Maximal functions for Hilbert transforms along variable parabolas on \mathbb{R}^{2}

Po-Lam Yung ${ }^{1}$
(Joint work with Shaoming Guo, Joris Roos and Andreas Seeger)

The Chinese University of Hong Kong
May 14, 2019
${ }^{1}$ Research partially supported by HKRGC grant 14303817

Drawing upon works of Andreas...

- Andreas Seeger, Some inequalities for singular convolution operators in L ${ }^{p}$ spaces. Trans. Amer. Math. Soc. 308 (1988), no. 1, 259-272.
- Gerd Mockenhaupt, Andreas Seeger, Christopher D. Sogge, Local smoothing of Fourier integral operators and Carleson Sjölin estimates. J. Amer. Math. Soc. 6 (1993), no. 1, 65-130.
- Andreas Seeger, Terence Tao, James Wright, Endpoint mapping properties of spherical maximal operators. J. Inst. Math. Jussieu 2 (2003), no. 1, 109-144.
- Loukas Grafakos, Petr Honzik, Andreas Seeger, On maximal functions for Mikhlin-Hörmander multipliers. Adv. Math. 204 (2006), no. 2, 363-378.
- Roger L. Jones, Andreas Seeger, James Wright, Strong variational and jump inequalities in harmonic analysis. Trans. Amer. Math. Soc. 360 (2008), no. 12, 6711-6742.

Introduction

- For $u \in(0, \infty)$, let \mathcal{H}^{u} be the Hilbert transform along the direction $(1, u)$:

$$
\mathcal{H}^{u} f(x)=\text { p.v. } \int_{\mathbb{R}} f\left(x_{1}-t, x_{2}-u t\right) \frac{d t}{t}, \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

- For a subset $U \subset(0, \infty)$ we consider the maximal operator

$$
\mathcal{H}_{U} f(x)=\sup _{u \in U}\left|\mathcal{H}^{u} f(x)\right|
$$

- Karagulyan showed that $\left\|\mathcal{H}_{U}\right\|_{L^{2} \rightarrow L^{2, \infty}} \geq c \sqrt{\log \# U}$, and Łaba, Marinelli and Pramanik established the same lower bound for $\left\|\mathcal{H}_{U}\right\|_{p \rightarrow p}$ for all $1<p<\infty$.
- In particular, \mathcal{H}_{U} is unbounded on any L^{p} if U is infinite.

$$
\mathcal{H}^{u} f(x)=\text { p.v. } \int_{\mathbb{R}} f\left(x_{1}-t, x_{2}-u t\right) \frac{d t}{t}, \quad \mathcal{H}_{U} f(x)=\sup _{u \in U}\left|\mathcal{H}^{u} f(x)\right|
$$

- It was known (from Rademacher-Menshov) that

$$
\left\|\mathcal{H}_{U}\right\|_{2 \rightarrow 2} \lesssim \log \# U
$$

see Christ-Duoandikoetxea-Rubio de Francia who first stated this (c.f. also Cordoba, and Demeter). (We will abuse notation and write $\log (t)$ for $\log (2+t)$.)

- The above $L^{2} \rightarrow L^{2}$ bound is sharp in general.
- Demeter and Di Plinio proved that $\left\|\mathcal{H}_{U}\right\|_{p \rightarrow p} \lesssim \log \# U$ for $p \in(2, \infty)$; also improved bounds for lacunary / Vargas U.
- See also Di Plinio and Parissis, who proved for $1<p<\infty$, $\left\|\mathcal{H}_{U}\right\|_{p \rightarrow p} \lesssim \sqrt{\log \# U}$ for general lacunary U.
- The mapping properties of $\mathcal{H}^{u(x)} f(x)$ when $u(x)$ varies with x in a certain regular way (e.g. Lipschitz / depends only on x_{1}) is also very interesting (see Lacey, Li, Bateman, Thiele, Stein, Street), but we shall not discuss that today.
- Today we study the Hilbert transform H^{u} along the parabola parametrized by $\left(t, u t^{2}\right), t \in \mathbb{R}$:

$$
H^{u} f(x)=\text { p.v. } \int_{\mathbb{R}} f\left(x_{1}-t, x_{2}-u t^{2}\right) \frac{d t}{t}, \quad x=\left(x_{1}, x_{2}\right) \in \mathbb{R}^{2}
$$

- It is bounded on L^{p} for $1<p<\infty$, uniformly for $u \in(0, \infty)$ (H^{u} is a conjugation of H^{1} by a dilation in the x_{2} variable).
- For a subset $U \subset(0, \infty)$ we consider the maximal operator

$$
H_{U} f(x)=\sup _{u \in U}\left|H^{u} f(x)\right|
$$

(See also Guo, Hickman, Lie, Roos for the study of $H^{u(x)}$ where $u(x)$ depends only on x_{1}, and Di Plinio, Guo, Thiele, Zorin-Kranich for the case where $u(x)$ is Lipschitz in x.)

- Let $N(U)$ be the number of dyadic intervals $\left[2^{n}, 2^{n+1}\right)$ that U intersects (here $n \in \mathbb{Z}$).

Main Theorem

Theorem (Guo, Roos, Seeger, Y)
Let $p \in(2, \infty)$. Then H_{U} is bounded on $L^{p}\left(\mathbb{R}^{2}\right)$, if and only if $N(U)<+\infty$; furthermore,

$$
\left\|H_{U}\right\|_{p \rightarrow p} \leq C_{p} \sqrt{\log N(U)} .
$$

- In particular, H_{U} can be bounded on L^{p} for $p \in(2, \infty)$, even if U is infinite and contains an interval, contrary to \mathcal{H}_{U} !
- With some work, Karagulyan's counter-example can be adapted to show that the above bound is sharp; indeed

$$
\left\|H_{U}\right\|_{p \rightarrow p} \geq c_{p} \sqrt{\log N(U)} \quad \text { for all } 1<p<\infty
$$

- The assumption $p \in(2, \infty)$ allows for the use of local smoothing estimates for certain Fourier integral operators.
- The assumption $N(U)<\infty$ allows for the use of an inequality of Chang, Wilson and Wolff about martingales.
- Below we sketch the proof of the Theorem.

