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Introduction

I For u ∈ (0,∞), let Hu be the Hilbert transform along the
direction (1, u):

Huf (x) = p.v.

ˆ
R

f (x1 − t, x2 − ut)
dt

t
, x = (x1, x2) ∈ R2.

I For a subset U ⊂ (0,∞) we consider the maximal operator

HU f (x) = sup
u∈U
|Huf (x)|.

I Karagulyan showed that ‖HU‖L2→L2,∞ ≥ c
√

log #U, and
 Laba, Marinelli and Pramanik established the same lower
bound for ‖HU‖p→p for all 1 < p <∞.

I In particular, HU is unbounded on any Lp if U is infinite.



Huf (x) = p.v.

ˆ
R

f (x1 − t, x2 − ut)
dt

t
, HU f (x) = sup

u∈U
|Huf (x)|

I It was known (from Rademacher-Menshov) that

‖HU‖2→2 . log #U;

see Christ-Duoandikoetxea-Rubio de Francia who first stated
this (c.f. also Cordoba, and Demeter).
(We will abuse notation and write log(t) for log(2 + t).)

I The above L2 → L2 bound is sharp in general.
I Demeter and Di Plinio proved that ‖HU‖p→p . log #U for

p ∈ (2,∞); also improved bounds for lacunary / Vargas U.
I See also Di Plinio and Parissis, who proved for 1 < p <∞,
‖HU‖p→p .

√
log #U for general lacunary U.

I The mapping properties of Hu(x)f (x) when u(x) varies with x
in a certain regular way (e.g. Lipschitz / depends only on x1)
is also very interesting (see Lacey, Li, Bateman, Thiele, Stein,
Street), but we shall not discuss that today.



I Today we study the Hilbert transform Hu along the parabola
parametrized by (t, ut2), t ∈ R:

Huf (x) = p.v.

ˆ
R

f (x1 − t, x2 − ut2)
dt

t
, x = (x1, x2) ∈ R2.

I It is bounded on Lp for 1 < p <∞, uniformly for u ∈ (0,∞)
(Hu is a conjugation of H1 by a dilation in the x2 variable).

I For a subset U ⊂ (0,∞) we consider the maximal operator

HU f (x) = sup
u∈U
|Huf (x)|.

(See also Guo, Hickman, Lie, Roos for the study of Hu(x)

where u(x) depends only on x1, and Di Plinio, Guo, Thiele,
Zorin-Kranich for the case where u(x) is Lipschitz in x .)

I Let N(U) be the number of dyadic intervals [2n, 2n+1) that U
intersects (here n ∈ Z).



Main Theorem

Theorem (Guo, Roos, Seeger, Y)

Let p ∈ (2,∞). Then HU is bounded on Lp(R2), if and only if
N(U) < +∞; furthermore,

‖HU‖p→p ≤ Cp

√
log N(U).

I In particular, HU can be bounded on Lp for p ∈ (2,∞), even
if U is infinite and contains an interval, contrary to HU !

I With some work, Karagulyan’s counter-example can be
adapted to show that the above bound is sharp; indeed

‖HU‖p→p ≥ cp
√

log N(U) for all 1 < p <∞.

I The assumption p ∈ (2,∞) allows for the use of local
smoothing estimates for certain Fourier integral operators.

I The assumption N(U) <∞ allows for the use of an inequality
of Chang, Wilson and Wolff about martingales.

I Below we sketch the proof of the Theorem.



Step 1: Decomposition of the multiplier

I First let m be the Fourier multiplier of the Hilbert transform
along the parabola (t, t2):

m(ξ, η) =

ˆ
R

e−2πi(tξ+t2η) dt

t
.

I The multiplier of Hu is then m(ξ, uη).

