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Pointwise convergence and Variational norms

I In analysis one is often interested in questions about pointwise
(almost everywhere) convergence.

I For instance, let Aλf (x) be the average of a function f over
the ball B(x , λ) centered at x and of radius λ:

Aλf (x) :=
1

|B(x , λ)|

ˆ
B(x ,λ)

f (y)dy .

The Lebesgue differentiation theorem states that for every
(locally) L1 function f on Rn, we have

lim
λ→0+

Aλf (x) = f (x)

for almost every x ∈ Rn.

I This is clearly true if f were continuous with compact support
on Rn, and the set of all such functions is dense in L1.



I It then remains to establish a weak-type bound for a relevant
maximal function.

I In this case the relevant maximal function is given by Hardy
and Littlewood:

Mf (x) = sup
λ>0
|Aλf (x)|,

and the relevant weak-type bound for M is

‖Mf ‖L1,∞ ≤ C‖f ‖L1 ,

where for a measurable function F on Rn, its weak L1 norm is
defined by

‖F‖L1,∞ := sup
α>0

α|{x ∈ Rn : |F (x)| > α}|

is a slightly smaller quantity than ‖F‖L1 .



I In this talk we are interested in variational norm estimates,
which are typically stronger estimates than bounds for
maximal operators.

I If Λ is a subset of R and λ 7→ aλ is a function defined on Λ,
then for r ∈ (0,∞), the r -th variational norm of this function
is

‖aλ‖V r (λ∈Λ) := sup
N∈N

sup
λ1,...,λN∈Λ
λ1<···<λN

N−1∑
j=1

|aλj+1
− aλj |

r

1/r

.

(Just take an arbitrary strictly increasing sequence

λ1 < λ2 < · · · < λN

in Λ, compute the successive differences aλj+1
− aλj , take `r

norm over j , and take supremum over all choices of strictly
increasing sequences.)



I In the context of Lebesgue differentiation, instead of a bound
for the maximal function f (x) 7→ Mf (x) = supλ>0 |Aλf (x)|,
one could consider the mapping property of

f (x) 7→ ‖Aλf (x)‖V r (λ>0).

I Indeed, one has the following theorem (drawing from earlier
work of Lépingle, Bourgain, Pisier and Xu):

Theorem (Jones, Kaufman, Rosenblatt, Wierdl)

When r ∈ (2,∞), the map f (x) 7→ ‖Aλf (x)‖V r (λ>0) maps L1 to
L1,∞, and is bounded on Lp for 1 < p <∞.

I The theorem implies that M maps L1 to L1,∞ and is bounded
on Lp for 1 < p <∞, since

Mf (x) ≤ A1f (x) + ‖Aλf (x)‖V r (λ>0)

for any r .



I One can also deduce directly from the theorem (i.e. without
having to pass to a dense subset where pointwise convergence
occurs) that whenever f ∈ L1, Aλf (x) converges pointwisely
for a.e. x as λ→ 0+.

I This is because then ‖Aλf (x)‖V r (λ>0) is finite for a.e. x , and
at every such x the sequence {Aλi f (x)}i∈N is Cauchy
whenever {λi}i∈N is a sequence that strictly decreases to zero.

I This feature of not requiring the exhibition of a dense subset
is sometimes useful for proving pointwise convergence results
in ergodic theory (c.f. earlier work of Bourgain).

I Also, the theorem gives a more quantitative rate at which
Aλf (x) converges as λ→ 0+, and variational estimates are
often useful in bounding discrete maximal operators.

I Various variational norm estimates have since been established
for many classical operators in harmonic analysis.

I For instance, let’s call K (y) a Calderón-Zygmund kernel on

Rn, if K (y) = Ω(y)
|y |n where Ω is homogeneous of degree 0,

smooth on the unit sphere, and
´
Sn−1 Ω(y)dσ(y) = 0.



I One has the following variational norm counterpart, of the Lp

boundedness of the maximally truncated singular integral:

Theorem (Campbell, Jones, Reinhold, Wierdl)

Let K (y) be a Calderón-Zygmund kernel on Rn. For λ > 0, let

Tλf (x) =

ˆ
|y |>λ

f (x − y)K (y)dy .

