Variational norm estimates for some oscillatory integrals related to Carleson's operator

Po-Lam Yung ${ }^{1}$

The Chinese University of Hong Kong

$$
\text { June 11, } 2019
$$

${ }^{1}$ Research supported by HKRGC grant 14303817

Outline

- Variational norm estimates
- The operators of Carleson and Stein-Wainger
- Our main theorem
- Connections to local smoothing and square function estimates for the linear Schrödinger equation

Pointwise convergence and Variational norms

- In analysis one is often interested in questions about pointwise (almost everywhere) convergence.
- For instance, let $A_{\lambda} f(x)$ be the average of a function f over the ball $B(x, \lambda)$ centered at x and of radius λ :

$$
A_{\lambda} f(x):=\frac{1}{|B(x, \lambda)|} \int_{B(x, \lambda)} f(y) d y
$$

The Lebesgue differentiation theorem states that for every (locally) L^{1} function f on \mathbb{R}^{n}, we have

$$
\lim _{\lambda \rightarrow 0^{+}} A_{\lambda} f(x)=f(x)
$$

for almost every $x \in \mathbb{R}^{n}$.

- This is clearly true if f were continuous with compact support on \mathbb{R}^{n}, and the set of all such functions is dense in L^{1}.
- It then remains to establish a weak-type bound for a relevant maximal function.
- In this case the relevant maximal function is given by Hardy and Littlewood:

$$
M f(x)=\sup _{\lambda>0}\left|A_{\lambda} f(x)\right|,
$$

and the relevant weak-type bound for M is

$$
\|M f\|_{L^{1}, \infty} \leq C\|f\|_{L^{1}}
$$

where for a measurable function F on \mathbb{R}^{n}, its weak L^{1} norm is defined by

$$
\|F\|_{L^{1, \infty}}:=\sup _{\alpha>0} \alpha\left|\left\{x \in \mathbb{R}^{n}:|F(x)|>\alpha\right\}\right|
$$

is a slightly smaller quantity than $\|F\|_{L^{1}}$.

- In this talk we are interested in variational norm estimates, which are typically stronger estimates than bounds for maximal operators.
- If Λ is a subset of \mathbb{R} and $\lambda \mapsto a_{\lambda}$ is a function defined on Λ, then for $r \in(0, \infty)$, the r-th variational norm of this function is

$$
\left\|a_{\lambda}\right\|_{V^{r}(\lambda \in \Lambda)}:=\sup _{\substack{N \in \mathbb{N} \\ \lambda_{1}, \ldots, \lambda_{N} \in \Lambda \\ \lambda_{1}<\cdots<\lambda_{N}}} \sup _{j=1}\left(\sum_{j=1}^{N-1}\left|a_{\lambda_{j+1}}-a_{\lambda_{j}}\right|^{r}\right)^{1 / r}
$$

(Just take an arbitrary strictly increasing sequence

$$
\lambda_{1}<\lambda_{2}<\cdots<\lambda_{N}
$$

in Λ, compute the successive differences $a_{\lambda_{j+1}}-a_{\lambda_{j}}$, take ℓ^{r} norm over j, and take supremum over all choices of strictly increasing sequences.)

- In the context of Lebesgue differentiation, instead of a bound for the maximal function $f(x) \mapsto M f(x)=\sup _{\lambda>0}\left|A_{\lambda} f(x)\right|$, one could consider the mapping property of

$$
f(x) \mapsto\left\|A_{\lambda} f(x)\right\|_{V^{r}(\lambda>0)} .
$$

- Indeed, one has the following theorem (drawing from earlier work of Lépingle, Bourgain, Pisier and Xu):

Theorem (Jones, Kaufman, Rosenblatt, Wierdl)
When $r \in(2, \infty)$, the map $f(x) \mapsto\left\|A_{\lambda} f(x)\right\|_{V^{r}(\lambda>0)}$ maps L^{1} to $L^{1, \infty}$, and is bounded on L^{p} for $1<p<\infty$.

- The theorem implies that M maps L^{1} to $L^{1, \infty}$ and is bounded on L^{p} for $1<p<\infty$, since

$$
M f(x) \leq A_{1} f(x)+\left\|A_{\lambda} f(x)\right\|_{V^{r}(\lambda>0)}
$$

for any r.

