Maximal functions for Hilbert transforms along variable parabolas on \mathbb{R}^2

Po-Lam Yung¹ (Joint work with Shaoming Guo, Joris Roos and Andreas Seeger)

The Chinese University of Hong Kong

May 14, 2019

¹Research partially supported by HKRGC grant 14303817 $\rightarrow 4$ $\equiv \rightarrow 4$ $\equiv \rightarrow 2$ ~ 2

Drawing upon works of Andreas...

- Andreas Seeger, Some inequalities for singular convolution operators in L^p spaces. Trans. Amer. Math. Soc. 308 (1988), no. 1, 259–272.
- Gerd Mockenhaupt, Andreas Seeger, Christopher D. Sogge, Local smoothing of Fourier integral operators and Carleson Sjölin estimates. J. Amer. Math. Soc. 6 (1993), no. 1, 65–130.
- Andreas Seeger, Terence Tao, James Wright, Endpoint mapping properties of spherical maximal operators. J. Inst. Math. Jussieu 2 (2003), no. 1, 109–144.
- Loukas Grafakos, Petr Honzik, Andreas Seeger, On maximal functions for Mikhlin-Hörmander multipliers. Adv. Math. 204 (2006), no. 2, 363–378.
- Roger L. Jones, Andreas Seeger, James Wright, Strong variational and jump inequalities in harmonic analysis.
 Trans. Amer. Math. Soc. 360 (2008), no. 12, 6711–6742.

Introduction

For u ∈ (0,∞), let H^u be the Hilbert transform along the direction (1, u):

$$\mathcal{H}^u f(x) = \mathrm{p.v.} \int_{\mathbb{R}} f(x_1 - t, x_2 - ut) \frac{dt}{t}, \quad x = (x_1, x_2) \in \mathbb{R}^2.$$

▶ For a subset $U \subset (0,\infty)$ we consider the maximal operator

$$\mathcal{H}_U f(x) = \sup_{u \in U} |\mathcal{H}^u f(x)|.$$

- Karagulyan showed that ||ℋ_U||_{L²→L^{2,∞}} ≥ c√log #U, and Łaba, Marinelli and Pramanik established the same lower bound for ||ℋ_U||_{p→p} for all 1
- ▶ In particular, \mathcal{H}_U is unbounded on any L^p if U is infinite.

$$\mathcal{H}^u f(x) = \text{p.v.} \int_{\mathbb{R}} f(x_1 - t, x_2 - ut) \frac{dt}{t}, \quad \mathcal{H}_U f(x) = \sup_{u \in U} |\mathcal{H}^u f(x)|$$

It was known (from Rademacher-Menshov) that

 $\|\mathcal{H}_U\|_{2\to 2} \lesssim \log \# U;$

see Christ-Duoandikoetxea-Rubio de Francia who first stated this (c.f. also Cordoba, and Demeter). (We will abuse notation and write log(t) for log(2 + t).)

- The above $L^2 \rightarrow L^2$ bound is sharp in general.
- Demeter and Di Plinio proved that ||*H*_U||_{p→p} ≤ log #U for p ∈ (2,∞); also improved bounds for lacunary / Vargas U.
- ▶ See also Di Plinio and Parissis, who proved for 1 , $<math>\|\mathcal{H}_U\|_{p \to p} \lesssim \sqrt{\log \# U}$ for general lacunary U.
- The mapping properties of H^{u(x)}f(x) when u(x) varies with x in a certain regular way (e.g. Lipschitz / depends only on x₁) is also very interesting (see Lacey, Li, Bateman, Thiele, Stein, Street), but we shall not discuss that today.

► Today we study the Hilbert transform H^u along the parabola parametrized by (t, ut²), t ∈ ℝ:

$$H^uf(x) = \mathrm{p.v.} \int_{\mathbb{R}} f(x_1-t,x_2-ut^2) \frac{dt}{t}, \quad x = (x_1,x_2) \in \mathbb{R}^2.$$

- It is bounded on L^p for 1 (H^u is a conjugation of H¹ by a dilation in the x₂ variable).
- ▶ For a subset $U \subset (0,\infty)$ we consider the maximal operator

$$H_Uf(x) = \sup_{u \in U} |H^u f(x)|.$$

(See also Guo, Hickman, Lie, Roos for the study of $H^{u(x)}$ where u(x) depends only on x_1 , and Di Plinio, Guo, Thiele, Zorin-Kranich for the case where u(x) is Lipschitz in x.)

Let N(U) be the number of dyadic intervals [2ⁿ, 2ⁿ⁺¹) that U intersects (here n ∈ Z).

Main Theorem

Theorem (Guo, Roos, Seeger, Y) Let $p \in (2, \infty)$. Then H_U is bounded on $L^p(\mathbb{R}^2)$, if and only if $N(U) < +\infty$; furthermore,

$$\|H_U\|_{p\to p} \leq C_p \sqrt{\log N(U)}.$$

- In particular, H_U can be bounded on L^p for p ∈ (2,∞), even if U is infinite and contains an interval, contrary to H_U!
- With some work, Karagulyan's counter-example can be adapted to show that the above bound is sharp; indeed

$$\|H_U\|_{p
ightarrow p} \geq c_p \sqrt{\log N(U)} \quad ext{for all } 1$$

- ► The assumption p ∈ (2,∞) allows for the use of local smoothing estimates for certain Fourier integral operators.
- ► The assumption N(U) < ∞ allows for the use of an inequality of Chang, Wilson and Wolff about martingales.</p>
- ► Below we sketch the proof of the Theorem.