Step 1: Decomposition of the multiplier

- First let m be the Fourier multiplier of the Hilbert transform along the parabola $\left(t, t^{2}\right)$:

$$
m(\xi, \eta)=\int_{\mathbb{R}} e^{-2 \pi i\left(t \xi+t^{2} \eta\right)} \frac{d t}{t}
$$

- The multiplier of H^{u} is then $m(\xi, u \eta)$.
- Decompose $1 / t$ into sums of dilates of a suitable smooth odd function ψ supported on $[1 / 2,2]$. Then $m(\xi, \eta)$ becomes

$$
\begin{gathered}
m(\xi, \eta)=\sum_{j \in \mathbb{Z}} m_{j}(\xi, \eta) \text { where } \\
m_{0}(\xi, \eta)=\int_{\mathbb{R}} e^{-2 \pi i\left(t \xi+t^{2} \eta\right)} \psi(t) d t, \quad m_{j}(\xi, \eta)=m_{0}\left(2^{-j} \circ(\xi, \eta)\right) \\
\text { and } 2^{-j} \circ(\xi, \eta) \text { is the non-isotropic dilation }\left(2^{-j} \xi, 2^{-2 j} \eta\right)
\end{gathered}
$$

- The multiplier of H^{u} is then $\sum_{j \in \mathbb{Z}} m_{j}(\xi, u \eta)$.
- By stationary phase, $m_{0}(\xi, \eta)$ can in turn be decomposed as

$$
m_{0}(\xi, \eta)=\phi_{0}(\xi, \eta)+a_{0}(\xi, \eta) e^{-i \frac{\xi^{2}}{4 \eta}}
$$

where ϕ_{0} is a Schwarz function vanishing at the origin, and a_{0} is smooth and supported on $\{(\xi, \eta):|\xi| \simeq|\eta| \geq 1\}$, with

$$
\left|\nabla^{k} a_{0}(\xi, \eta)\right| \lesssim(|\xi|+|\eta|)^{-\frac{1}{2}-k} \quad \text { for } k \in \mathbb{N} .
$$

- For $\ell \in \mathbb{Z}$ we write $\phi_{0, \ell}$ and $a_{0, \ell}$ for a smooth localization of ϕ_{0} and a_{0} to the annulus $\left\{|\xi|+|\eta| \simeq 2^{\ell}\right\}$, so that

$$
\phi_{0}(\xi, \eta)=\sum_{\ell \in \mathbb{Z}} \phi_{0, \ell}(\xi, \eta), \quad a_{0}(\xi, \eta)=\sum_{\ell \geq 0} a_{0, \ell}(\xi, \eta)
$$

(Note that $a_{0, \ell}=0$ if $\ell<0$ by the support condition on a_{0}.)

- Recall that m is the sum of (non-isotropic) dilates of m_{0}, and

$$
m_{0}(\xi, \eta)=\sum_{\ell \in \mathbb{Z}} \phi_{0, \ell}(\xi, \eta)+\sum_{\ell \geq 0} a_{0, \ell}(\xi, \eta) e^{-i \frac{\xi^{2}}{4 \eta}}
$$

- So writing

$$
\phi_{j, \ell}(\xi, \eta):=\phi_{0, \ell}\left(2^{-j} \circ(\xi, \eta)\right), \quad a_{j, \ell}(\xi, \eta):=a_{0, \ell}\left(2^{-j} \circ(\xi, \eta)\right),
$$

then

$$
m(\xi, \eta)=\sum_{j \in \mathbb{Z}} \sum_{\ell \in \mathbb{Z}} \phi_{j, \ell}(\xi, \eta)+\sum_{j \in \mathbb{Z}} \sum_{\ell \geq 0} a_{j, \ell}(\xi, \eta) e^{-i \frac{\xi^{2}}{4 \eta}}
$$

- We also let $T_{j, \ell}^{u}$ and $S_{j, \ell}^{\mu}$ be given by multipliers

$$
\phi_{j, \ell}(\xi, u \eta) \quad \text { and } \quad a_{j, \ell}(\xi, u \eta) e^{i \frac{\xi^{2}}{4 u \eta}}
$$

respectively, so that

$$
H^{u}=\sum_{\ell \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} T_{j, \ell}^{u}+\sum_{\ell \geq 0} \sum_{j \in \mathbb{Z}} S_{j, \ell}^{u} .
$$

$$
H^{u}=\sum_{\ell \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} T_{j, \ell}^{u}+\sum_{\ell \geq 0} \sum_{j \in \mathbb{Z}} S_{j, \ell}^{u} .
$$

- We will prove the following two key estimates:

1 . For any $\ell \in \mathbb{Z}$,

$$
\left\|\sup _{u \in U}\left|\sum_{j \in \mathbb{Z}} T_{j, \ell}^{u} f\right|\right\|_{p} \lesssim 2^{-|\ell|} \sqrt{\log N(U)}\|f\|_{p} \quad \text { for } 1<p<\infty .
$$

2. There exists $\varepsilon=\varepsilon(p)>0$ such that for any $\ell \geq 0$,

$$
\left\|\sup _{u>0}\left|\sum_{j \in \mathbb{Z}} S_{j, \ell}^{u} f\right|\right\|_{p} \lesssim 2^{-\ell \varepsilon}\|f\|_{p} \quad \text { for } 2<p<\infty .
$$

- Together we bound

$$
\begin{aligned}
\left\|\sup _{u \in U}\left|H^{u} f\right|\right\|_{p} & \lesssim \sum_{\ell \in \mathbb{Z}}\left\|\sup _{u \in U}\left|\sum_{j \in \mathbb{Z}} T_{j, \ell}^{u} f\right|\right\|_{p}+\sum_{\ell \geq 0}\left\|\sup _{u>0}\left|\sum_{j \in \mathbb{Z}} S_{j, \ell}^{u} f\right|\right\|_{p} \\
& \lesssim \sqrt{\log N(U)}\|f\|_{p}
\end{aligned}
$$

for $2<p<\infty$, and obtain our main theorem.

