The Marcinkiewicz-Zygmund theorem

Theorem 1. Let T be a bounded linear operator from L^{p} to L^{p} for a certain $p \in[1, \infty]$. Then

$$
\left\|\left(\sum_{j=1}^{\infty}\left|T f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leq M\left\|\left(\sum_{j=1}^{\infty}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}
$$

for the same p, where M is the operator norm of T from L^{p} to L^{p}.
Proof. It suffices to prove the theorem when only a finite number of f_{j} 's, say f_{1}, \ldots, f_{N}, are non-zero. The result then follows from the monotone convergence theorem by letting N go to infinity.

Let $\omega=\left(\omega_{1}, \ldots, \omega_{N}\right)$ be a unit vector in \mathbb{C}^{N}. Consider the function $g=$ $\sum_{j=1}^{N} \overline{\omega_{j}} f_{j}$. We then have $T g=\sum_{j=1}^{N} \overline{\omega_{j}} T f_{j}$ by the linearity of T. Since $\|T g\|_{L^{p}} \leq M\|g\|_{L^{p}}$, it follows that

$$
\int_{\mathbb{R}^{n}}\left|\sum_{j=1}^{N} \overline{\omega_{j}} T f_{j}(x)\right|^{p} d x \leq M \int_{\mathbb{R}^{n}}\left|\sum_{j=1}^{N} \overline{\omega_{j}} f_{j}(x)\right|^{p} d x
$$

Integrating now over all unit vector ω in \mathbb{C}^{N} and interchanging the order of integration, we get

$$
\begin{equation*}
\int_{\mathbb{R}^{n}} \int_{|\omega|=1}\left|\sum_{j=1}^{N} \overline{\omega_{j}} T f_{j}(x)\right|^{p} d \omega d x \leq M \int_{\mathbb{R}^{n}} \int_{|\omega|=1}\left|\sum_{j=1}^{N} \overline{\omega_{j}} f_{j}(x)\right|^{p} d \omega d x \tag{1}
\end{equation*}
$$

However, for any vector $\mu=\left(\mu_{1}, \ldots, \mu_{N}\right) \in \mathbb{C}^{N}$, the integral

$$
\int_{|\omega|=1}\left|\sum_{j=1}^{N} \overline{\omega_{j}} \mu_{j}\right|^{p} d \omega
$$

depends only on the length of μ; indeed by rotation invariance, the integral is equal to $C_{N}|\mu|^{p}$ where C_{N} is a dimensional constant and $|\mu|=\left(\sum_{j=1}^{N}\left|\mu_{j}\right|^{2}\right)^{1 / 2}$. Hence from (1)

$$
\int_{\mathbb{R}^{n}} C_{N}\left(\sum_{j=1}^{N}\left|T f_{j}(x)\right|^{2}\right)^{p / 2} d x \leq M \int_{\mathbb{R}^{n}} C_{N}\left(\sum_{j=1}^{N}\left|f_{j}(x)\right|^{2}\right)^{p / 2} d x
$$

Dividing both sides by C_{N}, we get the desired inequality.
Note how the linearity of T is used cruicially in the proof, together with the Hilbert space structure of \mathbb{C}^{N}. Note also that even $p=1$ or ∞ is allowed in the theorem.

Alternative proof using Rademacher functions. Recall that the Rademacher functions are defined on $[0,1)$ by

$$
r_{j}(t)=\left\{\begin{array}{ll}
1 & \text { if } t \in\left[k 2^{-j},(k+1) 2^{-j}\right), k \text { odd } \\
-1 & \text { if } t \in\left[k 2^{-j},(k+1) 2^{-j}\right), k \text { even }
\end{array} \quad(j=1,2, \ldots)\right.
$$

and are independent random variables on $[0,1)$. They thus have the following property: for each $p \in[1, \infty)$, there exists C_{p} such that

$$
C_{p}^{-1}\left(\sum_{j}\left|a_{j}\right|^{2}\right)^{1 / 2} \leq\left\|\sum_{j} a_{j} r_{j}(t)\right\|_{L^{p}(d t)} \leq C_{p}\left(\sum_{j}\left|a_{j}\right|^{2}\right)^{1 / 2}
$$