I Decompose 1/t into sums of dilates of a suitable smooth odd
function ψ supported on [1/2, 2]. Then m(ξ, η) becomes

m(ξ, η) =
∑
j∈Z

mj(ξ, η) where

m0(ξ, η) =

ˆ
R

e−2πi(tξ+t2η)ψ(t)dt, mj(ξ, η) = m0(2−j◦(ξ, η))

and 2−j ◦ (ξ, η) is the non-isotropic dilation (2−jξ, 2−2jη) .

I The multiplier of Hu is then
∑
j∈Z

mj(ξ, uη).



I By stationary phase, m0(ξ, η) can in turn be decomposed as

m0(ξ, η) = φ0(ξ, η) + a0(ξ, η)e−i
ξ2

4η

where φ0 is a Schwarz function vanishing at the origin, and a0
is smooth and supported on {(ξ, η) : |ξ| ' |η| ≥ 1}, with

|∇ka0(ξ, η)| . (|ξ|+ |η|)−
1
2
−k for k ∈ N.

I For ` ∈ Z we write φ0,` and a0,` for a smooth localization of
φ0 and a0 to the annulus {|ξ|+ |η| ' 2`}, so that

φ0(ξ, η) =
∑
`∈Z

φ0,`(ξ, η), a0(ξ, η) =
∑
`≥0

a0,`(ξ, η).

(Note that a0,` = 0 if ` < 0 by the support condition on a0.)

I Recall that m is the sum of (non-isotropic) dilates of m0, and

m0(ξ, η) =
∑
`∈Z

φ0,`(ξ, η) +
∑
`≥0

a0,`(ξ, η)e−i
ξ2

4η .



I So writing

φj ,`(ξ, η) := φ0,`(2−j ◦ (ξ, η)), aj ,`(ξ, η) := a0,`(2−j ◦ (ξ, η)),

then

m(ξ, η) =
∑
j∈Z

∑
`∈Z

φj ,`(ξ, η) +
∑
j∈Z

∑
`≥0

aj ,`(ξ, η)e−i
ξ2

4η .

I We also let T u
j ,` and Su

j ,` be given by multipliers

φj ,`(ξ, uη) and aj ,`(ξ, uη)e i
ξ2

4uη

respectively, so that

Hu =
∑
`∈Z

∑
j∈Z

T u
j ,` +

∑
`≥0

∑
j∈Z

Su
j ,`.



Hu =
∑
`∈Z

∑
j∈Z

T u
j ,` +

∑
`≥0

∑
j∈Z

Su
j ,`.

I We will prove the following two key estimates:
1. For any ` ∈ Z,∥∥ sup

u∈U
|
∑
j∈Z

T u
j,`f |

∥∥
p
. 2−|`|

√
log N(U)‖f ‖p for 1 < p <∞.

2. There exists ε = ε(p) > 0 such that for any ` ≥ 0,∥∥ sup
u>0
|
∑
j∈Z

Su
j,`f |

∥∥
p
. 2−`ε‖f ‖p for 2 < p <∞.

I Together we bound

‖ sup
u∈U
|Huf |‖p .

∑
`∈Z

∥∥ sup
u∈U
|
∑
j∈Z

T u
j ,`f |

∥∥
p

+
∑
`≥0

∥∥ sup
u>0
|
∑
j∈Z

Su
j ,`f |

∥∥
p

.
√

log N(U)‖f ‖p

for 2 < p <∞, and obtain our main theorem.



Step 2: Proof of the first key estimate

I Recall the multiplier of T u
j ,` is φj ,`(ξ, uη) = φ0,`(2−j ◦ (ξ, uη)),

and we want to prove that∥∥ sup
u∈U
|
∑
j∈Z

T u
j ,`f |

∥∥
p
. 2−|`|

√
log N(U)‖f ‖p for 1 < p <∞.

I The key is to prove it for ` = 0.

I Indeed, {2|`|φ0,`(2`ξ, 2`η) : ` ∈ Z} form a bounded collection
of C 10 functions with compact support on the unit annulus.
Applying the following argument to 2|`|φ0,`(2`ξ, 2`η) in place
of φ0,0 and performing an isotropic rescaling in (ξ, η) will give
the desired conclusion for all ` ∈ Z.

