ≤ n+ 1,

because

(14) ∂ωj = 0 for all 1 ≤ j ≤ n+ 1.

Finally if we write Zj for the complex conjugate of Zj , i.e.

Zj =
∂

∂zj
+ izj

∂

∂t
(1 ≤ j ≤ n) and Zn+1 = i2−1/2

(
∂

∂t
− i

∂

∂ρ

)
,

then Zj and Zk obey a simple commutation relation, namely

(15) [Zj , Zk] =

{
−2iT if 1 ≤ j, k ≤ n and j = k

0 otherwise,

where

T :=
∂

∂t
.

The fact that Zj commutes with all Zk when j 6= k shall greatly simplify our computations
below.

We now de�ne a Hermitian inner product 〈·, ·〉 on the space of (0, q) forms at a point
so that the ωI 's, when I ranges over all strictly increasing multi-indices of length q, form
an orthonormal basis at each point; here ωI := ωi1 ∧ · · · ∧ ωiq

if I = (i1, . . . , iq). This
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then induces a Hermitian inner product on the space L2
(0,q)(U

n+1) of (0, q) forms with L2

coe�cients, namely

(u, v) =
∫
{ρ>0}

〈u, v〉dzdtdρ

which makes L2
(0,q)(U

n+1) a Hilbert space. (Note that the change of coordinates carries the
Euclidean measure dw in the old coordinate system to the Euclidean measure dzdtdρ in the
new coordinate system.)

The distributional ∂ is now given by the formula

∂u =
∑

I

n+1∑
j=1

Zj(uI)ωj ∧ ωI if u =
∑

I

uIωI ;

this just follows from our alternative de�nition of ∂ in Section 1, and (14). We can then

de�ne the Hilbert space operators ∂, ∂
∗
and �; explicitly, if a (0, q) form u =

∑
I uIωI is

smooth up to boundary and has compact support on Un+1, then

u ∈ Dom(∂
∗
) if and only if uI = 0 on ∂Un+1 whenever n+ 1 ∈ I

in which case

∂
∗
u =

∑
J′

n+1∑
j=1

Zj(ujJ′)dzJ′ ,

whereas u ∈ Dom(�) if and only if on ∂Un+1,{
uI = 0 whenever n+ 1 ∈ I
Zn+1uI = 0 whenever n+ 1 /∈ I,

in which case

�u =
∑

n+1/∈I

�τ (uI)ωI +
∑

n+1∈I

�ν(uI)ωI

where �τ , �ν are scalar di�erential operators acting on functions, de�ned by

�τ = �τ
q := Ln−2q −

1
2

(
∂2

∂t2
+

∂2

∂ρ2

)
and

�ν = �ν
q := Ln−2q+2 −

1
2

(
∂2

∂t2
+

∂2

∂ρ2

)
Here the Lα's are scalar tangential di�erential operators acting on functions, given by

Lα := −1
2

n∑
j=1

(
ZjZj + ZjZj

)
+ iαT = −1

2

n∑
j=1

(
X2

j + Y 2
j

)
+ iαT

where Xj and Yj are the real vector �elds de�ned by

Zj =
1
2
(Xj + iYj).

These formula can be checked using the de�nitions and (15). Note that � acts component-
wise, and this nice decoupling of this system of equation only happens because Zj commutes

with Zk for all j 6= k. This is special to the upper half-space Un+1 (and not true even for
general strongly pseudoconvex domains), which makes it a simple model case to study.

From the above discussion we see that to study estimates for classical solutions to the ∂-
Neumann problem for (0, q) forms on Un+1, it amounts to studying estimates to the following
two boundary value problems for scalar functions φ:

(16) �τ
qφ = ψ on Un+1, Zn+1φ = 0 on ∂Un+1
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and

(17) �ν
qφ = ψ on Un+1, φ = 0 on ∂Un+1.

The latter is an elliptic boundary value problem, and can be treated by classical theory. The
former is more di�cult because the boundary condition there involves a complex normal
derivative Zn+1, and as we shall see this is not an elliptic boundary condition. As a result,
the deepest analysis of the ∂-Neumann problem involves studying this complex Neumann
condition, and it is how the ∂-Neumann problem got its name.

3.3. Reduction to the boundary. We now focus on the study of the tangential com-
ponent (16) of the ∂-Neumann equation. To do so, we follow a well-known paradiagm
for studying general boundary value problem. This consists of a reduction to a study of
(pseudo)di�erential operators the boundary, but before that we need some preliminaries.