Step 1: Decomposition of the multiplier

► First let *m* be the Fourier multiplier of the Hilbert transform along the parabola (*t*, *t*²):

$$m(\xi,\eta) = \int_{\mathbb{R}} e^{-2\pi i (t\xi+t^2\eta)} \frac{dt}{t}.$$

- The multiplier of H^u is then $m(\xi, u\eta)$.
- ▶ Decompose 1/t into sums of dilates of a suitable smooth odd function ψ supported on [1/2, 2]. Then m(ξ, η) becomes

$$m(\xi,\eta) = \sum_{j\in\mathbb{Z}} m_j(\xi,\eta)$$
 where

$$m_0(\xi,\eta) = \int_{\mathbb{R}} e^{-2\pi i(t\xi+t^2\eta)}\psi(t)dt, \quad m_j(\xi,\eta) = m_0(2^{-j}\circ(\xi,\eta))$$

and $2^{-j} \circ (\xi,\eta)$ is the non-isotropic dilation $(2^{-j}\xi,2^{-2j}\eta)$.

• The multiplier of H^u is then $\sum_{j \in \mathbb{Z}} m_j(\xi, u\eta)$.

• By stationary phase, $m_0(\xi,\eta)$ can in turn be decomposed as

$$m_0(\xi,\eta) = \phi_0(\xi,\eta) + a_0(\xi,\eta)e^{-irac{\xi^2}{4\eta}}$$

where ϕ_0 is a Schwarz function vanishing at the origin, and a_0 is smooth and supported on $\{(\xi, \eta) : |\xi| \simeq |\eta| \ge 1\}$, with

$$|
abla^k a_0(\xi,\eta)| \lesssim (|\xi|+|\eta|)^{-rac{1}{2}-k}$$
 for $k\in\mathbb{N}$.

For ℓ ∈ ℤ we write φ_{0,ℓ} and a_{0,ℓ} for a smooth localization of φ₀ and a₀ to the annulus {|ξ| + |η| ≃ 2^ℓ}, so that

$$\phi_0(\xi,\eta)=\sum_{\ell\in\mathbb{Z}}\phi_{0,\ell}(\xi,\eta),\quad a_0(\xi,\eta)=\sum_{\ell\geq 0}a_{0,\ell}(\xi,\eta).$$

(Note that $a_{0,\ell} = 0$ if $\ell < 0$ by the support condition on $a_{0,\ell}$) Recall that *m* is the sum of (non-isotropic) dilates of m_0 , and

$$m_0(\xi,\eta) = \sum_{\ell \in \mathbb{Z}} \phi_{0,\ell}(\xi,\eta) + \sum_{\ell \ge 0} a_{0,\ell}(\xi,\eta) e^{-i\frac{\xi^2}{4\eta}}.$$

$$\phi_{j,\ell}(\xi,\eta) := \phi_{0,\ell}(2^{-j} \circ (\xi,\eta)), \quad a_{j,\ell}(\xi,\eta) := a_{0,\ell}(2^{-j} \circ (\xi,\eta)),$$

then

$$m(\xi,\eta) = \sum_{j\in\mathbb{Z}}\sum_{\ell\in\mathbb{Z}}\phi_{j,\ell}(\xi,\eta) + \sum_{j\in\mathbb{Z}}\sum_{\ell\geq 0}a_{j,\ell}(\xi,\eta)e^{-i\frac{\xi^2}{4\eta}}.$$

• We also let $T_{j,\ell}^u$ and $S_{j,\ell}^u$ be given by multipliers

$$\phi_{j,\ell}(\xi, u\eta)$$
 and $a_{j,\ell}(\xi, u\eta)e^{i\frac{\xi^2}{4u\eta}}$

respectively, so that

$$H^u = \sum_{\ell \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} T^u_{j,\ell} + \sum_{\ell \ge 0} \sum_{j \in \mathbb{Z}} S^u_{j,\ell}.$$

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 臣 の�?

$$H^{u} = \sum_{\ell \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} T^{u}_{j,\ell} + \sum_{\ell \geq 0} \sum_{j \in \mathbb{Z}} S^{u}_{j,\ell}.$$

We will prove the following two key estimates:

1. For any $\ell \in \mathbb{Z}$,

$$\left\| \sup_{u \in U} |\sum_{j \in \mathbb{Z}} T^u_{j,\ell} f| \right\|_p \lesssim 2^{-|\ell|} \sqrt{\log N(U)} \|f\|_p \quad \text{for } 1$$

2. There exists $\varepsilon = \varepsilon(p) > 0$ such that for any $\ell \ge 0$,

$$\Big\| \sup_{u > 0} |\sum_{j \in \mathbb{Z}} S^u_{j,\ell} f| \Big\|_p \lesssim 2^{-\ell \varepsilon} \|f\|_p \quad \text{for } 2$$

Together we bound

$$\begin{aligned} |\sup_{u \in U} |H^u f||_p \lesssim \sum_{\ell \in \mathbb{Z}} \left\| \sup_{u \in U} |\sum_{j \in \mathbb{Z}} T^u_{j,\ell} f| \right\|_p + \sum_{\ell \ge 0} \left\| \sup_{u > 0} |\sum_{j \in \mathbb{Z}} S^u_{j,\ell} f| \right\|_p \\ \lesssim \sqrt{\log N(U)} \|f\|_p \end{aligned}$$

for 2 , and obtain our main theorem.