Step 2: Proof of the first key estimate

- Recall the multiplier of $T_{j, \ell}^{\mu}$ is $\phi_{j, \ell}(\xi, u \eta)=\phi_{0, \ell}\left(2^{-j} \circ(\xi, u \eta)\right)$, and we want to prove that

$$
\left\|\sup _{u \in U}\left|\sum_{j \in \mathbb{Z}} T_{j, \ell}^{u} f\right|\right\|_{p} \lesssim 2^{-|\ell|} \sqrt{\log N(U)}\|f\|_{p} \quad \text { for } 1<p<\infty
$$

- The key is to prove it for $\ell=0$.
- Indeed, $\left\{2^{|\ell|} \phi_{0, \ell}\left(2^{\ell} \xi, 2^{\ell} \eta\right): \ell \in \mathbb{Z}\right\}$ form a bounded collection of C^{10} functions with compact support on the unit annulus. Applying the following argument to $2^{|\ell|} \phi_{0, \ell}\left(2^{\ell} \xi, 2^{\ell} \eta\right)$ in place of $\phi_{0,0}$ and performing an isotropic rescaling in (ξ, η) will give the desired conclusion for all $\ell \in \mathbb{Z}$.
- So from now on, let $T^{u}=\sum_{j \in \mathbb{Z}} T_{j, 0}^{u}$ and prove that

$$
\left\|\sup _{u \in U}\left|T^{u} f\right|\right\|_{p} \lesssim \sqrt{\log N(U)}\|f\|_{p} \quad \text { for } 1<p<\infty ;
$$

in fact we only need to prove boundedness into weak L^{p}.

- We use an inequality for martingales due to Chang, Wilson and Wolff (see Grafakos-Honzik-Seeger, Demeter(-Di Plinio) for some earlier applications of Chang-Wilson-Wolff, in the study of maximal functions for families of singular integrals).
- We need only the inequality for the standard dyadic martingale on \mathbb{R}, so let's focus on that case.
- Let g be an $L^{p} \cap L^{\infty}$ function on \mathbb{R} for some finite p.
- For $k \in \mathbb{Z}$, let $\mathbb{E}_{k} g(x)$ be the average of g on the (essentially unique) dyadic interval containing x.
- Let \mathbb{D}_{k} be the martingale difference $\mathbb{E}_{k}-\mathbb{E}_{k-1}$.
- Let \mathbb{M} be the martingale maximal function

$$
\mathbb{M} g(x)=\sup _{k \in \mathbb{Z}}\left|\mathbb{E}_{k} g(x)\right|
$$

and let \mathbb{S} be the square function

$$
\mathbb{S} g(x)=\left(\sum_{k \in \mathbb{Z}}\left|\mathbb{D}_{k} g(x)\right|^{2}\right)^{1 / 2}
$$

- The Chang-Wilson-Wolff inequality says basically that if $|g(x)|$ is big, then most of the time $\mathbb{S} g(x)$ is also big (which would be obvious if we replaced the square function by an ℓ^{1} sum).
- More precisely, the Chang-Wilson-Wolff inequality states that there exist universal constants c_{1}, c_{2} such that for any $\varepsilon \in(0,1 / 2)$ and any $\lambda>0$, we have $\left.\left\lvert\,\{x:|g(x)|>4 \lambda$ and $\mathbb{S} g(x)<\varepsilon \lambda\}\left|\leq c_{2} e^{-\frac{c_{1}}{\varepsilon^{2}}}\right|\{x: \mathbb{M} g(x)>\lambda\}\right. \right\rvert\,$.
(It is rare that $|g|$ is large but $\mathbb{S} g$ is extremely small.)
- We will apply this inequality for functions on \mathbb{R}^{2}, in the x_{2} variable only; by abuse of notation, we still denote the corresponding operators on \mathbb{R}^{2} by $\mathbb{E}, \mathbb{D}, \mathbb{M}$ and \mathbb{S}.
- First observe an elementary fact: for any function F, if $u \in\left[2^{n}, 2^{n+1}\right)$ then

$$
|F(u)| \leq\left|F\left(2^{n}\right)\right|+\int_{1}^{2}\left|\partial_{s} F\left(2^{n} s\right)\right| d s
$$

- Given $U \subset(0, \infty)$, let $\mathcal{N}(U)$ be the set of all integers n so that $\left[2^{n}, 2^{n+1}\right.$) that intersects U ('the set of relevant n 's for $\left.U^{\prime}\right)$. Then $N(U)=\# \mathcal{N}(U)$, and

$$
\sup _{u \in U}|F(u)| \leq \sup _{n \in \mathcal{N}(U)}\left(\left|F\left(2^{n}\right)\right|+\int_{1}^{2}\left|\partial_{s}\left[F\left(2^{n} s\right)\right]\right| d s\right) .
$$

- As a result,

$$
\sup _{u \in U}\left|T^{u} f\right| \leq \sup _{n \in \mathcal{N}(U)} T_{n} f
$$

where

$$
T_{n} f:=\left|T^{2^{n}} f\right|+\int_{1}^{2}\left|\partial_{s} T^{2^{n} s} f\right| d s
$$

- Note that the multiplier of $T^{2^{n}}$ is $\sum_{j \in \mathbb{Z}} \phi_{0,0}\left(2^{-j} \circ\left(\xi, 2^{n} \eta\right)\right)$, which is the conjugation of a non-isotropic singular integral with a dilation in the variable x_{2}. So is $\partial_{s} T^{2^{n} s}$ for each s.
- Hence T_{n} is bounded on L^{p} for $1<p<\infty$, uniformly in n.
- We want to prove that $\sup _{n \in \mathcal{N}(U)} T_{n} f$ is in weak L^{p} if $f \in L^{p}$; we use the martingale inequality of Chang-Wilson-Wolff.