I So from now on, let T u =
∑

j∈Z T u
j ,0 and prove that∥∥ sup

u∈U
|T uf |

∥∥
p
.
√

log N(U)‖f ‖p for 1 < p <∞;

in fact we only need to prove boundedness into weak Lp.



I We use an inequality for martingales due to Chang, Wilson
and Wolff (see Grafakos-Honzik-Seeger, Demeter(-Di Plinio)
for some earlier applications of Chang-Wilson-Wolff, in the
study of maximal functions for families of singular integrals).

I We need only the inequality for the standard dyadic
martingale on R, so let’s focus on that case.

I Let g be an Lp ∩ L∞ function on R for some finite p.

I For k ∈ Z, let Ekg(x) be the average of g on the (essentially
unique) dyadic interval containing x .

I Let Dk be the martingale difference Ek − Ek−1.

I Let M be the martingale maximal function

Mg(x) = sup
k∈Z
|Ekg(x)|,

and let S be the square function

Sg(x) =

(∑
k∈Z
|Dkg(x)|2

)1/2

.



I The Chang-Wilson-Wolff inequality says basically that if |g(x)|
is big, then most of the time Sg(x) is also big (which would
be obvious if we replaced the square function by an `1 sum).

I More precisely, the Chang-Wilson-Wolff inequality states that
there exist universal constants c1, c2 such that for any
ε ∈ (0, 1/2) and any λ > 0, we have

|{x : |g(x)| > 4λ and Sg(x) < ελ}| ≤ c2e−
c1
ε2 |{x : Mg(x) > λ}|.

(It is rare that |g | is large but Sg is extremely small.)

I We will apply this inequality for functions on R2, in the x2
variable only; by abuse of notation, we still denote the
corresponding operators on R2 by E, D, M and S.

I First observe an elementary fact: for any function F , if
u ∈ [2n, 2n+1) then

|F (u)| ≤ |F (2n)|+
ˆ 2

1
|∂sF (2ns)|ds.



I Given U ⊂ (0,∞), let N (U) be the set of all integers n so
that [2n, 2n+1) that intersects U (‘the set of relevant n’s for
U’). Then N(U) = #N (U), and

sup
u∈U
|F (u)| ≤ sup

n∈N (U)

(
|F (2n)|+

ˆ 2

1
|∂s [F (2ns)]|ds

)
.

I As a result,
sup
u∈U
|T uf | ≤ sup

n∈N (U)
Tnf

where

Tnf := |T 2n f |+
ˆ 2

1

∣∣∂sT 2ns f
∣∣ ds.

I Note that the multiplier of T 2n is
∑

j∈Z φ0,0(2−j ◦ (ξ, 2nη)),
which is the conjugation of a non-isotropic singular integral
with a dilation in the variable x2. So is ∂sT 2ns for each s.

I Hence Tn is bounded on Lp for 1 < p <∞, uniformly in n.

I We want to prove that supn∈N (U) Tnf is in weak Lp if f ∈ Lp;
we use the martingale inequality of Chang-Wilson-Wolff.



Application of the Chang-Wilson-Wolff inequality

I So now let ε ∈ (0, 1/2) to be chosen.

I If supn∈N (U) Tnf (x) > 4λ, then either

sup
n∈N (U)

STnf (x) ≥ ελ,

or there exists n ∈ N (U) such that

Tnf (x) > 4λ and STnf (x) < ελ.

I It follows that

|{x : sup
u∈U
|T uf (x)| > 4λ}|

≤
∑

n∈N (U)

|{x : Tnf (x) > 4λ and STnf (x) < ελ}|

+ |{x : sup
n∈N (U)

STnf (x) ≥ ελ}|.