Step 2: Proof of the first key estimate

► Recall the multiplier of $T_{j,\ell}^u$ is $\phi_{j,\ell}(\xi, u\eta) = \phi_{0,\ell}(2^{-j} \circ (\xi, u\eta))$, and we want to prove that

$$\left\| \sup_{u \in U} |\sum_{j \in \mathbb{Z}} T^u_{j,\ell} f| \right\|_p \lesssim 2^{-|\ell|} \sqrt{\log N(U)} \|f\|_p \quad \text{for } 1$$

- The key is to prove it for $\ell = 0$.
- Indeed, {2^{|ℓ|}φ_{0,ℓ}(2^ℓξ, 2^ℓη): ℓ ∈ Z} form a bounded collection of C¹⁰ functions with compact support on the unit annulus. Applying the following argument to 2^{|ℓ|}φ_{0,ℓ}(2^ℓξ, 2^ℓη) in place of φ_{0,0} and performing an isotropic rescaling in (ξ, η) will give the desired conclusion for all ℓ ∈ Z.
- ▶ So from now on, let $T^u = \sum_{j \in \mathbb{Z}} T^u_{j,0}$ and prove that

$$\left\| \sup_{u \in U} |T^u f| \right\|_p \lesssim \sqrt{\log N(U)} \|f\|_p \quad \text{for } 1$$

in fact we only need to prove boundedness into weak L^p .

- We use an inequality for martingales due to Chang, Wilson and Wolff (see Grafakos-Honzik-Seeger, Demeter(-Di Plinio) for some earlier applications of Chang-Wilson-Wolff, in the study of maximal functions for families of singular integrals).
- We need only the inequality for the standard dyadic martingale on ℝ, so let's focus on that case.
- Let g be an $L^p \cap L^\infty$ function on \mathbb{R} for some finite p.
- For k ∈ Z, let E_kg(x) be the average of g on the (essentially unique) dyadic interval containing x.
- Let \mathbb{D}_k be the martingale difference $\mathbb{E}_k \mathbb{E}_{k-1}$.
- Let \mathbb{M} be the martingale maximal function

$$\mathbb{M}g(x) = \sup_{k\in\mathbb{Z}} |\mathbb{E}_k g(x)|,$$

and let $\ensuremath{\mathbb{S}}$ be the square function

$$\mathbb{S}g(x) = \left(\sum_{k\in\mathbb{Z}} |\mathbb{D}_k g(x)|^2\right)^{1/2}$$

- The Chang-Wilson-Wolff inequality says basically that if |g(x)| is big, then most of the time Sg(x) is also big (which would be obvious if we replaced the square function by an ℓ¹ sum).
- More precisely, the Chang-Wilson-Wolff inequality states that there exist universal constants c₁, c₂ such that for any ε ∈ (0, 1/2) and any λ > 0, we have

$$|\{x\colon |g(x)|>4\lambda \text{ and } \mathbb{S}g(x)\lambda\}|.$$

(It is rare that |g| is large but $\mathbb{S}g$ is extremely small.)

- ► First observe an elementary fact: for any function F, if u ∈ [2ⁿ, 2ⁿ⁺¹) then

$$|F(u)| \leq |F(2^n)| + \int_1^2 |\partial_s F(2^n s)| ds.$$

Given U ⊂ (0,∞), let N(U) be the set of all integers n so that [2ⁿ, 2ⁿ⁺¹) that intersects U ('the set of relevant n's for U'). Then N(U) = #N(U), and

$$\sup_{u\in U} |F(u)| \leq \sup_{n\in\mathcal{N}(U)} \left(|F(2^n)| + \int_1^2 |\partial_s[F(2^ns)]| ds \right).$$

As a result,

$$\sup_{u\in U} |T^u f| \le \sup_{n\in\mathcal{N}(U)} T_n f$$

where

$$T_n f := |T^{2^n} f| + \int_1^2 \left| \partial_s T^{2^n s} f \right| ds.$$

- Note that the multiplier of T^{2ⁿ} is ∑_{j∈ℤ} φ_{0,0}(2^{-j} ∘ (ξ, 2ⁿη)), which is the conjugation of a non-isotropic singular integral with a dilation in the variable x₂. So is ∂_s T^{2ⁿs} for each s.
- Hence T_n is bounded on L^p for 1 , uniformly in <math>n.
- ▶ We want to prove that $\sup_{n \in \mathcal{N}(U)} T_n f$ is in weak L^p if $f \in L^p$; we use the martingale inequality of Chang-Wilson-Wolff.

Application of the Chang-Wilson-Wolff inequality

- So now let $\varepsilon \in (0, 1/2)$ to be chosen.
- If $\sup_{n \in \mathcal{N}(U)} T_n f(x) > 4\lambda$, then either

$$\sup_{n\in\mathcal{N}(U)}\mathbb{S}T_nf(x)\geq\varepsilon\lambda,$$

or there exists $n \in \mathcal{N}(U)$ such that

$$T_n f(x) > 4\lambda$$
 and $\mathbb{S}T_n f(x) < \varepsilon \lambda$.