Application of the Chang-Wilson-Wolff inequality

- So now let $\varepsilon \in(0,1 / 2)$ to be chosen.
- If $\sup _{n \in \mathcal{N}(U)} T_{n} f(x)>4 \lambda$, then either

$$
\sup _{n \in \mathcal{N}(U)} \mathbb{S} T_{n} f(x) \geq \varepsilon \lambda
$$

or there exists $n \in \mathcal{N}(U)$ such that

$$
T_{n} f(x)>4 \lambda \quad \text { and } \quad \mathbb{S} T_{n} f(x)<\varepsilon \lambda
$$

- It follows that

$$
\begin{aligned}
& \left|\left\{x: \sup _{u \in U}\left|T^{u} f(x)\right|>4 \lambda\right\}\right| \\
\leq & \sum_{n \in \mathcal{N}(U)} \mid\left\{x: T_{n} f(x)>4 \lambda \text { and } \mathbb{S} T_{n} f(x)<\varepsilon \lambda\right\} \mid \\
& +\left|\left\{x: \sup _{n \in \mathcal{N}(U)} \mathbb{S} T_{n} f(x) \geq \varepsilon \lambda\right\}\right| .
\end{aligned}
$$

$$
\sum_{n \in \mathcal{N}(U)} \mid\left\{T_{n} f>4 \lambda \text { and } \mathbb{S} T_{n} f<\varepsilon \lambda\right\}\left|+\left|\left\{\sup _{n \in \mathcal{N}(U)} \mathbb{S} T_{n} f \geq \varepsilon \lambda\right\}\right| .\right.
$$

- The first term can be bounded using Chang-Wilson-Wolff, by

$$
c_{2} e^{-\frac{c_{1}}{\varepsilon^{2}}} \sum_{n \in \mathcal{N}(U)}\left|\left\{\mathbb{M} T_{n} f>\lambda\right\}\right| \lesssim e^{-\frac{c_{1}}{\varepsilon^{2}}} N(U) \frac{1}{\lambda^{p}}\|f\|_{p}^{p}
$$

this is bounded by $\frac{1}{\lambda^{p}}\|f\|_{p}^{p}$, if we take $\varepsilon=[\log N(U)]^{-1 / 2}$.

- The second term will be bounded by

$$
\frac{1}{\varepsilon^{p} \lambda^{p}}\left\|\sup _{n \in \mathbb{Z}} T_{n} f\right\|_{p}^{p} \lesssim{\sqrt{\log N(U)^{p}} \frac{1}{\lambda^{p}}\|f\|_{p}^{p} .}^{p}
$$

as desired, if we can show

$$
\left\|\sup _{n \in \mathbb{Z}} \mathbb{S} T_{n} f\right\|_{p} \lesssim\|f\|_{p}
$$

$\left\|\sup _{n \in \mathbb{Z}} \mathbb{S} T_{n} f\right\|_{p} \lesssim\|f\|_{p}, \quad$ where $\quad \mathbb{S} T_{n} f \lesssim\left(\sum_{k \in \mathbb{Z}}\left|\mathbb{D}_{k} T_{n} f\right|^{2}\right)^{1 / 2}$.

- Recall that \mathbb{D}_{k} are the dyadic differences in the x_{2} variable.
- Let's pretend that $\mathbb{D}_{k} \simeq P_{k}^{(2)}$, the Littlewood-Paley frequency localization to 2^{k} in the x_{2} variable (this is a small lie). Then

$$
\mathbb{S} T_{n} f \leq\left(\sum_{k \in \mathbb{Z}}\left|P_{k}^{(2)} T^{2^{n}} f\right|^{2}\right)^{1 / 2}+\int_{1}^{2}\left(\sum_{k \in \mathbb{Z}}\left|P_{k}^{(2)} \partial_{s} T^{2^{n} s}\right|^{2}\right)^{1 / 2} d s
$$

- We claim

$$
\left|P_{k}^{(2)} T^{2^{n}} f\right| \lesssim M^{(1)} T^{(1)} P_{k}^{(2)} f+M^{(1)} M^{(2)} P_{k}^{(2)} f
$$

where $T^{(1)}$ is a singular integral in the x_{1} variable, and $M^{(i)}$ are the maximal functions in the x_{i} variable, $i=1,2$.

- Indeed,

$$
T^{2^{n}} f=\sum_{j \in \mathbb{Z}} \mathcal{F}^{-1}\left(\phi_{0,0}\left(2^{-j} \xi, 2^{-2 j} 2^{n} \eta\right) \widehat{f}\right)
$$

where $\phi_{0,0}$ is a unit bump function on the unit annulus, so

$$
\begin{aligned}
P_{k}^{(2)} T^{2^{n}} f & =\sum_{j: 2 j-n \leq k} \mathcal{F}^{-1}\left(\phi_{0,0}\left(2^{-j} \xi, 2^{-2 j} 2^{n} \eta\right) \widehat{P_{k}^{(2)} f}\right) \\
& =\sum_{j: 2 j-n \leq k} \mathcal{F}^{-1}\left(\phi_{0,0}\left(2^{-j} \xi, 0\right) \widehat{P_{k}^{(2)} f}\right)+\text { error }
\end{aligned}
$$

where the error is \lesssim the strong maximal function of $P_{k}^{(2)} f$.

- The main term above is effectively a maximal truncation of a singular integral in the x_{1} variable. So by Cotlar's lemma,

$$
\left|P_{k}^{(2)} T^{2^{n}} f\right| \lesssim M^{(1)} T^{(1)} P_{k}^{(2)} f+M^{(1)} M^{(2)} P_{k}^{(2)} f
$$

where $T^{(1)}$ is a singular integral in the x_{1} variable, and $M^{(i)}$ are the maximal functions in the x_{i} variable, $i=1,2$.

$$
\left|P_{k}^{(2)} T^{2^{n}} f\right| \lesssim M^{(1)} T^{(1)} P_{k}^{(2)} f+M^{(1)} M^{(2)} P_{k}^{(2)} f
$$

- Moreover, rather importantly, we have a similar bound for $P_{k}^{(2)} \partial_{s} T^{2^{n} s} f$ for every s. Thus

$$
\begin{aligned}
\mathbb{S} T_{n} f & \leq\left(\sum_{k \in \mathbb{Z}}\left|P_{k}^{(2)} T^{2^{n}} f\right|^{2}\right)^{1 / 2}+\int_{1}^{2}\left(\sum_{k \in \mathbb{Z}}\left|P_{k}^{(2)} \partial_{s} T^{2^{n} s} f\right|^{2}\right)^{1 / 2} d s \\
& \leq\left(\sum_{k \in \mathbb{Z}}\left|M^{(1)} T^{(1)} P_{k}^{(2)} f+M^{(1)} M^{(2)} P_{k}^{(2)} f\right|^{2}\right)^{1 / 2}
\end{aligned}
$$

pointwisely independent of n, and at this point we see that

$$
\left\|\sup _{n \in \mathbb{Z}} \mathbb{S} T_{n} f\right\|_{p} \lesssim\left\|\left(\sum_{k \in \mathbb{Z}}\left|P_{k}^{(2)} f\right|^{2}\right)^{1 / 2}\right\|_{p} \lesssim\|f\|_{p}
$$

for $1<p<\infty$, which completes the proof of our first key estimate.

