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Pointwise convergence and Variational norms

» In analysis one is often interested in questions about pointwise
(almost everywhere) convergence.

» For instance, let A)f(x) be the average of a function f over
the ball B(x, \) centered at x and of radius A:

1
A = 1B(x, )| JB(x,n) Fy)dy:

The Lebesgue differentiation theorem states that for every
(locally) L! function f on R”, we have

AILrB+ Axf(x) = f(x)

for almost every x € R”.

» This is clearly true if f were continuous with compact support
on R”, and the set of all such functions is dense in L!.



» It then remains to establish a weak-type bound for a relevant
maximal function.

> In this case the relevant maximal function is given by Hardy
and Littlewood:

Mf(x) = sup |Axf(x)|,
A>0

and the relevant weak-type bound for M is
IMF]| (100 < C[F] 2,

where for a measurable function F on R”, its weak L! norm is
defined by

|Fll 100 :=supal{x € R": |F(x)| > a}|
a>0

is a slightly smaller quantity than || F|| 1.



> In this talk we are interested in variational norm estimates,
which are typically stronger estimates than bounds for
maximal operators.

» If Ais a subset of R and A — a), is a function defined on A,
then for r € (0, 00), the r-th variational norm of this function

is \ 1r

—1
l[axllvr(aen) == sup  sup lax., — ax "
=1

NEN A1,... AwEA \ “—
M<-<Ay M7

(Just take an arbitrary strictly increasing sequence
AL < A <o < Ay

in A, compute the successive differences a), , — a;, take £
norm over j, and take supremum over all choices of strictly
increasing sequences.)



> In the context of Lebesgue differentiation, instead of a bound
for the maximal function f(x) — Mf(x) = supy~q |Axf(X)],
one could consider the mapping property of

f(x) = IANF () lvr(a>0)-

» Indeed, one has the following theorem (drawing from earlier
work of Lépingle, Bourgain, Pisier and Xu):

Theorem (Jones, Kaufman, Rosenblatt, Wierdl)

When r € (2,00), the map f(x) — [|Axf(x)|lvr(r>0) maps L* to
LY and is bounded on LP for1 < p < .

» The theorem implies that M maps L' to L1'* and is bounded
on LP for 1 < p < oo, since

Mf(x) < Arf(x) + [AF () [[vr(as0)

for any r.



One can also deduce directly from the theorem (i.e. without
having to pass to a dense subset where pointwise convergence
occurs) that whenever f € L1, Ayf(x) converges pointwisely
forae. xas A — 0F.

This is because then [|A\f(x)|lv-(x>0) is finite for a.e. x, and
at every such x the sequence {Ajy,f(x)}ien is Cauchy
whenever {\;};cn is a sequence that strictly decreases to zero.
This feature of not requiring the exhibition of a dense subset
is sometimes useful for proving pointwise convergence results
in ergodic theory (c.f. earlier work of Bourgain).

Also, the theorem gives a more quantitative rate at which
Axf(x) converges as A — 0T, and variational estimates are
often useful in bounding discrete maximal operators.

Various variational norm estimates have since been established
for many classical operators in harmonic analysis.

For instance, let's call K(y) a Calderén-Zygmund kernel on
R™, if K(y) = Y‘Z}E‘y,,) where Q is homogeneous of degree 0,
smooth on the unit sphere, and fsnfl Q(y)do(y) = 0.




» One has the following variational norm counterpart, of the LP
boundedness of the maximally truncated singular integral:

Theorem (Campbell, Jones, Reinhold, Wierdl)
Let K(y) be a Calderén-Zygmund kernel on R". For A > 0, let

Taf(x) = /| K.

When r € (2,00), the map f(x) = || Txf(x)||vr(x>0) is bounded
on LP forl < p < o0.

» As a result, one recovers the classical result that

S|fllee forl < p < oco.
LP

sup | Txf|
A>0

» See also Jones, Seeger, Wright for an endpoint result at r = 2.



» There is also for instance a variational norm counterpart of
the LP boundedness of the maximal spherical averages in R":

Theorem (Jones, Seeger, Wright)

Let n > 2, and let A\f(x) be the average of f on the
(n — 1)-dimensional sphere of radius \ centered at x, i.e.

M) = f. e 2)do(y).