It follows that

$$\begin{split} &|\{x: \sup_{u \in U} |T^u f(x)| > 4\lambda\}| \\ &\leq \sum_{n \in \mathcal{N}(U)} |\{x: T_n f(x) > 4\lambda \text{ and } \mathbb{S}T_n f(x) < \varepsilon\lambda\}| \\ &+ |\{x: \sup_{n \in \mathcal{N}(U)} \mathbb{S}T_n f(x) \ge \varepsilon\lambda\}|. \end{split}$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\sum_{n\in\mathcal{N}(U)}|\{T_nf>4\lambda \text{ and } \mathbb{S}T_nf<\varepsilon\lambda\}|+\big|\{\sup_{n\in\mathcal{N}(U)}\mathbb{S}T_nf\geq\varepsilon\lambda\}\big|.$$

The first term can be bounded using Chang-Wilson-Wolff, by

$$c_2 e^{-\frac{c_1}{\varepsilon^2}} \sum_{n \in \mathcal{N}(U)} |\{\mathbb{M}T_n f > \lambda\}| \lesssim e^{-\frac{c_1}{\varepsilon^2}} N(U) \frac{1}{\lambda^p} ||f||_p^p;$$

this is bounded by $\frac{1}{\lambda^p} ||f||_p^p$, if we take $\varepsilon = [\log N(U)]^{-1/2}$. • The second term will be bounded by

$$\frac{1}{\varepsilon^{p}\lambda^{p}}\big\|\sup_{n\in\mathbb{Z}}\mathbb{S}\mathcal{T}_{n}f\big\|_{p}^{p}\lesssim\sqrt{\log N(U)}^{p}\frac{1}{\lambda^{p}}\|f\|_{p}^{p}$$

as desired, if we can show

$$\left\|\sup_{n\in\mathbb{Z}}\mathbb{S}T_nf\right\|_p\lesssim\|f\|_p$$

◆□▶ ◆□▶ ◆三▶ ◆三▶ 三三 のへぐ

$$\|\sup_{n\in\mathbb{Z}}\mathbb{S}T_nf\|_p\lesssim \|f\|_p, \quad \text{where} \quad \mathbb{S}T_nf\lesssim \left(\sum_{k\in\mathbb{Z}}|\mathbb{D}_kT_nf|^2\right)^{1/2}$$

- Recall that \mathbb{D}_k are the dyadic differences in the x_2 variable.
- ▶ Let's pretend that $\mathbb{D}_k \simeq P_k^{(2)}$, the Littlewood-Paley frequency localization to 2^k in the x_2 variable (this is a small lie). Then

$$\mathbb{S}T_n f \leq \left(\sum_{k\in\mathbb{Z}} |P_k^{(2)}T^{2^n}f|^2\right)^{1/2} + \int_1^2 \left(\sum_{k\in\mathbb{Z}} |P_k^{(2)}\partial_s T^{2^ns}f|^2\right)^{1/2} ds.$$

We claim

$$|P_k^{(2)}T^{2^n}f| \lesssim M^{(1)}T^{(1)}P_k^{(2)}f + M^{(1)}M^{(2)}P_k^{(2)}f$$

where $T^{(1)}$ is a singular integral in the x_1 variable, and $M^{(i)}$ are the maximal functions in the x_i variable, i = 1, 2.

$$\mathcal{T}^{2^n}f = \sum_{j\in\mathbb{Z}} \mathcal{F}^{-1}\left(\phi_{0,0}(2^{-j}\xi, 2^{-2j}2^n\eta)\widehat{f}\right)$$

where $\phi_{0,0}$ is a unit bump function on the unit annulus, so

$$P_{k}^{(2)} T^{2^{n}} f = \sum_{j: \ 2j-n \le k} \mathcal{F}^{-1} \left(\phi_{0,0} (2^{-j}\xi, 2^{-2j}2^{n}\eta) \widehat{P_{k}^{(2)}} f \right)$$
$$= \sum_{j: \ 2j-n \le k} \mathcal{F}^{-1} \left(\phi_{0,0} (2^{-j}\xi, 0) \widehat{P_{k}^{(2)}} f \right) + \text{error}$$

where the error is \lesssim the strong maximal function of $P_k^{(2)}f$.

The main term above is effectively a maximal truncation of a singular integral in the x₁ variable. So by Cotlar's lemma,

$$|P_k^{(2)}T^{2^n}f| \lesssim M^{(1)}T^{(1)}P_k^{(2)}f + M^{(1)}M^{(2)}P_k^{(2)}f$$

where $T^{(1)}$ is a singular integral in the x_1 variable, and $M^{(i)}$ are the maximal functions in the x_i variable, i = 1, 2.

$$|P_k^{(2)}T^{2^n}f| \lesssim M^{(1)}T^{(1)}P_k^{(2)}f + M^{(1)}M^{(2)}P_k^{(2)}f$$

• Moreover, rather importantly, we have a similar bound for $P_k^{(2)} \partial_s T^{2^n s} f$ for every *s*. Thus

$$\begin{split} \mathbb{S}T_n f &\leq \left(\sum_{k \in \mathbb{Z}} |P_k^{(2)} T^{2^n} f|^2\right)^{1/2} + \int_1^2 \left(\sum_{k \in \mathbb{Z}} |P_k^{(2)} \partial_s T^{2^n s} f|^2\right)^{1/2} ds \\ &\leq \left(\sum_{k \in \mathbb{Z}} |M^{(1)} T^{(1)} P_k^{(2)} f + M^{(1)} M^{(2)} P_k^{(2)} f|^2\right)^{1/2} \end{split}$$

pointwisely independent of n, and at this point we see that

$$\left\|\sup_{n\in\mathbb{Z}}\mathbb{S}T_nf\right\|_p\lesssim \left\|\left(\sum_{k\in\mathbb{Z}}|P_k^{(2)}f|^2\right)^{1/2}\right\|_p\lesssim \|f\|_p$$

for 1 , which completes the proof of our first key estimate.