- We remark that the same proof establishes the following:

Corollary

(a) (Grafakos, Honzik, Seeger) Let K be a 'nice' Calderón
-Zygmund kernel on \mathbb{R}. For $u>0$, let

$$
K^{u}(x):=u^{-1} K\left(u^{-1} x\right)
$$

Then for $U \subset(0, \infty)$, we have

$$
\left\|\sup _{u \in U}\left|f * K_{u}\right|\right\|_{p} \lesssim_{p, b} \sqrt{\log N(U)}\|f\|_{p} \quad \text { for } 1<p<\infty .
$$

(b) Let K be a 'nice' Calderón-Zygmund kernel on \mathbb{R}^{2} with respect to some dilation $x \mapsto\left(\lambda x_{1}, \lambda^{b} x_{2}\right)$ where $b>0$. For $u>0$, let

$$
K^{u}(x):=u^{-1 / b} K\left(x_{1}, u^{-1} x_{2}\right)
$$

Then for $U \subset(0, \infty)$, we have

$$
\left\|\sup _{u \in U}\left|f * K_{u}\right|\right\|_{p} \lesssim_{p, b} \sqrt{\log N(U)}\|f\|_{p} \quad \text { for } 1<p<\infty .
$$

Step 2: Proof of the second key estimate

- Let us now turn to our second key estimate.
- Let $S_{j, \ell}^{\mu}$ be the operator with multiplier $a_{j, \ell}(\xi, u \eta) e^{i \frac{\xi^{2}}{4 u \eta}}$. Here $a_{j, \ell}$ is a non-isotropic dilate of $a_{0, \ell}$, and $a_{0, \ell}$ is a symbol of order $-1 / 2$ supported on $\left\{|\xi| \simeq|\eta| \simeq 2^{\ell}\right\}$:

$$
\left|\nabla^{k} a_{0, \ell}(\xi, \eta)\right| \lesssim\left(2^{\ell}\right)^{-\frac{1}{2}-k} \quad \text { for } k \in \mathbb{N} .
$$

- We will now establish our second key estimate, namely the existence of some $\varepsilon=\varepsilon(p)>0$ such that for every $\ell \geq 0$,

$$
\left\|\sup _{u>0}\left|\sum_{j \in \mathbb{Z}} S_{j, \ell}^{u} f\right|\right\|_{p} \lesssim 2^{-\ell \varepsilon}\|f\|_{p} \quad \text { for } 2<p<\infty
$$

The fact that $a_{0, \ell}$ is supported on $\left\{|\xi| \simeq|\eta| \simeq 2^{\ell}\right\}$ (and not the whole annulus of radius 2^{ℓ}, as in the case of the first key estimate) will allow us to take supremum over all $u>0$; we illustrate this in a toy model below.

A toy model

- Let $\varphi(\xi, \eta)$ be a Schwartz function supported on the sector

$$
\{|\xi| \simeq|\eta| \geq 1\} .
$$

- For $\ell \geq 0$, let φ_{ℓ} be the localization of φ to $\left\{|\xi| \simeq|\eta| \geq 2^{\ell}\right\}$.
- For $j \in \mathbb{Z}$, let $\varphi_{j, \ell}(\xi, \eta):=\varphi_{\ell}\left(2^{-j} \circ(\xi, \eta)\right)$.
- For $u>0$, let $\tilde{S}_{j, \ell}^{u}$ be the operator with multiplier $\varphi_{j, \ell}(\xi, u \eta)$.
- Then we will prove that for any $N \in \mathbb{N}$,

$$
\left\|\sup _{u>0}\left|\sum_{j \in \mathbb{Z}} \tilde{S}_{j, \ell}^{u} f\right|\right\|_{p} \lesssim 2^{-\ell N}\|f\|_{p} \quad \text { for } 2 \leq p<\infty
$$

- In fact, it suffices to prove that

$$
\left\|\sup _{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} \tilde{S}_{j, \ell}^{2^{n}} f\right|\right\|_{p}+\left\|\sup _{n \in \mathbb{Z}} \int_{1}^{2}\left|\sum_{j \in \mathbb{Z}} \partial_{s} \tilde{S}_{j, \ell}^{2^{n} s} f\right| d s\right\|_{p} \lesssim 2^{-\ell N}\|f\|_{p}
$$

which will hold as long as we show

$$
\int \sum_{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} \tilde{S}_{j, \ell}^{2^{n}} f\right|^{p}+\sup _{s \in[1,2)} \int \sum_{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} \partial_{s} \tilde{S}_{j, \ell}^{2^{n} s} f\right|^{p} \lesssim\left(2^{-\ell N}\|f\|_{p}\right)^{p}
$$

- First note that for $\ell \geq 0, \varphi_{\ell}$ is the localization of a Schwartz function φ to $\left\{|\xi| \simeq|\eta| \simeq 2^{\ell}\right\}$.
- So $\left\{2^{\ell N} \varphi_{\ell}\left(2^{\ell} \xi, 2^{\ell} \eta\right): \ell \geq 0\right\}$ is a bounded collection of C^{10} functions with compact support on $\{|\xi| \simeq|\eta| \simeq 1\}$, and the key is to prove our claim when $\ell=0$.
- Let's write $D_{a, b} f(x):=f\left(2^{a} x_{1}, 2^{b} x_{2}\right)$ for the anisotropic dilation of f. Then

$$
\sum_{j \in \mathbb{Z}} \tilde{S}_{j, 0}^{2^{n}}=D_{0,-n} \circ \sum_{j \in \mathbb{Z}} \tilde{S}_{j} \circ D_{0, n}
$$

where $\tilde{S}_{j}:=\tilde{S}_{j, 0}^{1}$ is the operator with multiplier $\varphi_{0}\left(2^{-j} \circ(\xi, \eta)\right)$. In particular, $\sum_{j \in \mathbb{Z}} \tilde{S}_{j}$ is a non-isotropic Calderón-Zygmund operator on \mathbb{R}^{2}, so

$$
\int\left|\sum_{j \in \mathbb{Z}} \tilde{S}_{j, 0}^{2^{n}} f\right|^{p} \lesssim \int|f|^{p}
$$

uniformly for $n \in \mathbb{Z}$.