∑
n∈N (U)

|{Tnf > 4λ and STnf < ελ}|+
∣∣{ sup

n∈N (U)
STnf ≥ ελ}

∣∣.
I The first term can be bounded using Chang-Wilson-Wolff, by

c2e−
c1
ε2

∑
n∈N (U)

|{MTnf > λ}| . e−
c1
ε2 N(U)

1

λp
‖f ‖pp;

this is bounded by 1
λp ‖f ‖

p
p, if we take ε = [log N(U)]−1/2.

I The second term will be bounded by

1

εpλp
∥∥ sup
n∈Z

STnf
∥∥p
p
.
√

log N(U)
p 1

λp
‖f ‖pp

as desired, if we can show∥∥ sup
n∈Z

STnf
∥∥
p
. ‖f ‖p.



‖ sup
n∈Z

STnf ‖p . ‖f ‖p, where STnf .

(∑
k∈Z
|DkTnf |2

)1/2

.

I Recall that Dk are the dyadic differences in the x2 variable.

I Let’s pretend that Dk ' P
(2)
k , the Littlewood-Paley frequency

localization to 2k in the x2 variable (this is a small lie). Then

STnf ≤

(∑
k∈Z
|P(2)

k T 2n f |2
)1/2

+

ˆ 2

1

(∑
k∈Z
|P(2)

k ∂sT 2ns f |2
)1/2

ds.

I We claim

|P(2)
k T 2n f | . M(1)T (1)P

(2)
k f + M(1)M(2)P

(2)
k f

where T (1) is a singular integral in the x1 variable, and M(i)

are the maximal functions in the xi variable, i = 1, 2.



I Indeed,

T 2n f =
∑
j∈Z
F−1

(
φ0,0(2−jξ, 2−2j2nη)f̂

)
where φ0,0 is a unit bump function on the unit annulus, so

P
(2)
k T 2n f =

∑
j : 2j−n≤k

F−1
(
φ0,0(2−jξ, 2−2j2nη)P̂

(2)
k f

)

=
∑

j : 2j−n≤k
F−1

(
φ0,0(2−jξ, 0)P̂

(2)
k f

)
+ error

where the error is . the strong maximal function of P
(2)
k f .

I The main term above is effectively a maximal truncation of a
singular integral in the x1 variable. So by Cotlar’s lemma,

|P(2)
k T 2n f | . M(1)T (1)P

(2)
k f + M(1)M(2)P

(2)
k f

where T (1) is a singular integral in the x1 variable, and M(i)

are the maximal functions in the xi variable, i = 1, 2.



|P(2)
k T 2n f | . M(1)T (1)P

(2)
k f + M(1)M(2)P

(2)
k f

I Moreover, rather importantly, we have a similar bound for

P
(2)
k ∂sT 2ns f for every s. Thus

STnf ≤

(∑
k∈Z
|P(2)

k T 2n f |2
)1/2

+

ˆ 2

1

(∑
k∈Z
|P(2)

k ∂sT 2ns f |2
)1/2

ds

≤

(∑
k∈Z
|M(1)T (1)P

(2)
k f + M(1)M(2)P

(2)
k f |2

)1/2

pointwisely independent of n, and at this point we see that∥∥ sup
n∈Z

STnf
∥∥
p
.
∥∥(∑

k∈Z
|P(2)

k f |2
)1/2∥∥

p
. ‖f ‖p

for 1 < p <∞, which completes the proof of our first key
estimate.



I We remark that the same proof establishes the following:

Corollary

(a) (Grafakos, Honzik, Seeger) Let K be a ‘nice’ Calderón
-Zygmund kernel on R. For u > 0, let

Ku(x) := u−1K (u−1x).

Then for U ⊂ (0,∞), we have∥∥ sup
u∈U
|f ∗ Ku|

∥∥
p
.p,b

√
log N(U)‖f ‖p for 1 < p <∞.

(b) Let K be a ‘nice’ Calderón-Zygmund kernel on R2 with respect
to some dilation x 7→ (λx1, λ

bx2) where b > 0. For u > 0, let

Ku(x) := u−1/bK (x1, u
−1x2).