We remark that the same proof establishes the following:
 Corollary

(a) (Grafakos, Honzik, Seeger) Let K be a 'nice' Calderón -Zygmund kernel on \mathbb{R} . For u > 0, let

$$K^{u}(x) := u^{-1}K(u^{-1}x).$$

Then for $U \subset (0,\infty)$, we have

$$\left\| \sup_{u \in U} |f * K_u| \right\|_p \lesssim_{p,b} \sqrt{\log N(U)} \|f\|_p \quad \text{for } 1$$

(b) Let K be a 'nice' Calderón-Zygmund kernel on \mathbb{R}^2 with respect to some dilation $x \mapsto (\lambda x_1, \lambda^b x_2)$ where b > 0. For u > 0, let

$$K^{u}(x) := u^{-1/b} K(x_1, u^{-1}x_2).$$

Then for $U \subset (0,\infty)$, we have

 $\left\|\sup_{u \in U} |f * K_u|\right\|_p \lesssim_{p,b} \sqrt{\log N(U)} \|f\|_p \text{ for } 1$

Step 2: Proof of the second key estimate

• Let us now turn to our second key estimate.

 Let S^u_{j,ℓ} be the operator with multiplier a_{j,ℓ}(ξ, uη)e^{i ξ²}/4uη</sup>. Here a_{j,ℓ} is a non-isotropic dilate of a_{0,ℓ}, and a_{0,ℓ} is a symbol of order -1/2 supported on {|ξ| ≃ |η| ≃ 2^ℓ}:

$$|
abla^k a_{0,\ell}(\xi,\eta)| \lesssim (2^\ell)^{-rac{1}{2}-k} \quad ext{for } k \in \mathbb{N}.$$

We will now establish our second key estimate, namely the existence of some ε = ε(p) > 0 such that for every ℓ ≥ 0,

$$\left\| \sup_{u > 0} |\sum_{j \in \mathbb{Z}} S_{j,\ell}^u f| \right\|_p \lesssim 2^{-\ell \varepsilon} \|f\|_p \quad \text{for } 2$$

The fact that $a_{0,\ell}$ is supported on $\{|\xi| \simeq |\eta| \simeq 2^{\ell}\}$ (and not the whole annulus of radius 2^{ℓ} , as in the case of the first key estimate) will allow us to take supremum over all u > 0; we illustrate this in a toy model below.

A toy model

• Let $\varphi(\xi, \eta)$ be a Schwartz function supported on the sector

$$\{|\xi| \simeq |\eta| \ge 1\}.$$

- For $\ell \geq 0$, let φ_{ℓ} be the localization of φ to $\{|\xi| \simeq |\eta| \ge 2^{\ell}\}$.
- For $j \in \mathbb{Z}$, let $\varphi_{j,\ell}(\xi,\eta) := \varphi_{\ell}(2^{-j} \circ (\xi,\eta))$.
- ▶ For u > 0, let $\tilde{S}_{j,\ell}^u$ be the operator with multiplier $\varphi_{j,\ell}(\xi, u\eta)$. ▶ Then we will prove that for any $N \in \mathbb{N}$,

$$ig\| \sup_{u>0} |\sum_{j\in\mathbb{Z}} ilde{S}_{j,\ell}^u f| ig\|_p \lesssim 2^{-\ell N} \|f\|_p \quad ext{for } 2\leq p<\infty.$$

In fact, it suffices to prove that

$$\left\|\sup_{n\in\mathbb{Z}}|\sum_{j\in\mathbb{Z}}\tilde{S}_{j,\ell}^{2^n}f|\right\|_p+\left\|\sup_{n\in\mathbb{Z}}\int_1^2|\sum_{j\in\mathbb{Z}}\partial_s\tilde{S}_{j,\ell}^{2^ns}f|ds\right\|_p\lesssim 2^{-\ell N}\|f\|_p,$$

which will hold as long as we show

$$\int \sum_{n \in \mathbb{Z}} |\sum_{j \in \mathbb{Z}} \tilde{S}_{j,\ell}^{2^n} f|^p + \sup_{s \in [1,2)} \int \sum_{n \in \mathbb{Z}} |\sum_{j \in \mathbb{Z}} \partial_s \tilde{S}_{j,\ell}^{2^n s} f|^p \lesssim \left(2^{-\ell N} \|f\|_p\right)^p.$$

- First note that for ℓ ≥ 0, φ_ℓ is the localization of a Schwartz function φ to {|ξ| ≃ |η| ≃ 2^ℓ}.
- So {2^{ℓN}φ_ℓ(2^ℓξ, 2^ℓη): ℓ ≥ 0} is a bounded collection of C¹⁰ functions with compact support on {|ξ| ≃ |η| ≃ 1}, and the key is to prove our claim when ℓ = 0.
- Let's write D_{a,b}f(x) := f(2^ax₁, 2^bx₂) for the anisotropic dilation of f. Then

$$\sum_{j\in\mathbb{Z}}\tilde{S}_{j,0}^{2^n}=D_{0,-n}\circ\sum_{j\in\mathbb{Z}}\tilde{S}_j\circ D_{0,n},$$

where $\tilde{S}_j := \tilde{S}_{j,0}^1$ is the operator with multiplier $\varphi_0(2^{-j} \circ (\xi, \eta))$. In particular, $\sum_{j \in \mathbb{Z}} \tilde{S}_j$ is a non-isotropic Calderón-Zygmund operator on \mathbb{R}^2 , so

$$\int |\sum_{j\in\mathbb{Z}} ilde{S}_{j,0}^{2^n} f|^p \lesssim \int |f|^p$$

くし (1) (

uniformly for $n \in \mathbb{Z}$.