- One can also deduce directly from the theorem (i.e. without having to pass to a dense subset where pointwise convergence occurs) that whenever $f \in L^{1}, A_{\lambda} f(x)$ converges pointwisely for a.e. x as $\lambda \rightarrow 0^{+}$.
- This is because then $\left\|A_{\lambda} f(x)\right\|_{V^{r}(\lambda>0)}$ is finite for a.e. x, and at every such x the sequence $\left\{A_{\lambda_{i}} f(x)\right\}_{i \in \mathbb{N}}$ is Cauchy whenever $\left\{\lambda_{i}\right\}_{i \in \mathbb{N}}$ is a sequence that strictly decreases to zero.
- This feature of not requiring the exhibition of a dense subset is sometimes useful for proving pointwise convergence results in ergodic theory (c.f. earlier work of Bourgain).
- Also, the theorem gives a more quantitative rate at which $A_{\lambda} f(x)$ converges as $\lambda \rightarrow 0^{+}$, and variational estimates are often useful in bounding discrete maximal operators.
- Various variational norm estimates have since been established for many classical operators in harmonic analysis.
- For instance, let's call $K(y)$ a Calderón-Zygmund kernel on \mathbb{R}^{n}, if $K(y)=\frac{\Omega(y)}{|y|^{n}}$ where Ω is homogeneous of degree 0 , smooth on the unit sphere, and $\int_{\mathbb{S}^{n-1}} \Omega(y) d \sigma(y)=0$.
- One has the following variational norm counterpart, of the L^{p} boundedness of the maximally truncated singular integral:

Theorem (Campbell, Jones, Reinhold, Wierdl)
Let $K(y)$ be a Calderón-Zygmund kernel on \mathbb{R}^{n}. For $\lambda>0$, let

$$
T_{\lambda} f(x)=\int_{|y|>\lambda} f(x-y) K(y) d y
$$

When $r \in(2, \infty)$, the map $f(x) \mapsto\left\|T_{\lambda} f(x)\right\|_{V^{r}(\lambda>0)}$ is bounded on L^{p} for $1<p<\infty$.

- As a result, one recovers the classical result that

$$
\left\|\sup _{\lambda>0}\left|T_{\lambda} f\right|\right\|_{L^{p}} \lesssim\|f\|_{L^{p}} \quad \text { for } 1<p<\infty .
$$

- See also Jones, Seeger, Wright for an endpoint result at $r=2$.
- There is also for instance a variational norm counterpart of the L^{p} boundedness of the maximal spherical averages in \mathbb{R}^{n} :

Theorem (Jones, Seeger, Wright)
Let $n \geq 2$, and let $\mathcal{A}_{\lambda} f(x)$ be the average of f on the
($n-1$)-dimensional sphere of radius λ centered at x, i.e.

$$
\mathcal{A}_{\lambda} f(x)=f_{\mathbb{S}^{n-1}} f(x+\lambda y) d \sigma(y)
$$

When $r \in(2, \infty)$, the map $f(x) \mapsto\left\|\mathcal{A}_{\lambda} f(x)\right\|_{V^{r}(\lambda>0)}$
(i) is bounded on L^{p} for $\frac{n}{n-1}<p<n r$, and
(ii) fails to be bounded on L^{p} if $p>n r$.

- As a result, one recovers the result of Bourgain and Stein that

$$
\left\|\sup _{\lambda>0}\left|\mathcal{A}_{\lambda} f\right|\right\|_{L^{p}} \lesssim\|f\|_{L^{p}} \quad \text { for } \frac{n}{n-1}<p<\infty .
$$

Carleson's operator and Pointwise convergence of Fourier

 series- We now turn to Carleson's operator, which is a maximal operator relevant for the study of the following question: given an L^{2} function on the unit circle, does the partial sum of its Fourier series converge pointwise almost everywhere?
- The answer can be shown to be yes, by first transferring the problem to the real line, and then bounding the following maximal operator:

$$
f(x) \mapsto \sup _{\lambda>0}\left|\int_{-\lambda}^{\lambda} \widehat{f}(\xi) e^{2 \pi i x \xi} d \xi\right| .
$$

- Modulo some trivial operators, one is led to study the Carleson operator \mathcal{C}, defined by

$$
\mathcal{C} f(x)=\sup _{\lambda>0}\left|\int_{\mathbb{R}} f(x-y) \frac{e^{2 \pi i \lambda y}}{y} d y\right|
$$

where the integral is understood in the principal value sense.

$$
\mathcal{C} f(x)=\sup _{\lambda>0}\left|\int_{\mathbb{R}} f(x-y) \frac{e^{2 \pi i \lambda y}}{y} d y\right|
$$