Then for U ⊂ (0,∞), we have∥∥ sup
u∈U
|f ∗ Ku|

∥∥
p
.p,b

√
log N(U)‖f ‖p for 1 < p <∞.



Step 2: Proof of the second key estimate

I Let us now turn to our second key estimate.

I Let Su
j ,` be the operator with multiplier aj ,`(ξ, uη)e i

ξ2

4uη .
Here aj ,` is a non-isotropic dilate of a0,`, and a0,` is a symbol
of order −1/2 supported on {|ξ| ' |η| ' 2`}:

|∇ka0,`(ξ, η)| . (2`)−
1
2
−k for k ∈ N.

I We will now establish our second key estimate, namely the
existence of some ε = ε(p) > 0 such that for every ` ≥ 0,∥∥ sup

u>0
|
∑
j∈Z

Su
j ,`f |

∥∥
p
. 2−`ε‖f ‖p for 2 < p <∞.

The fact that a0,` is supported on {|ξ| ' |η| ' 2`} (and not
the whole annulus of radius 2`, as in the case of the first key
estimate) will allow us to take supremum over all u > 0; we
illustrate this in a toy model below.



A toy model
I Let ϕ(ξ, η) be a Schwartz function supported on the sector

{|ξ| ' |η| ≥ 1}.
I For ` ≥ 0, let ϕ` be the localization of ϕ to {|ξ| ' |η| ≥ 2`}.
I For j ∈ Z, let ϕj ,`(ξ, η) := ϕ`(2−j ◦ (ξ, η)).

I For u > 0, let S̃u
j ,` be the operator with multiplier ϕj ,`(ξ, uη).

I Then we will prove that for any N ∈ N,∥∥ sup
u>0
|
∑
j∈Z

S̃u
j ,`f |

∥∥
p
. 2−`N‖f ‖p for 2 ≤ p <∞.

I In fact, it suffices to prove that∥∥ sup
n∈Z
|
∑
j∈Z

S̃2n

j ,`f |
∥∥
p

+
∥∥ sup
n∈Z

ˆ 2

1
|
∑
j∈Z

∂s S̃2ns
j ,` f |ds

∥∥
p
. 2−`N‖f ‖p,

which will hold as long as we showˆ ∑
n∈Z
|
∑
j∈Z

S̃2n

j ,`f |p+ sup
s∈[1,2)

ˆ ∑
n∈Z
|
∑
j∈Z

∂s S̃2ns
j ,` f |p .

(
2−`N‖f ‖p

)p
.



I First note that for ` ≥ 0, ϕ` is the localization of a Schwartz
function ϕ to {|ξ| ' |η| ' 2`}.

I So {2`Nϕ`(2`ξ, 2`η) : ` ≥ 0} is a bounded collection of C 10

functions with compact support on {|ξ| ' |η| ' 1}, and the
key is to prove our claim when ` = 0.

I Let’s write Da,bf (x) := f (2ax1, 2
bx2) for the anisotropic

dilation of f . Then∑
j∈Z

S̃2n
j ,0 = D0,−n ◦

∑
j∈Z

S̃j ◦ D0,n,

where S̃j := S̃1
j ,0 is the operator with multiplier ϕ0(2−j ◦ (ξ, η)).

In particular,
∑

j∈Z S̃j is a non-isotropic Calderón-Zygmund

operator on R2, so
ˆ
|
∑
j∈Z

S̃2n
j ,0f |p .

ˆ
|f |p

uniformly for n ∈ Z.



I Recap: We know ˆ
|
∑
j∈Z

S̃2n
j ,0f |p .

ˆ
|f |p

uniformly in n, and we wantˆ ∑
n∈Z
|
∑
j∈Z

S̃2n
j ,0f |p .