First, an important fact about Un+1 here is that its boundary ∂Un+1 happens to carry a
group structure; if we parametrize that by assigning a point [z, t, 0] ∈ ∂Un+1 the coordinates
[z, t], then the group law is given by

[z, t][ζ, s] := [z + ζ, t+ s+ 2Im (z · ζ)].
This is a non-abelian Lie group; it's usually called the Heisenberg group Hn. The identity
is [0, 0], and the inverse of [z, t] is [−z,−t]. It acts on Un+1 by translations:

[ζ, s][z, t, ρ] := [ζ + z, s+ t+ 2Im (ζ · z), ρ].
In other words, it acts by leaving ρ �xed and operating on the [z, t] variable by the group
law of Hn. Since Hn is a Lie group, we can de�ne convolutions using left translations: we
de�ne

(φ ∗ F )([z, t]) :=
∫

Hn

φ([ζ, s])F ([−ζ,−s][z, t])dζds.

On Hn we have the restrictions of the tangential di�erential operators Zj , Zj (1 ≤ j ≤ n)
and T ; we also have the the restrictions of the tangential real vector �elds Xj , Yj and the
tangential operator Lα. By abuse of notations we use the same symbol for the original
operators and their restrictions. These restricted operators are now left-invariant under
the group law of the Heisenberg group; in other words, they commute with left-translation
operators L[ζ,s], de�ned by

(L[ζ,s]f)[z, t] := f([ζ, s][z, t]).

The important fact here is that the operator Lα on Hn can then be solved by convoluting
against a fundamental solution Fα when α /∈ {±(n+ 2m) : m ∈ Z,m ≥ 0}; in fact if

Fα([z, t]) := γ−1
α (|z|2 − it)−

n+α
2 (|z|2 + it)−

n−α
2 , γα :=

22−nπn+1

Γ(n+α
2 )Γ(n−α

2 )
,

then
Lα(φ ∗ Fα) = φ

for either Schwartz φ, or distributions φ with compact support, when α is not one of the
above forbidden values. (Note that γα is �nite exactly when α is not a forbidden value.)

We now return to the study of (16). Suppose φ is a function smooth up to the boundary,

supported in a �xed compact set in Un+1, and solves �τ
qφ = ψ, Zn+1φ

∣∣
∂Un+1 = 0 classically.

We shall construct a solution formula that recovers φ from ψ. First it was known that there
is an explicit Green's operator G such that Gψ satisfy

�τ
q (Gψ) = ψ on Un+1 and Gψ = 0 on ∂Un+1.

It follows that
�τ

q (φ−Gψ) = 0 on Un+1,
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and of course

φ−Gψ = φb on ∂Un+1

where φb is the restriction of φ to the boundary ∂Un+1. Now taking normal derivative of
the Green's operator, we get an explicit Poisson operator P , which solves

�τ
q (Phb) = 0 on Un+1 and Phb = hb on ∂Un+1

for all continuous functions hb de�ned on ∂Un+1. In particular, we get from the above

(18) φ = Gψ + Pφb.

Hence to solve for φ amounts to solving for φb. Now φb is determined by the boundary
condition on φ; in fact, taking Zn+1 derivative of both sides and restricting to the boundary,
we get, from our assumption that Zn+1φ = 0 on ∂Un+1, that

Zn+1(Pφb)
∣∣
∂Un+1 = − Zn+1(Gψ)

∣∣
∂Un+1 .

De�ne the boundary operator �+ by letting

�+φb = Zn+1(Pφb)
∣∣
∂Un+1 ;

it is a pseudodi�erential operator on ∂Un+1. The condition for φb is now

�+φb = − Zn+1(Gψ)
∣∣
∂Un+1 .

If we could somehow invert �+, then we could recover φb from the given data ψ, and we
would have obtained a formula for φ in terms of ψ by (18). This is our next goal.

To do so we need to analyze �+ more closely. Since Zn+1 = −i2−1/2
(
T + i ∂

∂ρ

)
, T is

tangential to the boundary and Pφb = φb on the boundary, we get

�+φb = −i2−1/2(T + iN)φb

where N is the Dirichlet-to-Neumann operator, given by

Nφb :=
∂

∂ρ
(Pφb)

∣∣∣∣
ρ=0

.

The trick now is that if we de�ne

�− := i2−1/2(T − iN),

then

�−�+ =
1
2
(T 2 +N2).

This is because T commutes with N . But N2 is just

∂2

∂ρ2
Pρ

∣∣∣∣
ρ=0

where (Pρhb)([z, t]) := (Phb)([z, t, ρ]), because Pρ1Pρ2 = Pρ1+ρ2 . It follows that if we apply
the previous equation to φb, then

�−�+φb =
1
2

(
T 2 +

∂2

∂ρ2

)
(Pφb)

∣∣∣∣
ρ=0

= Ln−2q(Pφb)|ρ=0

= Ln−2qφb.