When r ∈ (2,∞), the map f (x) 7→ ‖Tλf (x)‖V r (λ>0) is bounded
on Lp for 1 < p <∞.

I As a result, one recovers the classical result that∥∥∥∥sup
λ>0
|Tλf |

∥∥∥∥
Lp

. ‖f ‖Lp for 1 < p <∞.

I See also Jones, Seeger, Wright for an endpoint result at r = 2.



I There is also for instance a variational norm counterpart of
the Lp boundedness of the maximal spherical averages in Rn:

Theorem (Jones, Seeger, Wright)

Let n ≥ 2, and let Aλf (x) be the average of f on the
(n − 1)-dimensional sphere of radius λ centered at x , i.e.

Aλf (x) =

 
Sn−1

f (x + λy)dσ(y).

When r ∈ (2,∞), the map f (x) 7→ ‖Aλf (x)‖V r (λ>0)

(i) is bounded on Lp for n
n−1 < p < nr , and

(ii) fails to be bounded on Lp if p > nr .

I As a result, one recovers the result of Bourgain and Stein that∥∥∥∥sup
λ>0
|Aλf |

∥∥∥∥
Lp

. ‖f ‖Lp for
n

n − 1
< p <∞.



Carleson’s operator and Pointwise convergence of Fourier
series

I We now turn to Carleson’s operator, which is a maximal
operator relevant for the study of the following question:
given an L2 function on the unit circle, does the partial sum of
its Fourier series converge pointwise almost everywhere?

I The answer can be shown to be yes, by first transferring the
problem to the real line, and then bounding the following
maximal operator:

f (x) 7→ sup
λ>0

∣∣∣∣ˆ λ

−λ
f̂ (ξ)e2πixξdξ

∣∣∣∣ .
I Modulo some trivial operators, one is led to study the

Carleson operator C, defined by

Cf (x) = sup
λ>0

∣∣∣∣ˆ
R
f (x − y)

e2πiλy

y
dy

∣∣∣∣
where the integral is understood in the principal value sense.



Cf (x) = sup
λ>0

∣∣∣∣ˆ
R
f (x − y)

e2πiλy

y
dy

∣∣∣∣
I It is a classical result of Carleson and Hunt that C is bounded

on Lp if 1 < p <∞.

I Subsequently Fefferman, and Lacey and Thiele, gave new and
inspiring proofs of the same result.

I They decomposed f into sums of wave packets, which are
localized in both the physical and the frequency space (to the
extent allowed by the uncertainty principle); this technique
has since found many applications in analyzing operators that
are invariant under modulations.

I Motivated by the above results, Stein and Wainger considered
a variant of Carleson’s operator, where the linear phase
function y 7→ λy is replaced by a polynomial of higher degree
(and 1/y is replaced by a Calderón-Zygmund kernel in higher
dimensions).



I In particular, Stein and Wainger showed that if K (y) is a
Calderón-Zygmund kernel on Rn, and if yα is a monomial on
Rn of degree ≥ 2, then

f (x) 7→ sup
λ>0

∣∣∣∣ˆ
R
f (x − y)K (y)e2πiλyαdy

∣∣∣∣
is bounded on Lp for 1 < p <∞, using only relatively simple
techniques in the study of oscillatory integrals.

I A natural question is to ask for variational norm variants of
the above theorems of Carleson and Stein-Wainger.

I Oberlin, Tao, Thiele, Seeger and Wright proved that when
r > 2, the map

f (x) 7→
∥∥∥∥ˆ

R
f (x − y)

e2πiλy

y
dy

∥∥∥∥
V r (λ>0)

is bounded on Lp if p ∈ (r ′,∞), thereby strengthening
Carleson’s theorem. (Here r ′ = r

r−1 ; see also subsequent work
of Do, Muscalu, Thiele for a substantial generalization.)



Main theorem

I In joint work with Shaoming Guo and Joris Roos, we
strengthen the theorem of Stein and Wainger as follows.

Theorem (Guo, Roos, Yung)

Let K (y) be a Calderón-Zygmund kernel on Rn. Let α > 1 be
fixed. For λ > 0, let

Hλf (x) =

ˆ
Rn

f (x − y)K (y)e2πiλ|y |αdy .