Recap: We know

$$\int |\sum_{j\in\mathbb{Z}} ilde{S}_{j,0}^{2^n}f|^p\lesssim\int |f|^p$$

uniformly in n, and we want

$$\int \sum_{n \in \mathbb{Z}} |\sum_{j \in \mathbb{Z}} \tilde{S}_{j,0}^{2^n} f|^p \lesssim \int |f|^p$$

- But the multiplier for Š^{2ⁿ}_{j,0} is φ₀(2^{-j} ∘ (ξ, 2ⁿη)), which is non-zero only when |ξ| ≃ 2^j and |η| ≃ 2^{2j-n}.
- It follows that

$$\sum_{j\in\mathbb{Z}}\tilde{S}_{j,0}^{2^n}f=\sum_{j\in\mathbb{Z}}\tilde{S}_{j,0}^{2^n}\left[\sum_{k\in\mathbb{Z}}P_k^{(1)}P_{2k-n}^{(2)}f\right],$$

where $P_j^{(i)}$ is Littlewood-Paley projection to frequency 2^j in the x_i variable, i = 1, 2; note that the frequency supports of $[\dots]$ above are disjoint as n varies.

$$\sum_{j\in\mathbb{Z}}\tilde{S}_{j,0}^{2^n}f=\sum_{j\in\mathbb{Z}}\tilde{S}_{j,0}^{2^n}\left[\sum_{k\in\mathbb{Z}}P_k^{(1)}P_{2k-n}^{(2)}f\right],$$

▶ From the boundedness of $\sum_{j \in \mathbb{Z}} \tilde{S}_{j,0}^{2^n}$ on L^p , we have

$$\int |\sum_{j\in\mathbb{Z}} \tilde{S}_{j,0}^{2^n} f|^p \lesssim \int |\sum_{j\in\mathbb{Z}} P_j^{(1)} P_{2j-n}^{(2)} f|^p \lesssim \int \big(\sum_{j\in\mathbb{Z}} |P_j^{(1)} P_{2j-n}^{(2)} f|^2\big)^{p/2}$$

by reversed Littlewood-Paley inequality.

• We sum over $n \in \mathbb{Z}$; if $2 \leq p < \infty$, we have

$$\int \sum_{n \in \mathbb{Z}} |\sum_{j \in \mathbb{Z}} \tilde{S}_{j,0}^{2^n} f|^p \lesssim \int \big(\sum_{n \in \mathbb{Z}} \sum_{j \in \mathbb{Z}} |P_j^{(1)} P_{2j-n}^{(2)} f|^2 \big)^{p/2} \lesssim \|f\|_p^p,$$

by Littlewood-Paley again. Similarly, one can prove

$$\sup_{s\in[1,2)}\int\sum_{n\in\mathbb{Z}}|\sum_{j\in\mathbb{Z}}\partial_s\tilde{S}_{j,0}^{2^ns}f|^p\lesssim \|f\|_p^p,\quad 2\le p<\infty.$$

This completes our analysis for the toy model case. \Rightarrow

Return to the actual case

We have to show the existence of some ε = ε(p) > 0, such that for every ℓ ≥ 0,

$$\left\| \sup_{u > 0} |\sum_{j \in \mathbb{Z}} S_{j,\ell}^u f| \right\|_p \lesssim 2^{-\ell \varepsilon} \|f\|_p \quad \text{for } 2$$

Here the multiplier of $S^{u}_{j,\ell}$ is $a_{j,\ell}(\xi, u\eta)e^{-i\frac{\xi^2}{4u\eta}}$, where $a_{j,\ell}$ is a non-isotropic dilate of $a_{0,\ell}$, and $a_{0,\ell}$ is a symbol of order -1/2 supported on $\{|\xi| \simeq |\eta| \simeq 2^\ell\}$.

- The difficulty is with the oscillation e^{-i ξ²/4uη}; without it the argument for the toy model case shows that the above holds with ε = 1/2.
- So now fix ℓ ≥ 0. We will first show that the estimate holds when we take supremum only over a lacunary sequence of u: actually, we will see that

$$\int \sum_{n \in \mathbb{Z}} |\sum_{j \in \mathbb{Z}} S_{j,\ell}^{2^n} f|^p \lesssim \left(\ell 2^{-\ell/p} \|f\|_p \right)^p \quad \text{for } 2 \le p < \infty.$$

To do so, we just need to show that

$$\int |\sum_{j\in\mathbb{Z}}S_{j,\ell}^{2^n}f|^p \lesssim \left(\ell 2^{-\ell/p}\|f\|_p\right)^p \quad \text{for } 2\leq p<\infty,$$

uniformly over n ∈ Z; using the disjointness of Fourier supports, we may then sum over n for free just as before.
Motivated by our previous calculation, let's write

$$\sum_{j\in\mathbb{Z}}S_{j,\ell}^{2^n}=D_{\ell,\ell-n}\circ\sum_{j\in\mathbb{Z}}S_j\circ D_{-\ell,-\ell+n}$$

where $S_j = S_{j,\ell} := D_{-\ell,-\ell} \circ S_{j,\ell}^1 \circ D_{\ell,\ell}$; we need to show that $\|\sum_{j\in\mathbb{Z}} S_j f\|_p \lesssim \ell 2^{-\ell/p} \|f\|_p \quad \text{for } 2 \le p < \infty.$

 But S_j is just the operator with multiplier a_{j,ℓ}(2^ℓξ, 2^ℓη)e^{-i2^ℓξ²/4η}.
 Let now σ₀(ξ, η) = a_{0,ℓ}(2^ℓξ, 2^ℓη)e^{-i2^ℓξ²/4η}. Then the multiplier of Σ_{j∈Z} S_j is Σ_{j∈Z} σ₀(2^{-j} ∘ (ξ, η)).