ˆ
|f |p

I But the multiplier for S̃2n
j ,0 is ϕ0(2−j ◦ (ξ, 2nη)), which is

non-zero only when |ξ| ' 2j and |η| ' 22j−n.

I It follows that∑
j∈Z

S̃2n
j ,0f =

∑
j∈Z

S̃2n
j ,0

[∑
k∈Z

P
(1)
k P

(2)
2k−nf

]
,

where P
(i)
j is Littlewood-Paley projection to frequency 2j in

the xi variable, i = 1, 2; note that the frequency supports of
[. . . ] above are disjoint as n varies.



∑
j∈Z

S̃2n
j ,0f =

∑
j∈Z

S̃2n
j ,0

[∑
k∈Z

P
(1)
k P

(2)
2k−nf

]
,

I From the boundedness of
∑

j∈Z S̃2n
j ,0 on Lp, we have

ˆ
|
∑
j∈Z

S̃2n
j ,0f |p .

ˆ
|
∑
j∈Z

P
(1)
j P

(2)
2j−nf |p .

ˆ (∑
j∈Z
|P(1)

j P
(2)
2j−nf |2

)p/2
by reversed Littlewood-Paley inequality.

I We sum over n ∈ Z; if 2 ≤ p <∞, we haveˆ ∑
n∈Z
|
∑
j∈Z

S̃2n
j ,0f |p .

ˆ (∑
n∈Z

∑
j∈Z
|P(1)

j P
(2)
2j−nf |2

)p/2
. ‖f ‖pp,

by Littlewood-Paley again. Similarly, one can prove

sup
s∈[1,2)

ˆ ∑
n∈Z
|
∑
j∈Z

∂s S̃2ns
j ,0 f |p . ‖f ‖pp, 2 ≤ p <∞.

This completes our analysis for the toy model case.



Return to the actual case
I We have to show the existence of some ε = ε(p) > 0, such

that for every ` ≥ 0,∥∥ sup
u>0
|
∑
j∈Z

Su
j ,`f |

∥∥
p
. 2−`ε‖f ‖p for 2 < p <∞.

Here the multiplier of Su
j ,` is aj ,`(ξ, uη)e−i

ξ2

4uη , where aj ,` is a
non-isotropic dilate of a0,`, and a0,` is a symbol of order −1/2
supported on {|ξ| ' |η| ' 2`}.

I The difficulty is with the oscillation e−i
ξ2

4uη ; without it the
argument for the toy model case shows that the above holds
with ε = 1/2.

I So now fix ` ≥ 0. We will first show that the estimate holds
when we take supremum only over a lacunary sequence of u:
actually, we will see thatˆ ∑

n∈Z
|
∑
j∈Z

S2n

j ,`f |p .
(
`2−`/p‖f ‖p

)p
for 2 ≤ p <∞.



I To do so, we just need to show thatˆ
|
∑
j∈Z

S2n

j ,`f |p .
(
`2−`/p‖f ‖p

)p
for 2 ≤ p <∞,

uniformly over n ∈ Z; using the disjointness of Fourier
supports, we may then sum over n for free just as before.

I Motivated by our previous calculation, let’s write∑
j∈Z

S2n

j ,` = D`,`−n ◦
∑
j∈Z

Sj ◦ D−`,−`+n

where Sj = Sj ,` := D−`,−` ◦ S1
j ,` ◦ D`,`; we need to show that

‖
∑
j∈Z

Sj f ‖p . `2−`/p‖f ‖p for 2 ≤ p <∞.

I But Sj is just the operator with multiplier aj ,`(2`ξ, 2`η)e−i2
` ξ

2

4η .

I Let now σ0(ξ, η) = a0,`(2`ξ, 2`η)e−i2
` ξ

2

4η .

Then the multiplier of
∑

j∈Z Sj is
∑

j∈Z σ0(2−j ◦ (ξ, η)).