- It is a classical result of Carleson and Hunt that \mathcal{C} is bounded on L^{p} if $1<p<\infty$.
- Subsequently Fefferman, and Lacey and Thiele, gave new and inspiring proofs of the same result.
- They decomposed f into sums of wave packets, which are localized in both the physical and the frequency space (to the extent allowed by the uncertainty principle); this technique has since found many applications in analyzing operators that are invariant under modulations.
- Motivated by the above results, Stein and Wainger considered a variant of Carleson's operator, where the linear phase function $y \mapsto \lambda y$ is replaced by a polynomial of higher degree (and $1 / y$ is replaced by a Calderón-Zygmund kernel in higher dimensions).
- In particular, Stein and Wainger showed that if $K(y)$ is a Calderón-Zygmund kernel on \mathbb{R}^{n}, and if y^{α} is a monomial on \mathbb{R}^{n} of degree ≥ 2, then

$$
f(x) \mapsto \sup _{\lambda>0}\left|\int_{\mathbb{R}} f(x-y) K(y) e^{2 \pi i \lambda y^{\alpha}} d y\right|
$$

is bounded on L^{p} for $1<p<\infty$, using only relatively simple techniques in the study of oscillatory integrals.

- A natural question is to ask for variational norm variants of the above theorems of Carleson and Stein-Wainger.
- Oberlin, Tao, Thiele, Seeger and Wright proved that when $r>2$, the map

$$
f(x) \mapsto\left\|\int_{\mathbb{R}} f(x-y) \frac{e^{2 \pi i \lambda y}}{y} d y\right\|_{V^{r}(\lambda>0)}
$$

is bounded on L^{p} if $p \in\left(r^{\prime}, \infty\right)$, thereby strengthening Carleson's theorem. (Here $r^{\prime}=\frac{r}{r-1}$; see also subsequent work of Do, Muscalu, Thiele for a substantial generalization.)

Main theorem

- In joint work with Shaoming Guo and Joris Roos, we strengthen the theorem of Stein and Wainger as follows.

Theorem (Guo, Roos, Yung)
Let $K(y)$ be a Calderón-Zygmund kernel on \mathbb{R}^{n}. Let $\alpha>1$ be fixed. For $\lambda>0$, let

$$
\mathcal{H}_{\lambda} f(x)=\int_{\mathbb{R}^{n}} f(x-y) K(y) e^{2 \pi i \lambda|y|^{\alpha}} d y
$$

When $r>2$, the map $f(x) \mapsto\left\|\mathcal{H}_{\lambda} f(x)\right\|_{V^{r}(\lambda>0)}$
(i) is bounded on L^{p} if $p \in\left((n r)^{\prime}, \infty\right)$, and
(ii) fails to be bounded on L^{p} if $p<(n r)^{\prime}$.

- Indeed, (ii) follows by taking f to be dilations of a fixed Schwartz function whose Fourier transform is supported on the unit annulus.
- To prove (i), say when $K(y)=\frac{1}{y}$ on \mathbb{R} and $\alpha=2$, we need a square function estimate of Lee, Rogers and Seeger, and a local smoothing estimate of Rogers and Seeger.

Theorem (Lee, Rogers, Seeger)
Suppose $p \in(2, \infty)$. Then

$$
\left\|\left\|e^{i t \Delta} f(x)\right\|_{L^{2}(t \in[1,2])}\right\|_{L^{p}(\mathbb{R})} \lesssim\|f\|_{L^{p}(\mathbb{R})} .
$$

Theorem (Rogers, Seeger)
Suppose $p \in(4, \infty)$. If the Fourier transform $\widehat{f}(\xi)$ of f is supported on $\{|\xi| \lesssim A\}$ for some $A>0$, then

$$
\left\|\left\|e^{i t \Delta} f(x)\right\|_{L^{p}(t \in[1,2])}\right\|_{L^{p}(\mathbb{R})} \lesssim A^{2\left[\left(\frac{1}{2}-\frac{1}{p}\right)-\frac{1}{p}\right]}\|f\|_{L^{p}(\mathbb{R})}
$$

Corollary (Rogers, Seeger)

Suppose $p \in(2, \infty)$. Then there exists $\varepsilon(p)>0$ such that the following holds: If the Fourier transform $\widehat{f}(\xi)$ of f is supported on $\{|\xi| \lesssim A\}$ for some $A>0$, then

$$
\left\|\left\|e^{i t \Delta} f(x)\right\|_{L^{p}(t \in[1,2])}\right\|_{L^{p}(\mathbb{R})} \lesssim A^{2\left[\left(\frac{1}{2}-\frac{1}{p}\right)-\varepsilon(p)\right]}\|f\|_{L^{p}(\mathbb{R})} .
$$