When r € (2,00), the map f( ) = AN (X) [vr(as0)
(i) is bounded on LP for -3 < p < nr, and
(ii) fails to be bounded on LP if p > nr.

> As a result, one recovers the result of Bourgain and Stein that

sup |AxT|
A>0

Sl for ! < p < oo.
n—1

Lp



Carleson’s operator and Pointwise convergence of Fourier
series

» We now turn to Carleson's operator, which is a maximal
operator relevant for the study of the following question:
given an L? function on the unit circle, does the partial sum of
its Fourier series converge pointwise almost everywhere?

» The answer can be shown to be yes, by first transferring the
problem to the real line, and then bounding the following
maximal operator:

f(x) — sup
A>0

A ~ .
| Foema.
.Y

» Modulo some trivial operators, one is led to study the
Carleson operator C, defined by

e27ri/\y
/ f(x—y) dy‘
R y

where the integral is understood in the principal value sense.

Cf(x) =sup
A>0




= sup
A>0

27rl)\y
/ flx—y dy

It is a classical result of Carleson and Hunt that C is bounded
on LPifl < p< oo

Subsequently Fefferman, and Lacey and Thiele, gave new and
inspiring proofs of the same result.

They decomposed f into sums of wave packets, which are
localized in both the physical and the frequency space (to the
extent allowed by the uncertainty principle); this technique
has since found many applications in analyzing operators that
are invariant under modulations.

Motivated by the above results, Stein and Wainger considered
a variant of Carleson’s operator, where the linear phase
function y — Ay is replaced by a polynomial of higher degree
(and 1/y is replaced by a Calderén-Zygmund kernel in higher
dimensions).



» In particular, Stein and Wainger showed that if K(y) is a
Calderén-Zygmund kernel on R”, and if y© is a monomial on
R" of degree > 2, then

f(x) — sup
A>0

/ f(x — y)K(y)e*™™ dy
R

is bounded on LP for 1 < p < oo, using only relatively simple
techniques in the study of oscillatory integrals.

» A natural question is to ask for variational norm variants of
the above theorems of Carleson and Stein-Wainger.

» Oberlin, Tao, Thiele, Seeger and Wright proved that when

r > 2, the map
e27ri)\y
/ f(x—y) dy
R y

is bounded on LP if p € (r',0), thereby strengthening
Carleson's theorem. (Here r' = L5, see also subsequent work
of Do, Muscalu, Thiele for a substantial generalization.)

f(x)|—>‘

Vr(A>0)



Main theorem

> In joint work with Shaoming Guo and Joris Roos, we
strengthen the theorem of Stein and Wainger as follows.

Theorem (Guo, Roos, Yung)

Let K(y) be a Calderon-Zygmund kernel on R". Let a > 1 be
fixed. For A > 0, let

Haf() = [ flx= )K" dy,

When r > 2, the map f(x) = [[HAf(x)|lv-(x>0)
(i) is bounded on LP if p € ((nr)’,o0), and
(ii) fails to be bounded on LP if p < (nr)'.
» Indeed, (ii) follows by taking f to be dilations of a fixed

Schwartz function whose Fourier transform is supported on
the unit annulus.



» To prove (i), say when K(y) = }l/ on R and a = 2, we need a
square function estimate of Lee, Rogers and Seeger, and a
local smoothing estimate of Rogers and Seeger.

Theorem (Lee, Rogers, Seeger)
Suppose p € (2,00). Then

Theorem (Rogers, Seeger)

eitAf(x)

S 1l e(ry-

L2(ee[1.2D) || 1p(r)

~

Suppose p € (4,00). If the Fourier transform f(&) of f is
supported on {|¢| < A} for some A > 0, then

e'tA f(x)

Lp(te[1,2]) LP(R)



Corollary (Rogers, Seeger)

Suppose p € (2,00). Then there exists (p) > 0 such that the
following holds: If the Fourier transform f(§) of f is supported on
{|€| < A} for some A > 0, then

» The expression on the right hand side should be thought of as
a W*P norm of f, where s = exponent of A.

< 2G5Ol gy .

et (x) <
LP(R)

Lr(te[1,2])

» The above local smoothing estimate of Rogers and Seeger
should be compared to the following fixed time estimate,
which goes back to Miyachi, Fefferman and Stein:

sup

< 2L )iy
te[1,2]

eitAf(x)

LP(R)

for p € [2,00), if f is supported on {|¢] < A}
[Local integration in t = additional smoothing effect in LP for
2 < p < oo! Requires less regularity of initial data.]