When r > 2, the map f (x) 7→ ‖Hλf (x)‖V r (λ>0)

(i) is bounded on Lp if p ∈ ((nr)′,∞), and

(ii) fails to be bounded on Lp if p < (nr)′.

I Indeed, (ii) follows by taking f to be dilations of a fixed
Schwartz function whose Fourier transform is supported on
the unit annulus.



I To prove (i), say when K (y) = 1
y on R and α = 2, we need a

square function estimate of Lee, Rogers and Seeger, and a
local smoothing estimate of Rogers and Seeger.

Theorem (Lee, Rogers, Seeger)

Suppose p ∈ (2,∞). Then∥∥∥∥∥∥∥e it∆f (x)
∥∥∥
L2(t∈[1,2])

∥∥∥∥
Lp(R)

. ‖f ‖Lp(R).

Theorem (Rogers, Seeger)

Suppose p ∈ (4,∞). If the Fourier transform f̂ (ξ) of f is
supported on {|ξ| . A} for some A > 0, then∥∥∥∥∥∥∥e it∆f (x)

∥∥∥
Lp(t∈[1,2])

∥∥∥∥
Lp(R)

. A
2
[(

1
2
− 1

p

)
− 1

p

]
‖f ‖Lp(R).



Corollary (Rogers, Seeger)

Suppose p ∈ (2,∞). Then there exists ε(p) > 0 such that the
following holds: If the Fourier transform f̂ (ξ) of f is supported on
{|ξ| . A} for some A > 0, then∥∥∥∥∥∥∥e it∆f (x)

∥∥∥
Lp(t∈[1,2])

∥∥∥∥
Lp(R)

. A
2
[(

1
2
− 1

p

)
−ε(p)

]
‖f ‖Lp(R).

I The expression on the right hand side should be thought of as
a W s,p norm of f , where s = exponent of A.

I The above local smoothing estimate of Rogers and Seeger
should be compared to the following fixed time estimate,
which goes back to Miyachi, Fefferman and Stein:

sup
t∈[1,2]

∥∥∥e it∆f (x)
∥∥∥
Lp(R)

. A
2
[(

1
2
− 1

p

)]
‖f ‖Lp(R)

for p ∈ [2,∞), if f̂ is supported on {|ξ| . A}.
[Local integration in t ⇒ additional smoothing effect in Lp for
2 < p <∞! Requires less regularity of initial data.]



I Now we go back to part (i) of our theorem. Let’s consider the
case K (y) = 1

y on R and α = 2. Then

Hλf (x) =

ˆ
R
f (x − y)

e2πiλy2

y
dy .

I To prove (i) of the theorem, we have to at least bound∥∥∥‖Hλf (x)‖V r (λ∈[1,2])

∥∥∥
Lp(R)

for r ∈ (2,∞) and p ∈ (2,∞).
I For λ ∈ [1, 2], we decompose

Hλf (x) =
∑
`∈Z
Hλ,`f (x)

where

Hλ,`f (x) =

ˆ
|y |'2`

f (x − y)
e2πiλy2

y
dy .

I Then we hope to bound∑
`∈Z

∥∥∥‖Hλ,`f (x)‖V r (λ∈[1,2])

∥∥∥
Lp(R)

.



I Note that Hλ,` is a multiplier operator with multiplier

ˆ
|y |'2`

e2πi(−ξy+λy2)

y
dy .

I Since λ ∈ [1, 2], the phase function y 7→ −ξy + λy2 has a
critical point in the domain of integration, namely {|y | ' 2`},
if and only if

|ξ| ' 2`,

in which case the multiplier is approximately 2−`e
i(2πiξ)2

8πλ by
stationary phase.

I Hence if we denote by P` the Littlewood-Paley projection onto
frequency ' 2`, then

Hλ,`f (x) ' 2−`e i(8πλ)−1∆P`f (x).



I So we are hoping to bound∑
`∈Z

2−`
∥∥∥∥∥∥∥e it∆P`f (x)

∥∥∥
V r (t'1)

∥∥∥∥
Lp(R)

.