- Recap: We know

$$
\int\left|\sum_{j \in \mathbb{Z}} \tilde{S}_{j, f}^{2^{n}} f\right|^{p} \lesssim \int|f|^{p}
$$

uniformly in n, and we want

$$
\int \sum_{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} \tilde{S}_{j, 0}^{2^{n}} f\right|^{p} \lesssim \int|f|^{p}
$$

- But the multiplier for $\tilde{S}_{j, 0}^{2^{n}}$ is $\varphi_{0}\left(2^{-j} \circ\left(\xi, 2^{n} \eta\right)\right)$, which is non-zero only when $|\xi| \simeq 2^{j}$ and $|\eta| \simeq 2^{2 j-n}$.
- It follows that

$$
\sum_{j \in \mathbb{Z}} \tilde{S}_{j, 0}^{2^{n}} f=\sum_{j \in \mathbb{Z}} \tilde{S}_{j, 0}^{2^{n}}\left[\sum_{k \in \mathbb{Z}} P_{k}^{(1)} P_{2 k-n}^{(2)} f\right],
$$

where $P_{j}^{(i)}$ is Littlewood-Paley projection to frequency 2^{j} in the x_{i} variable, $i=1,2$; note that the frequency supports of [...] above are disjoint as n varies.

$$
\sum_{j \in \mathbb{Z}} \tilde{S}_{j, 0}^{2^{n}} f=\sum_{j \in \mathbb{Z}} \tilde{S}_{j, 0}^{2^{n}}\left[\sum_{k \in \mathbb{Z}} P_{k}^{(1)} P_{2 k-n}^{(2)} f\right]
$$

- From the boundedness of $\sum_{j \in \mathbb{Z}} \tilde{S}_{j, 0}^{2^{n}}$ on L^{p}, we have

$$
\int\left|\sum_{j \in \mathbb{Z}} \tilde{S}_{j, 0}^{2^{n}} f\right|^{p} \lesssim \int\left|\sum_{j \in \mathbb{Z}} P_{j}^{(1)} P_{2 j-n}^{(2)} f\right|^{p} \lesssim \int\left(\sum_{j \in \mathbb{Z}}\left|P_{j}^{(1)} P_{2 j-n}^{(2)} f\right|^{2}\right)^{p / 2}
$$

by reversed Littlewood-Paley inequality.

- We sum over $n \in \mathbb{Z}$; if $2 \leq p<\infty$, we have

$$
\int \sum_{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} \tilde{S}_{j, 0}^{2^{n}} f\right|^{p} \lesssim \int\left(\sum_{n \in \mathbb{Z}} \sum_{j \in \mathbb{Z}}\left|P_{j}^{(1)} P_{2 j-n}^{(2)} f\right|^{2}\right)^{p / 2} \lesssim\|f\|_{p}^{p}
$$

by Littlewood-Paley again. Similarly, one can prove

$$
\sup _{s \in[1,2)} \int \sum_{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} \partial_{s} \tilde{S}_{j, 0}^{2^{n} s} f\right|^{p} \lesssim\|f\|_{p}^{p}, \quad 2 \leq p<\infty
$$

This completes our analysis for the toy model case.

Return to the actual case

- We have to show the existence of some $\varepsilon=\varepsilon(p)>0$, such that for every $\ell \geq 0$,

$$
\left\|\sup _{u>0}\left|\sum_{j \in \mathbb{Z}} S_{j, \ell}^{u} f\right|\right\|_{p} \lesssim 2^{-\ell \varepsilon}\|f\|_{p} \quad \text { for } 2<p<\infty .
$$

Here the multiplier of $S_{j, \ell}^{u}$ is $a_{j, \ell}(\xi, u \eta) e^{-i \frac{\xi^{2}}{4 u \eta}}$, where $a_{j, \ell}$ is a non-isotropic dilate of $a_{0, \ell}$, and $a_{0, \ell}$ is a symbol of order $-1 / 2$ supported on $\left\{|\xi| \simeq|\eta| \simeq 2^{\ell}\right\}$.

- The difficulty is with the oscillation $e^{-i \frac{\xi^{2}}{4 u \eta}}$; without it the argument for the toy model case shows that the above holds with $\varepsilon=1 / 2$.
- So now fix $\ell \geq 0$. We will first show that the estimate holds when we take supremum only over a lacunary sequence of u : actually, we will see that

$$
\int \sum_{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} S_{j, \ell}^{2^{n}} f\right|^{p} \lesssim\left(\ell 2^{-\ell / p}\|f\|_{p}\right)^{p} \quad \text { for } 2 \leq p<\infty
$$

- To do so, we just need to show that

$$
\int\left|\sum_{j \in \mathbb{Z}} S_{j, \ell}^{2^{n}} f\right|^{p} \lesssim\left(\ell 2^{-\ell / p}\|f\|_{p}\right)^{p} \quad \text { for } 2 \leq p<\infty
$$

uniformly over $n \in \mathbb{Z}$; using the disjointness of Fourier supports, we may then sum over n for free just as before.

- Motivated by our previous calculation, let's write

$$
\sum_{j \in \mathbb{Z}} S_{j, \ell}^{2^{n}}=D_{\ell, \ell-n} \circ \sum_{j \in \mathbb{Z}} S_{j} \circ D_{-\ell,-\ell+n}
$$

where $S_{j}=S_{j, \ell}:=D_{-\ell,-\ell} \circ S_{j, \ell}^{1} \circ D_{\ell, \ell}$; we need to show that

$$
\left\|\sum_{j \in \mathbb{Z}} S_{j} f\right\|_{p} \lesssim \ell 2^{-\ell / p}\|f\|_{p} \quad \text { for } 2 \leq p<\infty
$$

- But S_{j} is just the operator with multiplier $a_{j, \ell}\left(2^{\ell} \xi, 2^{\ell} \eta\right) e^{-i 2^{\ell} \frac{\xi^{2}}{4 \eta}}$.
- Let now $\sigma_{0}(\xi, \eta)=a_{0, \ell}\left(2^{\ell} \xi, 2^{\ell} \eta\right) e^{-i 2^{\ell} \frac{\xi^{2}}{4 \eta}}$.