So if now 1 ≤ q ≤ n− 1, then from the fundamental solution Fn−2q to Ln−2q we get

φb = �−(�+φb) ∗ Fn−2q

which allows us to invert �+. It follows that for this range of q we have

(19) φ = Gψ − P�−
((
Zn+1Gψ

)∣∣
∂Un+1 ∗ Fn−2q

)
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which is our desired parametrix for �.

A few remarks are in order. First the above solution formula only works when q 6= n.
When q = n the formula fails because Ln−2q then fails to be invertible. Nevertheless
it is invertible modulo its null space, and a further microlocalization produces a (more
complicated) solution formula. Note also that the case q = n+ 1 is irrelevant, because if we

solve the ∂-Neumann equation for (0, n+ 1) form, then there is only one component, which
is normal (hence the problem is actually elliptic), and the above analysis is not necessary.

Next, we remark that the boundary condition in (16) was said to be non-elliptic because
the associated boundary operator �+ is not elliptic as a pseudodi�erential operator on
∂Un+1. This is because we are now using a complex normal derivative. If we had used
just the real normal derivative, the boundary condition would then become elliptic and the
analysis would become much easier.

Note, however, that we still say that the boundary condition in (16) is subelliptic because
one still gains derivatives from that.

Finally, this solution formula is useful in studying the regularity of the solutions of the
∂-Neumann problem on Un+1, because the regularity of each term is well-known. Without
going into details of what exactly the regularities of these operators are, let us just state the
following result on the sharp Lp regularity of the solutions of the ∂-Neumann equation.

3.4. Sharp Lp regularity. Suppose u =
∑

I uIωI ∈ Dom(�) is a (0, q) form (q ≥ 1)
that is smooth up to the boundary, supported in a �xed compact set in Un+1, and solves
�u = f classically. Then the normal components of u, namely uI with n+ 1 ∈ I, gains two
derivatives in Lp for all 1 < p <∞, i.e.

‖uI‖Ẇ 2,p ≤ C‖fI‖Lp .

This is because uI then solves the elliptic boundary value problem (17). On the other hand,
the tangential components of u, namely uI with n+ 1 /∈ I, satis�es

‖Q(Z,Z)uI‖Lp + ‖Zn+1uI‖Ẇ 1,p ≤ C‖fI‖Lp

for all 1 < p <∞, where Q(Z,Z) denotes any (non-commutative) purely quadratic polyno-
mial of Zj and Zj , 1 ≤ j ≤ n. This involves a more detailed analysis of the operators that
are involved in (19), which we refrain from giving, except to mention that two kinds of op-
erators are involved, one that is more adapted to the Euclidean structure of the underlying
space, and another that is more adapted to the non-commutative nature of the Heisenberg
group.

The point here is that for the tangential components of the solutions of the ∂-Neumann
equation, one cannot expect to gain two full derivatives in every direction; rather, there is
this subtle distinction between good directions (namely Zj , Zj , 1 ≤ j ≤ n and Zn+1) and
bad directions (namely Zn+1). The best we can say about Zn+1uI for n+ 1 /∈ I is just that
it is in Lp, by writing it as a linear combination of Zn+1uI and TuI = [Z1, Z1]uI ; it does
not gain any further derivatives. Situations like this are typical in the analysis of subelliptic
equations.

As an application of the above analysis, let us mention the following result about the
inhomogeneous Cauchy-Riemann equation: if u is a (0, q) form on Un+1 (0 ≤ q ≤ n) that

is smooth up to boundary, has support contained in a �xed compact subset of Un+1 and is
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orthogonal to the kernel of ∂, then
n∑

j=1

(
‖Zju‖Lp + ‖Zju‖Lp

)
+ ‖Zn+1u‖Lp ≤ C‖∂u‖Lp

for 1 < p < ∞. This can be proved using the formula u = ∂
∗
N(∂u) and analyzing the

tangential and normal components of u separately.

4. Exercises

1. Verify that the two de�nitions of ∂ given in Section 1 are equivalent.
2. Verify that ∂ forms a complex.
3. Compute the Levi form of the unit ball {|z| < 1} in Cn+1. Is it (strongly) pseudoconvex?
4. Prove that every (smooth) convex domain is pseudoconvex, and strongly if the domain

is strictly convex.
5. Show that a densely de�ned linear operator T : H1 → H2 between two Hilbert spaces is

closed if and only if the following is true: if xj ∈ Dom(T ), xj → x and Txj → y then
x ∈ Dom(T ) and Tx = y.

6. Show that if T : H1 → H2 is closed, then its Hilbert space adjoint T ∗ : H2 → H1 is also
densely de�ned, linear and closed, and T ∗∗ = T . (Hint: The graph of T ∗ is (up to a
twist) the orthogonal complement of the graph of T in H1 ×H2.)