I We now invoke the following consequence of the
Plancherel-Polya inequality:

Proposition

Let F (t) be a function on R whose Fourier transform F̂ (η) is
supported on {|η| ≤ B} for some B > 0. Then for 1 ≤ r <∞,

‖F (t)‖V r (t>0) . B1/r‖F‖Lr (R).

I Thus we may estimate the V r norm in t, and reduce ourselves
to bounding∑

`∈Z
2−`22`/r

∥∥∥∥∥∥∥e it∆P`f (x)
∥∥∥
Lr (t'1)

∥∥∥∥
Lp(R)

.



∑
`∈Z

2−`22`/r

∥∥∥∥∥∥∥e it∆P`f (x)
∥∥∥
Lr (t'1)

∥∥∥∥
Lp(R)

.

I Let’s fix ` momentarily and estimate the Lp norm over R, with
p ∈ (2,∞).

I The summand increases as r decreases to 2, and if r = 2 the
summand is bounded by

2−`22`/2 ‖f ‖Lp(R) = ‖f ‖Lp(R)

using the square function estimate of Lee, Rogers and Seeger.
This cannot be summed over `!

I Fortunately, if r is not just in (2,∞), but r = p as well, then
we can use the local smoothing estimate of Rogers and
Seeger, and bound the summand by

2−`22`/p[2`]2( 1
2
− 1

p
)−ε(p)‖f ‖Lp(R) = 2−`ε(p)‖f ‖Lp(R)

where ε(p) > 0.



I To summarize, we have proved the following estimates:

2−`22`/r

∥∥∥∥∥∥∥e it∆P`f (x)
∥∥∥
Lr (t'1)

∥∥∥∥
Lp(R)

.

{
‖f ‖Lp(R) if r ∈ [2,∞), p ∈ (2,∞)

2−`ε(p)‖f ‖Lp(R) if r = p ∈ (2,∞)

I Interpolating between the two, we get a favourable estimate
for the left hand side for r ∈ (2,∞), p ∈ (2,∞), which we
can then sum over ` ≥ 1.

I This is one of the key steps in the proof of (i) of the theorem.

O

1
2

1
2

1 1
p

1
r



Appendix: An estimate of Seeger for multipliers with
localized bounds

Proposition (Seeger)

Let m(ξ) be a Fourier multipliers on Rn, compactly supported on
{ξ : 1/2 ≤ |ξ| ≤ 2}, and satisfies

|∂τξm(ξ)| ≤ B for each 0 ≤ |τ | ≤ n + 1

for some constant B. For j ∈ Z, write Tj the multiplier operator
with multiplier m(2−jξ). Fix some p ∈ (1,∞). Assume that there
exists some constant A such that

sup
j∈Z
‖Tj f ‖Lp(Rn) ≤ A‖f ‖Lp(Rn).

Then ∥∥‖Tj f ‖`2(Z)

∥∥
Lp(Rn)

. A

∣∣∣∣log

(
2 +

B

A

)∣∣∣∣
∣∣∣ 1

2
− 1

p

∣∣∣
‖f ‖Lp(Rn).



A vector-valued version

Proposition

Let I ⊂ R be a compact interval. Let {mu(ξ) : u ∈ I} be a family
of Fourier multipliers on Rn, each of which is compactly supported
on {ξ : 1/2 ≤ |ξ| ≤ 2}, and satisfies

sup
u∈I
|∂τξmu(ξ)| ≤ B for each 0 ≤ |τ | ≤ n + 1

for some constant B. For u ∈ I and j ∈ Z, write Tu,j the multiplier
operator with multiplier mu(2−jξ). Fix some p ∈ [2,∞). Assume
that there exists some constant A such that

sup
j∈Z

∥∥‖Tu,j f ‖L2(I )

∥∥
Ls(Rn)

≤ A‖f ‖Ls(Rn)

for both s = p and s = 2. Then∥∥‖‖Tu,j f ‖L2(I )‖`2(Z)

∥∥
Lp(Rn)

. A

∣∣∣∣log

(
2 +

B

A

)∣∣∣∣ 1
2
− 1

p

‖f ‖Lp(Rn).