σ0(ξ, η) = a0,`(2`ξ, 2`η)e−i2
` ξ

2

4η , multiplier for Sj is σ0(2−j◦(ξ, η))

I To bound
∑

j Sj in Lp, one may observe that σ0 is supported
on {|ξ| ' |η| ' 1}, and that

|σ0(ξ, η)| . 2−
`
2 , and |∂ασ0(ξ, η)| . 2−

`
2
+`|α|.

I So for instance Hörmander-Mikhlin theorem gives that

‖
∑
j∈Z

Sj f ‖p . 24`‖f ‖p, 1 < p <∞.

But this is NOT enough! We need an operator norm that
decays as `→ +∞.

I It turns out that one can also show that

‖S0‖p→p . 2−`/p for 2 ≤ p <∞,

which allows one to apply the following theorem of Seeger
about localized multipliers (c.f. also Carbery):



Summing dilations of a localized multiplier

Theorem (Carbery / Seeger)

Let σ0(ξ, η) be a smooth multiplier supported on an unit annulus
in R2, and Sj be the operator with multiplier σ0(2−j ◦ (ξ, η)).
Suppose 1 < p <∞. Let A,B be constants so that

‖S0f ‖p . A‖f ‖p with |∂ασ0(ξ, η)| . B for |α| ≤ 4.

Then

‖
∑
j∈Z

Sj f ‖p . A

[
log
(
2 +

B

A

)]∣∣∣ 12− 1
p

∣∣∣
‖f ‖p.

I We saw |∂ασ0(ξ, η)| . 24` for |α| ≤ 4, so if we can also prove

‖S0‖p→p . 2−`/p for 2 ≤ p <∞,
then from the above theorem of Seeger, we have

‖
∑
j∈Z

Sj‖p→p . `2−`/p for 2 ≤ p <∞.



I It remains to see that ‖S0‖p→p . 2−`/p for 2 ≤ p <∞.

I But the multiplier of S0 is given by

σ0(ξ, η) = a0,`(2`ξ, 2`η)e−i2
` ξ

2

4η .

I Let S t be the operator

S t f (x) =

ˆ
R2

f̂ (ξ, η)a0,`(ξ, η)e−it
ξ2

4η e2πix ·(ξ,η)dξdη,

so that
D`,` ◦ S0 ◦ D−`,−` = S1.

I The phase ξ2/(4η) in the multiplier of S t is homogeneous of
degree 1 and has rank 1 Hessian on the support of a0,`.

I A fixed time estimate of Miyachi shows that for t ' 1,∥∥S t f
∥∥
p
. 2−

`
2 (2`)

(
1
2
− 1

p

)
‖f ‖p . 2−`/p‖f ‖p for 2 ≤ p <∞,

so the same estimate holds for S0f in place of S t f , as desired.



I Recap: We wanted to prove the existence of some
ε = ε(p) > 0, such that for every ` ≥ 0,∥∥ sup

u>0
|
∑
j∈Z

Su
j ,`f |

∥∥
p
. 2−`ε‖f ‖p for 2 < p <∞.

I We saw this holds with ε = 1
p − 0 if we replace supu>0 by

supremum over 2n, n ∈ Z.

I One may be tempted to try using

sup
u>0
|
∑
j∈Z

Su
j ,`f | ≤ sup

n∈Z
|
∑
j∈Z

S2n

j ,`f |+
ˆ 2

1
sup
n∈Z
|
∑
j∈Z

∂sS2ns
j ,` f |ds,

and see whether ∂sS2ns
j ,` is as good as S2n

j ,` for s ∈ [1, 2).

I Unfortunately this is not the case now: ∂sS2ns
j ,` is actually

worse than S2n

j ,` by a factor of 2`, and 2` is worse than the gain

of 2−
`
p we had for supn∈Z |

∑
j∈Z S2n

j ,`f |.



I Fortunately, to bound supu>0 F (u), we only ‘need’ 1/p
derivative of F in Lp(du).