Then the multiplier of $\sum_{j \in \mathbb{Z}} S_{j}$ is $\sum_{j \in \mathbb{Z}} \sigma_{0}\left(2^{-j} \circ(\xi, \eta)\right)$.
$\sigma_{0}(\xi, \eta)=a_{0, \ell}\left(2^{\ell} \xi, 2^{\ell} \eta\right) e^{-i 2^{\ell} \frac{\xi^{2}}{4 \eta}}, \quad$ multiplier for S_{j} is $\sigma_{0}\left(2^{-j} \circ(\xi, \eta)\right)$

- To bound $\sum_{j} S_{j}$ in L^{p}, one may observe that σ_{0} is supported on $\{|\xi| \simeq|\eta| \simeq 1\}$, and that

$$
\left|\sigma_{0}(\xi, \eta)\right| \lesssim 2^{-\frac{\ell}{2}}, \quad \text { and } \quad\left|\partial^{\alpha} \sigma_{0}(\xi, \eta)\right| \lesssim 2^{-\frac{\ell}{2}+\ell|\alpha|}
$$

- So for instance Hörmander-Mikhlin theorem gives that

$$
\left\|\sum_{j \in \mathbb{Z}} S_{j} f\right\|_{p} \lesssim 2^{4 \ell}\|f\|_{p}, \quad 1<p<\infty
$$

But this is NOT enough! We need an operator norm that decays as $\ell \rightarrow+\infty$.

- It turns out that one can also show that

$$
\left\|S_{0}\right\|_{p \rightarrow p} \lesssim 2^{-\ell / p} \quad \text { for } 2 \leq p<\infty
$$

which allows one to apply the following theorem of Seeger about localized multipliers (c.f. also Carbery):

Summing dilations of a localized multiplier

Theorem (Carbery / Seeger)
Let $\sigma_{0}(\xi, \eta)$ be a smooth multiplier supported on an unit annulus in \mathbb{R}^{2}, and S_{j} be the operator with multiplier $\sigma_{0}\left(2^{-j} \circ(\xi, \eta)\right)$.
Suppose $1<p<\infty$. Let A, B be constants so that

$$
\left\|S_{0} f\right\|_{p} \lesssim A\|f\|_{p} \quad \text { with } \quad\left|\partial^{\alpha} \sigma_{0}(\xi, \eta)\right| \lesssim B \quad \text { for }|\alpha| \leq 4 .
$$

Then

$$
\left\|\sum_{j \in \mathbb{Z}} S_{j} f\right\|_{p} \lesssim A\left[\log \left(2+\frac{B}{A}\right)\right]^{\left|\frac{1}{2}-\frac{1}{p}\right|}\|f\|_{p}
$$

- We saw $\left|\partial^{\alpha} \sigma_{0}(\xi, \eta)\right| \lesssim 2^{4 \ell}$ for $|\alpha| \leq 4$, so if we can also prove

$$
\left\|S_{0}\right\|_{p \rightarrow p} \lesssim 2^{-\ell / p} \quad \text { for } 2 \leq p<\infty
$$

then from the above theorem of Seeger, we have

$$
\left\|\sum_{j \in \mathbb{Z}} S_{j}\right\|_{p \rightarrow p} \lesssim \ell 2^{-\ell / p} \quad \text { for } 2 \leq p<\infty
$$

- It remains to see that $\left\|S_{0}\right\|_{p \rightarrow p} \lesssim 2^{-\ell / p} \quad$ for $2 \leq p<\infty$.
- But the multiplier of S_{0} is given by

$$
\sigma_{0}(\xi, \eta)=a_{0, \ell}\left(2^{\ell} \xi, 2^{\ell} \eta\right) e^{-i 2^{\ell} \frac{\xi^{2}}{4 \eta}}
$$

- Let S^{t} be the operator

$$
S^{t} f(x)=\int_{\mathbb{R}^{2}} \widehat{f}(\xi, \eta) a_{0, \ell}(\xi, \eta) e^{-i t \frac{\xi^{2}}{4 \eta}} e^{2 \pi i x \cdot(\xi, \eta)} d \xi d \eta
$$

so that

$$
D_{\ell, \ell} \circ S_{0} \circ D_{-\ell,-\ell}=S^{1}
$$

- The phase $\xi^{2} /(4 \eta)$ in the multiplier of S^{t} is homogeneous of degree 1 and has rank 1 Hessian on the support of $a_{0, \ell}$.
- A fixed time estimate of Miyachi shows that for $t \simeq 1$,

$$
\left\|S^{t} f\right\|_{p} \lesssim 2^{-\frac{\ell}{2}}\left(2^{\ell}\right)^{\left(\frac{1}{2}-\frac{1}{p}\right)}\|f\|_{p} \lesssim 2^{-\ell / p}\|f\|_{p} \quad \text { for } 2 \leq p<\infty
$$

so the same estimate holds for $S_{0} f$ in place of $S^{t} f$, as desired.

- Recap: We wanted to prove the existence of some $\varepsilon=\varepsilon(p)>0$, such that for every $\ell \geq 0$,

$$
\left\|\sup _{u>0}\left|\sum_{j \in \mathbb{Z}} S_{j, \ell}^{u} f\right|\right\|_{p} \lesssim 2^{-\ell \varepsilon}\|f\|_{p} \quad \text { for } 2<p<\infty .
$$

- We saw this holds with $\varepsilon=\frac{1}{p}-0$ if we replace $\sup _{u>0}$ by supremum over $2^{n}, n \in \mathbb{Z}$.
- One may be tempted to try using

$$
\sup _{u>0}\left|\sum_{j \in \mathbb{Z}} S_{j, \ell}^{u} f\right| \leq \sup _{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} S_{j, \ell}^{2^{n}} f\right|+\int_{1}^{2} \sup _{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} \partial_{s} S_{j, \ell}^{2^{n} s} f\right| d s,
$$

and see whether $\partial_{s} S_{j, \ell}^{2^{n} s}$ is as good as $S_{j, \ell}^{2^{n}}$ for $s \in[1,2)$.