- The expression on the right hand side should be thought of as a $W^{s, p}$ norm of f, where $s=$ exponent of A.
- The above local smoothing estimate of Rogers and Seeger should be compared to the following fixed time estimate, which goes back to Miyachi, Fefferman and Stein:

$$
\sup _{t \in[1,2]}\left\|e^{i t \Delta} f(x)\right\|_{L^{p}(\mathbb{R})} \lesssim A^{2\left[\left(\frac{1}{2}-\frac{1}{p}\right)\right]}\|f\|_{L^{p}(\mathbb{R})}
$$

for $p \in[2, \infty)$, if \widehat{f} is supported on $\{|\xi| \lesssim A\}$.
[Local integration in $t \Rightarrow$ additional smoothing effect in L^{p} for $2<p<\infty$! Requires less regularity of initial data.]

- Now we go back to part (i) of our theorem. Let's consider the case $K(y)=\frac{1}{y}$ on \mathbb{R} and $\alpha=2$. Then

$$
\mathcal{H}_{\lambda} f(x)=\int_{\mathbb{R}} f(x-y) \frac{e^{2 \pi i \lambda y^{2}}}{y} d y
$$

- To prove (i) of the theorem, we have to at least bound

$$
\left\|\left\|\mathcal{H}_{\lambda} f(x)\right\|_{V^{r}(\lambda \in[1,2])}\right\|_{L^{p}(\mathbb{R})}
$$

for $r \in(2, \infty)$ and $p \in(2, \infty)$.

- For $\lambda \in[1,2]$, we decompose

$$
\mathcal{H}_{\lambda} f(x)=\sum_{\ell \in \mathbb{Z}} \mathcal{H}_{\lambda, \ell} f(x)
$$

where

$$
\mathcal{H}_{\lambda, \ell} f(x)=\int_{|y| \simeq 2^{\ell}} f(x-y) \frac{e^{2 \pi i \lambda y^{2}}}{y} d y .
$$

- Then we hope to bound

$$
\sum_{\ell \in \mathbb{Z}}\| \| \mathcal{H}_{\lambda, \ell} f(x)\left\|_{V^{r}(\lambda \in[1,2])}\right\|_{L^{p}(\mathbb{R})}
$$

- Note that $\mathcal{H}_{\lambda, \ell}$ is a multiplier operator with multiplier

$$
\int_{|y| \simeq 2^{\ell}} \frac{e^{2 \pi i\left(-\xi y+\lambda y^{2}\right)}}{y} d y
$$

- Since $\lambda \in[1,2]$, the phase function $y \mapsto-\xi y+\lambda y^{2}$ has a critical point in the domain of integration, namely $\left\{|y| \simeq 2^{\ell}\right\}$, if and only if

$$
|\xi| \simeq 2^{\ell}
$$

in which case the multiplier is approximately $2^{-\ell} e^{\frac{i(2 \pi i \xi)^{2}}{8 \pi \lambda}}$ by stationary phase.

- Hence if we denote by P_{ℓ} the Littlewood-Paley projection onto frequency $\simeq 2^{\ell}$, then

$$
\mathcal{H}_{\lambda, \ell} f(x) \simeq 2^{-\ell} e^{i(8 \pi \lambda)^{-1} \Delta} P_{\ell} f(x)
$$

- So we are hoping to bound

$$
\sum_{\ell \in \mathbb{Z}} 2^{-\ell}\| \| e^{i t \Delta} P_{\ell} f(x)\left\|_{V^{r}(t \simeq 1)}\right\|_{L^{p}(\mathbb{R})}
$$

- We now invoke the following consequence of the Plancherel-Polya inequality:

Proposition

Let $F(t)$ be a function on \mathbb{R} whose Fourier transform $\widehat{F}(\eta)$ is supported on $\{|\eta| \leq B\}$ for some $B>0$. Then for $1 \leq r<\infty$,

$$
\|F(t)\|_{V^{r}(t>0)} \lesssim B^{1 / r}\|F\|_{L^{r}(\mathbb{R})} .
$$

- Thus we may estimate the V^{r} norm in t, and reduce ourselves to bounding

$$
\sum_{\ell \in \mathbb{Z}} 2^{-\ell} 2^{2 \ell / r}\| \| e^{i t \Delta} P_{\ell} f(x)\left\|_{L^{r}(t \simeq 1)}\right\|_{L^{p}(\mathbb{R})}
$$

$$
\sum_{\ell \in \mathbb{Z}} 2^{-\ell} 2^{2 \ell / r}\| \| e^{i t \Delta} P_{\ell} f(x)\left\|_{L^{r}(t \simeq 1)}\right\|_{L^{p}(\mathbb{R})}
$$

- Let's fix ℓ momentarily and estimate the L^{p} norm over \mathbb{R}, with $p \in(2, \infty)$.
- The summand increases as r decreases to 2 , and if $r=2$ the summand is bounded by

$$
2^{-\ell} 2^{2 \ell / 2}\|f\|_{L^{p}(\mathbb{R})}=\|f\|_{L^{p}(\mathbb{R})}
$$

using the square function estimate of Lee, Rogers and Seeger. This cannot be summed over ℓ !