I More precisely, for F (u) =
∑

j∈Z Su
j ,`f , we use

sup
u∈[2n,2n+1)

|F (u)|p

≤|F (2n)|p + p
( ˆ 2

1
|F (2ns)|pds

) 1
p′
( ˆ 2

1
|∂sF (2ns)|pds

) 1
p

for every n ∈ Z, and take supremum over n on both sides; we
would be done if we can show that for every 2 < p <∞,
there exists ε(p) > 0 such thatˆ

R2

ˆ 2

1

∑
n∈Z
|
∑
j∈Z

S2ns
j ,` f |pdsdx

1/p

. 2−`(
1
p
+ε(p))‖f ‖p

ˆ
R2

ˆ 2

1

∑
n∈Z
|
∑
j∈Z

∂sS2ns
j ,` f |pdsdx

1/p

. 2`2−`(
1
p
+ε(p))‖f ‖p



ˆ 2

1

ˆ
R2

∑
n∈Z
|
∑
j∈Z

S2ns
j,` f |pdxds

1/p

. 2−`(
1
p+ε(p))‖f ‖p

I Our previous methods will give these estimates if we are
willing to drop the gain of ε(p) on the right hand side;

indeed we can replace
´ 2
1 ds by sups∈[1,2) and still get the

estimate without ε(p).
I But the integral over s ∈ [1, 2) is really what allows us to gain

2−`ε(p) on the right hand side of these inequalities.

I Recall we had S t whose multiplier is a0,`(ξ, η)e−it
ξ2

4η .
I A local smoothing estimate of Mockenhaupt, Seeger and

Sogge shows that for 2 < p <∞, there exists ε(p) > 0 so that(ˆ 2

1

ˆ
R2

|S t f |pdxdt

)1/p

. 2−`(
1
p
+ε(p))‖f ‖p.

I This additional gain, together with a vector-valued variant of
Seeger’s theorem for localized multipliers (due to Jones,
Seeger and Wright), give the desired estimates above.



A vector-valued version of Seeger’s theorem

Theorem (Jones, Seeger, Wright)

Let I ⊂ R be a compact interval. Let {mu(ξ) : u ∈ I} be a family
of Fourier multipliers on Rn, each of which is compactly supported
on {ξ : 1/2 ≤ |ξ| ≤ 2}, and satisfies

sup
u∈I
|∂τξ mu(ξ)| ≤ B for each 0 ≤ |τ | ≤ n + 1

for some constant B. For u ∈ I and j ∈ Z, write Tu,j the multiplier
operator with multiplier mu(2−j ◦ ξ). Fix some p ∈ [2,∞). Assume
that there exists some constant A such that∥∥‖Tu,0f ‖L2(I )

∥∥
Ls(Rn)

≤ A‖f ‖Ls(Rn)

for both s = p and s = 2. Then∥∥‖‖Tu,j f ‖L2(I )‖`2(Z)
∥∥
Lp(Rn)

. A

[
log

(
2 +

B

A

)] 1
2
− 1

p

‖f ‖Lp(Rn).



The case 1 < p ≤ 2
I Finally, we briefly discuss what happens to the boundedness of

HU when 1 < p ≤ 2. It is known, for instance, that if
U = [1, 2] then HU is not bounded on Lp for 1 ≤ p ≤ 2.

I For r > 0, let U r = (r−1U) ∩ [1, 2] and N(U r , δ) be the
minimum number of intervals of length δ required to cover U r .

I Let

p(U) = 1 + lim sup
δ→0+

supr>0 log N(U r , δ)

log δ−1
;

note that 1 ≤ p(U) ≤ 2, and e.g.

p(U) =

{
1 if U is lacunary,

2 if U contains an interval.

Theorem (Guo, Roos, Seeger, Y)

(a) HU is unbounded on Lp if p < p(U);

(b) If p(U) < p ≤ 2, then HU is bounded on Lp, if and only if
N(U) <∞.



Happy birthday Andreas!