- Unfortunately this is not the case now: $\partial_{s} S_{j, \ell}^{2^{n} s}$ is actually worse than $S_{j, \ell}^{2^{n}}$ by a factor of 2^{ℓ}, and 2^{ℓ} is worse than the gain of $2^{-\frac{\ell}{\rho}}$ we had for $\sup _{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} S_{j, \ell}^{2^{n}} f\right|$.
- Fortunately, to bound $\sup _{u>0} F(u)$, we only 'need' $1 / p$ derivative of F in $L^{p}(d u)$.
- More precisely, for $F(u)=\sum_{j \in \mathbb{Z}} S_{j, \ell}^{\mu} f$, we use

$$
\begin{aligned}
& \sup _{u \in\left[2^{n}, 2^{n+1}\right)}|F(u)|^{p} \\
\leq & \left|F\left(2^{n}\right)\right|^{p}+p\left(\int_{1}^{2}\left|F\left(2^{n} s\right)\right|^{p} d s\right)^{\frac{1}{p^{\prime}}}\left(\int_{1}^{2}\left|\partial_{s} F\left(2^{n} s\right)\right|^{p} d s\right)^{\frac{1}{p}}
\end{aligned}
$$

for every $n \in \mathbb{Z}$, and take supremum over n on both sides; we would be done if we can show that for every $2<p<\infty$, there exists $\varepsilon(p)>0$ such that

$$
\begin{aligned}
& \left(\int_{\mathbb{R}^{2}} \int_{1}^{2} \sum_{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} S_{j, \ell}^{2^{n} s} f\right|^{p} d s d x\right)^{1 / p} \lesssim 2^{-\ell\left(\frac{1}{p}+\varepsilon(p)\right)}\|f\|_{p} \\
& \left(\int_{\mathbb{R}^{2}} \int_{1}^{2} \sum_{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} \partial_{s} S_{j, \ell}^{2^{n} s} f\right|^{p} d s d x\right)^{1 / p} \lesssim 2^{\ell} 2^{-\ell\left(\frac{1}{p}+\varepsilon(p)\right)}\|f\|_{p}
\end{aligned}
$$

$$
\left(\int_{1}^{2} \int_{\mathbb{R}^{2}} \sum_{n \in \mathbb{Z}}\left|\sum_{j \in \mathbb{Z}} s_{j, \ell}^{s_{j}{ }^{s} f}\right|^{p} d x d s\right)^{1 / p} \lesssim 2^{-\ell\left(\frac{1}{\rho}+\varepsilon(p)\right)}\|f\|_{p}
$$

- Our previous methods will give these estimates if we are willing to drop the gain of $\varepsilon(p)$ on the right hand side; indeed we can replace $\int_{1}^{2} d s$ by $\sup _{s \in[1,2)}$ and still get the estimate without $\varepsilon(p)$.
- But the integral over $s \in[1,2)$ is really what allows us to gain $2^{-\ell \varepsilon(p)}$ on the right hand side of these inequalities.
- Recall we had S^{t} whose multiplier is $a_{0, \ell}(\xi, \eta) e^{-i t \frac{\xi^{2}}{4 \eta}}$.
- A local smoothing estimate of Mockenhaupt, Seeger and Sogge shows that for $2<p<\infty$, there exists $\varepsilon(p)>0$ so that

$$
\left(\int_{1}^{2} \int_{\mathbb{R}^{2}}\left|S^{t} f\right|^{p} d x d t\right)^{1 / p} \lesssim 2^{-\ell\left(\frac{1}{p}+\varepsilon(p)\right)}\|f\|_{p}
$$

- This additional gain, together with a vector-valued variant of Seeger's theorem for localized multipliers (due to Jones, Seeger and Wright), give the desired estimates above.

A vector-valued version of Seeger's theorem

Theorem (Jones, Seeger, Wright)
Let $I \subset \mathbb{R}$ be a compact interval. Let $\left\{m_{u}(\xi): u \in I\right\}$ be a family of Fourier multipliers on \mathbb{R}^{n}, each of which is compactly supported on $\{\xi: 1 / 2 \leq|\xi| \leq 2\}$, and satisfies

$$
\sup _{u \in I}\left|\partial_{\xi}^{\tau} m_{u}(\xi)\right| \leq B \quad \text { for each } 0 \leq|\tau| \leq n+1
$$

for some constant B. For $u \in I$ and $j \in \mathbb{Z}$, write $T_{u, j}$ the multiplier operator with multiplier $m_{u}\left(2^{-j} \circ \xi\right)$. Fix some $p \in[2, \infty)$. Assume that there exists some constant A such that

$$
\left\|\left\|T_{u, 0} f\right\|_{L^{2}(I)}\right\|_{L^{s}\left(\mathbb{R}^{n}\right)} \leq A\|f\|_{L^{s}\left(\mathbb{R}^{n}\right)}
$$

for both $s=p$ and $s=2$. Then

$$
\left\|\left\|\left\|T_{u, j} f\right\|_{L^{2}(I)}\right\|_{\ell^{2}(\mathbb{Z})}\right\|_{L^{p}\left(\mathbb{R}^{n}\right)} \lesssim A\left[\log \left(2+\frac{B}{A}\right)\right]^{\frac{1}{2}-\frac{1}{p}}\|f\|_{L^{p}\left(\mathbb{R}^{n}\right)}
$$

The case $1<p \leq 2$

- Finally, we briefly discuss what happens to the boundedness of H_{U} when $1<p \leq 2$. It is known, for instance, that if $U=[1,2]$ then H_{U} is not bounded on L^{p} for $1 \leq p \leq 2$.
- For $r>0$, let $U^{r}=\left(r^{-1} U\right) \cap[1,2]$ and $N\left(U^{r}, \delta\right)$ be the minimum number of intervals of length δ required to cover U^{r}.
- Let

$$
p(U)=1+\limsup _{\delta \rightarrow 0^{+}} \frac{\sup _{r>0} \log N\left(U^{r}, \delta\right)}{\log \delta^{-1}} ;
$$

note that $1 \leq p(U) \leq 2$, and e.g.

$$
p(U)= \begin{cases}1 & \text { if } U \text { is lacunary } \\ 2 & \text { if } U \text { contains an interval. }\end{cases}
$$

Theorem (Guo, Roos, Seeger, Y)
(a) H_{U} is unbounded on L^{p} if $p<p(U)$;
(b) If $p(U)<p \leq 2$, then H_{U} is bounded on L^{p}, if and only if $N(U)<\infty$.

Happy birthday Andreas!