7. Show that if T : H1 → H2 is closed, then the following are equivalent:
(a) T has closed range in H2;
(b) ‖f‖ ≤ C‖Tf‖ for all f ∈ Dom(T ) orthogonal to the kernel of T ;
(c) ‖u‖ ≤ C‖T ∗u‖ for all u ∈ Dom(T ∗) orthogonal to the kernel of T ∗;
(d) T ∗ has closed range in H1.
(Hint: To show (a) implies (b), use the closed graph theorem. (b) and (c) are equivalent
by duality.)

8. Work out explicitly the weighted basic estimate for smooth (0, 1) forms when φ = 0.
9. Show that if Ω is bounded, smooth and strongly pseudoconvex, then

‖f‖2
L2(∂Ω) ≤ C(‖∂f‖2

L2 + ‖∂∗f‖2
L2)

for all (0, q) forms f ∈ Dom(∂
∗
) that are smooth up to boundary, where q ≥ 1.

From now on assume that Ω is a bounded pseudoconvex domain with smooth boundary.

10. Write down a more explicit de�nition of the relative solution operators Kq and K ′
q to ∂q

and ∂
∗
q by considering the orthogonal decompositions (10).

11. Show that
Kq∂q = I −Bq on Dom(∂q)

and
K ′

q∂
∗
q = I −B′

q on Dom(∂
∗
q)

for 0 ≤ q ≤ n. (Hint: apply ∂ and ∂
∗
to both sides respectively.)

12. Show that Kq and K ′
q are adjoints of each other, for 0 ≤ q ≤ n. (Hint: Show ∂q(K ′

q)
∗ =

∂qKq where (K ′
q)
∗ is the adjoint of K ′

q. To do so one can observe that ∂q(K ′
q)
∗ = (K ′

q∂
∗
q)
∗

and use the Exercise 11.)
13. Prove the unweighted basic estimate (5). (Hint: Suppose q ≥ 0. Since we have already

shown that Range(∂q) = Kernel(∂q+1), we have

L2
(0,q+1)(Ω) = Kernel(∂q+1)⊕Kernel(∂

∗
q),

so
Bq+1 +B′

q = I.
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For f ∈ L2
(0,q+1)(Ω) ∩Dom(∂) ∩Dom(∂

∗
), q ≥ 0, write

f = (I −Bq+1)f + (I −B′
q)f.

But I −Bq+1 = (I −Bq+1)∗ = (K ′
q+1)

∗∂q+1 and (I −B′
q) = (I −B′

q)
∗ = K∗

q ∂
∗
q so

f = (K ′
q+1)

∗(∂q+1f) +K∗
q (∂

∗
qf),

and one can then apply boundedness of K ′
q+1 and Kq on L2.) Note what a long detour

we have gone to prove this unweighted basic estimate: we had to �rst prove the weighted
version, and draw some qualitative functional analytic consequences from that, before we
could really prove the unweighted version.

14. Show that �q is self-adjoint on L2 for 0 ≤ q ≤ n + 1. (Hint: Let f ∈ Dom(�∗
q). For

h ∈ Dom(∂q−1),

(f, ∂q−1h) = (f, ∂q−1∂
∗
q−1K

′
q−1h) = (f,�qK

′
q−1h) = (Kq−1�

∗
qf, h)

so f ∈ Dom(∂
∗
q−1) and ∂

∗
q−1f = Kq−1�∗

qf ∈ Dom(∂q−1). Similarly f ∈ Dom(∂q) etc,

using the fact that ∂q = (∂
∗
q)
∗.)

15. Prove (12). (Hint: when 1 ≤ q ≤ n,

�qNq = (I −B′
q−1) + (I −Bq) = I

because
∂
∗
q−1Kq = 0 = ∂qK

′
q−1 and Bq−1K

′
q−1 = 0 = B′

qK
′
q

and
Bq +B′

q−1 = I.

A similar argument works when q = n+1 and q = 0. What makes q = 0 special in (12)?)
16. Show that Nq is self-adjoint on L2 for 0 ≤ q ≤ n+ 1. (Hint: use formula (11) for Nq.)
17. Show that Nq�q = �qNq on the domain of �q for 0 ≤ q ≤ n+ 1. (Hint: use duality.)
18. Show that if

�q : L2
(0,q)(Ω) → L2

(0,q)(Ω)
has closed range, then both

∂q : L2
(0,q)(Ω) → L2

(0,q+1)(Ω) and ∂q−1 : L2
(0,q−1)(Ω) → L2

(0,q)(Ω)

have closed ranges.
19. Prove (13). Also prove that

∂
∗
qNq+1 = Nq∂

∗
q on Dom(∂

∗
q) and ∂qNq = Nq+1∂q on Dom(∂q)

for 0 ≤ q ≤ n. Conclude again that Kq and K ′
q are adjoints of each other, and that

Nq�q = �qNq on the domain of �q.
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