$$\sigma_0(\xi,\eta) = a_{0,\ell}(2^\ell\xi, 2^\ell\eta) e^{-i2^\ell \frac{\xi^2}{4\eta}}, \quad \text{multiplier for } S_j \text{ is } \sigma_0(2^{-j} \circ (\xi,\eta))$$

To bound ∑_j S_j in L^p, one may observe that σ₀ is supported on {|ξ| ≃ |η| ≃ 1}, and that

$$|\sigma_0(\xi,\eta)| \lesssim 2^{-rac{\ell}{2}}, \hspace{0.3cm} ext{and} \hspace{0.3cm} |\partial^lpha \sigma_0(\xi,\eta)| \lesssim 2^{-rac{\ell}{2}+\ell|lpha|}.$$

So for instance Hörmander-Mikhlin theorem gives that

$$\|\sum_{j\in\mathbb{Z}}S_jf\|_p\lesssim 2^{4\ell}\|f\|_p,\quad 1< p<\infty.$$

But this is NOT enough! We need an operator norm that decays as $\ell \to +\infty.$

It turns out that one can also show that

$$\|\mathcal{S}_0\|_{
ho
ightarrow
ho}\lesssim 2^{-\ell/
ho} \quad ext{for } 2\leq
ho <\infty,$$

which allows one to apply the following theorem of Seeger about localized multipliers (c.f. also Carbery): Summing dilations of a localized multiplier

Theorem (Carbery / Seeger)

Let $\sigma_0(\xi, \eta)$ be a smooth multiplier supported on an unit annulus in \mathbb{R}^2 , and S_j be the operator with multiplier $\sigma_0(2^{-j} \circ (\xi, \eta))$. Suppose 1 . Let A, B be constants so that

 $\|S_0 f\|_p \lesssim A \|f\|_p$ with $|\partial^{lpha} \sigma_0(\xi, \eta)| \lesssim B$ for $|lpha| \le 4$.

Then

$$\|\sum_{j\in\mathbb{Z}}S_jf\|_p \lesssim A\left[\log\left(2+\frac{B}{A}\right)\right]^{\left|\frac{1}{2}-\frac{1}{p}\right|}\|f\|_p.$$

▶ We saw $|\partial^{\alpha}\sigma_{0}(\xi,\eta)| \lesssim 2^{4\ell}$ for $|\alpha| \leq 4$, so if we can also prove $\|S_{0}\|_{p \to p} \lesssim 2^{-\ell/p}$ for $2 \leq p < \infty$,

then from the above theorem of Seeger, we have

$$\|\sum_{j\in\mathbb{Z}}S_j\|_{p\to p}\lesssim \ell 2^{-\ell/p}\quad\text{for }2\leq p<\infty.$$

- It remains to see that $\|S_0\|_{p \to p} \lesssim 2^{-\ell/p}$ for $2 \le p < \infty$.
- But the multiplier of S_0 is given by

$$\sigma_0(\xi,\eta) = \mathsf{a}_{0,\ell}(2^\ell\xi,2^\ell\eta)\mathsf{e}^{-i2^\ell\frac{\xi^2}{4\eta}}.$$

Let S^t be the operator

$$S^{t}f(x) = \int_{\mathbb{R}^{2}} \widehat{f}(\xi,\eta) a_{0,\ell}(\xi,\eta) e^{-it\frac{\xi^{2}}{4\eta}} e^{2\pi i x \cdot (\xi,\eta)} d\xi d\eta,$$

so that

$$D_{\ell,\ell} \circ S_0 \circ D_{-\ell,-\ell} = S^1.$$

- The phase ξ²/(4η) in the multiplier of S^t is homogeneous of degree 1 and has rank 1 Hessian on the support of a_{0,ℓ}.
- A fixed time estimate of Miyachi shows that for $t \simeq 1$,

$$\|S^t f\|_p \lesssim 2^{-\frac{\ell}{2}} (2^{\ell})^{\left(\frac{1}{2} - \frac{1}{p}\right)} \|f\|_p \lesssim 2^{-\ell/p} \|f\|_p \quad \text{for } 2 \le p < \infty,$$

so the same estimate holds for $S_0 f$ in place of $S^t f$, as desired.

• Recap: We wanted to prove the existence of some $\varepsilon = \varepsilon(p) > 0$, such that for every $\ell \ge 0$,

$$ig\| \sup_{u > 0} |\sum_{j \in \mathbb{Z}} S^u_{j,\ell} f| ig\|_p \lesssim 2^{-\ell \varepsilon} \|f\|_p \quad ext{for } 2$$

- We saw this holds with ε = 1/p − 0 if we replace sup_{u>0} by supremum over 2ⁿ, n ∈ Z.
- One may be tempted to try using

$$\sup_{u>0} |\sum_{j\in\mathbb{Z}} S^u_{j,\ell} f| \leq \sup_{n\in\mathbb{Z}} |\sum_{j\in\mathbb{Z}} S^{2^n}_{j,\ell} f| + \int_1^2 \sup_{n\in\mathbb{Z}} |\sum_{j\in\mathbb{Z}} \partial_s S^{2^n s}_{j,\ell} f| ds,$$

and see whether $\partial_s S_{j,\ell}^{2^n s}$ is as good as $S_{j,\ell}^{2^n}$ for $s \in [1,2)$.

Unfortunately this is not the case now: ∂_sS^{2ⁿs}_{j,ℓ} is actually worse than S^{2ⁿ}_{j,ℓ} by a factor of 2^ℓ, and 2^ℓ is worse than the gain of 2^{-ℓ/p} we had for sup_{n∈Z} |∑_{j∈Z} S^{2ⁿ}_{j,ℓ}f|.

