The Marcinkiewicz-Zygmund theorem

Theorem 1. Let T be a bounded linear operator from LP to LP for a certain
p € [1,00]. Then
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for the same p, where M 1is the operator norm of T from LP to LP.

Proof. It suffices to prove the theorem when only a finite number of f;’s, say fi,
.., fn, are non-zero. The result then follows from the monotone convergence
theorem by letting N go to infinity.
Let w = (w1,...,wy) be a unit vector in C¥. Consider the function g =
ZN_l w;fj. We then have Tg = Z;\;l w;Tf; by the linearity of 7. Since
HTgHLp < Mllg||L», it follows that
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Integrating now over all unit vector w in CV and interchanging the order of
integration, we get
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However, for any vector p = (p1, ..., un) € CV, the integral
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depends only on the length of y; indeed by rotation invariance, the integral is
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equal to C|p|? where Cy is a dimensional constant and |u| = (ijl |Mj|2) .

Hence from (1)
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Dividing both sides by Cy, we get the desired inequality. O

Note how the linearity of T is used cruicially in the proof, together with the
Hilbert space structure of CV. Note also that even p = 1 or oo is allowed in the
theorem.

Alternative proof using Rademacher functions. Recall that the Rademacher func-
tions are defined on [0, 1) by

ri(t) = (Gj=12,...)
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and are independent random variables on [0,1). They thus have the following
property: for each p € [1,00), there exists C), such that
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for any complex numbers a; (See Singular integrals, Appendix D. Note that it
suffices to prove the inequality for real a;’s, because the case for complex a;’s
follow trivially from that.) Now consider the function g(z,t) = >, f;(2)r;(t).
Then Tg(x,t) = >, T fj(z)r;(t), and the boundedness of T" gives for each ¢ that
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Integrating in ¢ and interchanging the order of integral, we get
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But by the property of Rademacher functions listed above, the left hand side is
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while the right hand side is comparable to
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(up to a constant C,). Hence we obtain
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a slightly weaker inequality than was stated in the theorem. O

Yet another proof using other independent random variables. Suppose on a cer-
tain probability space (2, dt) we have independent Gaussian random variables

hi(t), ..., hn(t) (t € Q). Say all of them have density e~™"_ Then for any real
numbers a1, ..., ay, the random variable
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is again a Gaussian random variable with density
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where A = (ZJ a?) . Hence
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Let now T = Ty + i1, where T} and T, are the real and imaginary parts of T’
respectively. Write also f; = u;+4v; where u; and v; are the real and imaginary
parts of f;. Apply the above identity to a; = Thu;(x), we get, upon integrating
in z and invoking the boundedness and linearity of T', that
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Cancelling C), from both sides yields an inequality for Tiu;. Repeating with
a; = Thvj(z), Touj(z) and Thv;(z), and combining the resulting inequalities,
we get

P
2

[ Xirn@r) do< [ (Y in@e] .

O

Remark 1. Here is an explicit construction of independent Gaussian random
variables. View [0,1] as a probability space with the ordinary Lebesgue measure
playing the role of the probability measure. Let h(s) be a Gaussian random
variable on [0,1], i.e. a real valued function on [0, 1] such that
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for all real values of a. Consider a product probability space [0,1]V, equipped
with the product probability measure (which of course again happens to be the
ordinary Lebesque measure). We shall write each t € [0,1]N ast = (t1,...,tn).
Let hy(t), ..., hy(t) be random variables on [0,1], defined by

for all j. Then they are independent Gaussian random variables; indeed they
correspond to repeating a process independently N times. Let now f(a) be the



density of the random variable Z;\;l a;h;(t). Then
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(this is a transparent way of seeing the independence of h; at work)
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By inverse Fourier transform now,
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where A = ( j a?) , and we are back to the proof of the main theorem.
(The above is basically a proof that if X and Y are independent random
variables and fx, fy are their densities, then fxiy, the density of X +Y,

satisfies

Fxav(€) = [x (O fv(€),
7.€.
fx+vy = fx * fr.

Note the Gaussian random variable was chosen for convenience, because con-

volutions of Gaussians can be easily computed by multiplication on the Fourier
side.)