- Fortunately, if r is not just in $(2, \infty)$, but $r=p$ as well, then we can use the local smoothing estimate of Rogers and Seeger, and bound the summand by

$$
2^{-\ell} 2^{2 \ell / p}\left[2^{\ell}\right]^{2\left(\frac{1}{2}-\frac{1}{p}\right)-\varepsilon(p)}\|f\|_{L^{p}(\mathbb{R})}=2^{-\ell \varepsilon(p)}\|f\|_{L^{p}(\mathbb{R})}
$$

where $\varepsilon(p)>0$.

- To summarize, we have proved the following estimates:

$$
\begin{aligned}
& 2^{-\ell} 2^{2 \ell / r}\| \| e^{i t \Delta} P_{\ell} f(x)\left\|_{L^{r}(t \simeq 1)}\right\|_{L^{p}(\mathbb{R})} \\
\lesssim & \begin{cases}\|f\|_{L^{p}(\mathbb{R})} & \text { if } r \in[2, \infty), p \in(2, \infty) \\
2^{-\ell \varepsilon(p)}\|f\|_{L^{p}(\mathbb{R})} & \text { if } r=p \in(2, \infty)\end{cases}
\end{aligned}
$$

- Interpolating between the two, we get a favourable estimate for the left hand side for $r \in(2, \infty), p \in(2, \infty)$, which we can then sum over $\ell \geq 1$.
- This is one of the key steps in the proof of (i) of the theorem.

Appendix: An estimate of Seeger for multipliers with

 localized bounds
Proposition (Seeger)

Let $m(\xi)$ be a Fourier multipliers on \mathbb{R}^{n}, compactly supported on $\{\xi: 1 / 2 \leq|\xi| \leq 2\}$, and satisfies

$$
\left|\partial_{\xi}^{\tau} m(\xi)\right| \leq B \quad \text { for each } 0 \leq|\tau| \leq n+1
$$

for some constant B. For $j \in \mathbb{Z}$, write T_{j} the multiplier operator with multiplier $m\left(2^{-j} \xi\right)$. Fix some $p \in(1, \infty)$. Assume that there exists some constant A such that

$$
\sup _{j \in \mathbb{Z}}\left\|T_{j} f\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \leq A\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

Then

$$
\left\|\left\|T_{j} f\right\|_{\ell^{2}(\mathbb{Z})}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim A\left|\log \left(2+\frac{B}{A}\right)\right|^{\left|\frac{1}{2}-\frac{1}{p}\right|}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)} .
$$

A vector-valued version

Proposition

Let $I \subset \mathbb{R}$ be a compact interval. Let $\left\{m_{u}(\xi): u \in I\right\}$ be a family of Fourier multipliers on \mathbb{R}^{n}, each of which is compactly supported on $\{\xi: 1 / 2 \leq|\xi| \leq 2\}$, and satisfies

$$
\sup _{u \in I}\left|\partial_{\xi}^{\tau} m_{u}(\xi)\right| \leq B \quad \text { for each } 0 \leq|\tau| \leq n+1
$$

for some constant B. For $u \in I$ and $j \in \mathbb{Z}$, write $T_{u, j}$ the multiplier operator with multiplier $m_{u}\left(2^{-j} \xi\right)$. Fix some $p \in[2, \infty)$. Assume that there exists some constant A such that

$$
\sup _{j \in \mathbb{Z}}\| \| T_{u, j} f\left\|_{L^{2}(I)}\right\|_{L^{s}\left(\mathbb{R}^{n}\right)} \leq A\|f\|_{L^{s}\left(\mathbb{R}^{n}\right)}
$$

for both $s=p$ and $s=2$. Then

$$
\left\|\left\|\left\|T_{u, j} f\right\|_{L^{2}(I)}\right\|_{\ell^{2}(\mathbb{Z})}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim A\left|\log \left(2+\frac{B}{A}\right)\right|^{\frac{1}{2}-\frac{1}{p}}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