Now we go back to part (i) of our theorem. Let's consider the
case K(y) =< on R and o = 2. Then

2
e27rl/\y

Hf(x) :/Rf(x—y) dy.

To prove (i) of the theorem, we have to at least bound

|17y regp.n|

for r € (2,00) and p € (2,0).
For A € [1,2], we decompose

HAf(x) =D Hauf (%)

LeZ
where
e27ri)\y2
Haf) = [ fx-® .

ly[~2*
Then we hope to bound

f .

EGZ; |10 N vrreta )



Note that H, ¢ is a multiplier operator with multiplier

/ e2mi(—Ey+Xy?) J
< .
ly|~2¢ y

Since A € [1,2], the phase function y — —&y + A\y? has a
critical point in the domain of integration, namely {|y| ~ 2¢},
if and only if

€] =~ 2,

i( 7r/§

in which case the multiplier is approximately 2~ ‘e &= ~ by
stationary phase.
Hence if we denote by P, the Littlewood-Paley projection onto
frequency ~ 2¢, then

Hoof(x) = 24BN AP £ (x),



» So we are hoping to bound

>2

LeZ

‘)eitAng(x)‘

Vr(fﬁ].) LP(R) '

» We now invoke the following consequence of the
Plancherel-Polya inequality:

Proposition
Let F(t) be a function on R whose Fourier transform F(n) is
supported on {|n| < B} for some B > 0. Then for 1 < r < oo,

IF(@)llve(es0) S BY IIF |l ir(ry-

» Thus we may estimate the V' norm in t, and reduce ourselves
to bounding

Z o—Ln24/r

LET

He’ltA Pef(x)

L'(t:’l) LP(R) '



etAp, f(x)

> Let's fix £ momentarily and estimate the LP norm over R, with
p € (2,00).

» The summand increases as r decreases to 2, and if r = 2 the
summand is bounded by

Z 27522€/r

LeZ

LP(R)

Lr(t~1)

2722/ HfHLP(]R) = HfHLP(]R)

using the square function estimate of Lee, Rogers and Seeger.
This cannot be summed over /!

» Fortunately, if r is not just in (2,00), but r = p as well, then
we can use the local smoothing estimate of Rogers and
Seeger, and bound the summand by

1_1y_ . -
2 PYPRPET O gy = 27O oy

where ¢(p) > 0.



» To summarize, we have proved the following estimates:

o—Ln2t/r ‘eitAPEf(X)
Lr(t~1) LP(R)
< 11l e (w) if ref2,00), pe(2,00)
“ 27O ey ifr=p € (2,00)

» Interpolating between the two, we get a favourable estimate
for the left hand side for r € (2,00), p € (2,00), which we
can then sum over ¢ > 1.

» This is one of the key steps in the proof of (i) of the theorem.
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Appendix: An estimate of Seeger for multipliers with
localized bounds
Proposition (Seeger)
Let m(&) be a Fourier multipliers on R", compactly supported on
{€:1/2 < €| < 2}, and satisfies
|0fm(§)| < B foreach 0 <|[r|<n+1

for some constant B. For j € Z, write T; the multiplier operator
with multiplier m(277¢). Fix some p € (1,00). Assume that there
exists some constant A such that

sup [ ijHLp(Rn) < AHfHLP(]R")-
JEZ

Then

11 T5f 2 SA

B\ |35l
ol SAJ0e (2453 Il




A vector-valued version

Proposition
Let | C R be a compact interval. Let {m,(§): u € I} be a family

of Fourier multipliers on R", each of which is compactly supported
on {&:1/2 < €] <2}, and satisfies

sup |[9fmy(§)| < B foreach 0 <|[7| < n+1
uel
for some constant B. For u € | and j € Z, write T, the multiplier

operator with multiplier m,(277¢). Fix some p € [2,00). Assume
that there exists some constant A such that

Ls(R") < AHfHLS(R")

B
log 2+ —
o1 (25)

sup ||| Tuyfll 2
jez

for both s = p and s = 2. Then

N=
oI

11l Lo (mn)-

(I Tu,jf||L2(/)||z2(Z)HLP(Rn) SA