- ► Fortunately, to bound sup_{u>0} F(u), we only 'need' 1/p derivative of F in L^p(du).
- More precisely, for $F(u) = \sum_{j \in \mathbb{Z}} S^u_{j,\ell} f$, we use

$$\sup_{u \in [2^{n}, 2^{n+1})} |F(u)|^{p} \le |F(2^{n})|^{p} + p \Big(\int_{1}^{2} |F(2^{n}s)|^{p} ds \Big)^{\frac{1}{p'}} \Big(\int_{1}^{2} |\partial_{s}F(2^{n}s)|^{p} ds \Big)^{\frac{1}{p}}$$

for every $n \in \mathbb{Z}$, and take supremum over n on both sides; we would be done if we can show that for every $2 , there exists <math>\varepsilon(p) > 0$ such that

$$\left(\int_{\mathbb{R}^2} \int_1^2 \sum_{n \in \mathbb{Z}} |\sum_{j \in \mathbb{Z}} S_{j,\ell}^{2^n s} f|^p ds dx\right)^{1/p} \lesssim 2^{-\ell(\frac{1}{p} + \varepsilon(p))} \|f\|_p$$
$$\left(\int_{\mathbb{R}^2} \int_1^2 \sum_{n \in \mathbb{Z}} |\sum_{j \in \mathbb{Z}} \partial_s S_{j,\ell}^{2^n s} f|^p ds dx\right)^{1/p} \lesssim 2^{\ell} 2^{-\ell(\frac{1}{p} + \varepsilon(p))} \|f\|_p$$

$$\left(\int_{1}^{2}\int_{\mathbb{R}^{2}}\sum_{n\in\mathbb{Z}}|\sum_{j\in\mathbb{Z}}S_{j,\ell}^{2^{n}s}f|^{p}dxds\right)^{1/p} \lesssim 2^{-\ell(\frac{1}{p}+\varepsilon(p))}\|f\|_{p}$$

- Our previous methods will give these estimates if we are willing to drop the gain of ε(p) on the right hand side; indeed we can replace ∫₁² ds by sup_{s∈[1,2)} and still get the estimate without ε(p).
- But the integral over $s \in [1, 2)$ is really what allows us to gain $2^{-\ell \varepsilon(p)}$ on the right hand side of these inequalities.
- Recall we had S^t whose multiplier is $a_{0,\ell}(\xi,\eta)e^{-it\frac{\xi^2}{4\eta}}$.
- A local smoothing estimate of Mockenhaupt, Seeger and Sogge shows that for 2 0 so that

$$\left(\int_{1}^{2}\int_{\mathbb{R}^{2}}|S^{t}f|^{p}dxdt\right)^{1/p} \lesssim 2^{-\ell\left(\frac{1}{p}+\varepsilon(p)\right)}\|f\|_{p}$$

 This additional gain, together with a vector-valued variant of Seeger's theorem for localized multipliers (due to Jones, Seeger and Wright), give the desired estimates above. A vector-valued version of Seeger's theorem

Theorem (Jones, Seeger, Wright)

Let $I \subset \mathbb{R}$ be a compact interval. Let $\{m_u(\xi) : u \in I\}$ be a family of Fourier multipliers on \mathbb{R}^n , each of which is compactly supported on $\{\xi : 1/2 \le |\xi| \le 2\}$, and satisfies

$$\sup_{u \in I} |\partial_{\xi}^{\tau} m_u(\xi)| \le B \quad \text{for each } 0 \le |\tau| \le n+1$$

for some constant B. For $u \in I$ and $j \in \mathbb{Z}$, write $T_{u,j}$ the multiplier operator with multiplier $m_u(2^{-j} \circ \xi)$. Fix some $p \in [2, \infty)$. Assume that there exists some constant A such that

$$\|\|T_{u,0}f\|_{L^{2}(I)}\|_{L^{s}(\mathbb{R}^{n})} \leq A\|f\|_{L^{s}(\mathbb{R}^{n})}$$

for both s = p and s = 2. Then

$$\|\|\|T_{u,j}f\|_{L^{2}(I)}\|_{\ell^{2}(\mathbb{Z})}\|_{L^{p}(\mathbb{R}^{n})} \lesssim A\left[\log\left(2+\frac{B}{A}\right)\right]^{\frac{1}{2}-\frac{1}{p}}\|f\|_{L^{p}(\mathbb{R}^{n})}.$$

(日) (同) (三) (三) (三) (○) (○)

The case 1

- Finally, we briefly discuss what happens to the boundedness of H_U when 1 . It is known, for instance, that if <math>U = [1, 2] then H_U is not bounded on L^p for $1 \le p \le 2$.
- ► For r > 0, let $U^r = (r^{-1}U) \cap [1, 2]$ and $N(U^r, \delta)$ be the minimum number of intervals of length δ required to cover U^r .

Let

$$p(U) = 1 + \limsup_{\delta \to 0^+} \frac{\sup_{r>0} \log N(U^r, \delta)}{\log \delta^{-1}};$$

note that $1 \le p(U) \le 2$, and e.g.
$$p(U) = \begin{cases} 1 & \text{if } U \text{ is lacunary,} \\ 2 & \text{if } U \text{ contains an interval.} \end{cases}$$

Theorem (Guo, Roos, Seeger, Y)

- (a) H_U is unbounded on L^p if p < p(U);
- (b) If $p(U) , then <math>H_U$ is bounded on L^p , if and only if $N(U) < \infty$.

Happy birthday Andreas!