for any complex numbers a_{j} (See Singular integrals, Appendix D. Note that it suffices to prove the inequality for real a_{j} 's, because the case for complex a_{j} 's follow trivially from that.) Now consider the function $g(x, t)=\sum_{j} f_{j}(x) r_{j}(t)$. Then $T g(x, t)=\sum_{j} T f_{j}(x) r_{j}(t)$, and the boundedness of T gives for each t that

$$
\int_{\mathbb{R}^{n}}\left|\sum_{j} T f_{j}(x) r_{j}(t)\right|^{p} d x \leq M \int_{\mathbb{R}^{n}}\left|\sum_{j} f_{j}(x) r_{j}(t)\right|^{p} d x
$$

Integrating in t and interchanging the order of integral, we get

$$
\int_{\mathbb{R}^{n}} \int_{0}^{1}\left|\sum_{j} T f_{j}(x) r_{j}(t)\right|^{p} d t d x \leq M \int_{\mathbb{R}^{n}} \int_{0}^{1}\left|\sum_{j} f_{j}(x) r_{j}(t)\right|^{p} d t d x
$$

But by the property of Rademacher functions listed above, the left hand side is comparable to

$$
\int_{\mathbb{R}^{n}}\left(\sum_{j}\left|T f_{j}\right|^{2}\right)^{p / 2} d x
$$

while the right hand side is comparable to

$$
\int_{\mathbb{R}^{n}}\left(\sum_{j}\left|f_{j}\right|^{2}\right)^{p / 2} d x
$$

(up to a constant C_{p}). Hence we obtain

$$
\left\|\left(\sum_{j=1}^{\infty}\left|T f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}} \leq M C_{p}^{2}\left\|\left(\sum_{j=1}^{\infty}\left|f_{j}\right|^{2}\right)^{1 / 2}\right\|_{L^{p}}
$$

a slightly weaker inequality than was stated in the theorem.
Yet another proof using other independent random variables. Suppose on a certain probability space $(\Omega, d t)$ we have independent Gaussian random variables $h_{1}(t), \ldots, h_{N}(t)(t \in \Omega)$. Say all of them have density $e^{-\pi \alpha^{2}}$. Then for any real numbers a_{1}, \ldots, a_{N}, the random variable

$$
\sum_{j=1}^{N} a_{j} h_{j}(t)
$$

is again a Gaussian random variable with density

$$
A^{-1} e^{-\pi \alpha^{2} / A^{2}}
$$

where $A=\left(\sum_{j} a_{j}^{2}\right)^{1 / 2}$. Hence

$$
\begin{aligned}
\int_{\Omega}\left|\sum_{j=1}^{N} a_{j} h_{j}(t)\right|^{p} d t & =\int_{0}^{1} \alpha^{p} A^{-1} e^{-\pi \alpha^{2} / A^{2}} d \alpha \\
& =A^{p} \int_{0}^{1} \alpha^{p} e^{-\pi \alpha^{2}} d \alpha \\
& =C_{p}\left(\sum_{j=1}^{N} a_{j}^{2}\right)^{\frac{p}{2}}
\end{aligned}
$$

Let now $T=T_{1}+i T_{2}$, where T_{1} and T_{2} are the real and imaginary parts of T respectively. Write also $f_{j}=u_{j}+i v_{j}$ where u_{j} and v_{j} are the real and imaginary parts of f_{j}. Apply the above identity to $a_{j}=T_{1} u_{j}(x)$, we get, upon integrating in x and invoking the boundedness and linearity of T, that

$$
C_{p} \int\left(\sum_{j=1}^{N}\left|T_{1} u_{j}(x)\right|^{2}\right)^{\frac{p}{2}} d x \leq M C_{p} \int\left(\sum_{j=1}^{N}\left|u_{j}(x)\right|^{2}\right)^{\frac{p}{2}} d x
$$

Cancelling C_{p} from both sides yields an inequality for $T_{1} u_{j}$. Repeating with $a_{j}=T_{1} v_{j}(x), T_{2} u_{j}(x)$ and $T_{2} v_{j}(x)$, and combining the resulting inequalities, we get

$$
\int\left(\sum_{j=1}^{N}\left|T f_{j}(x)\right|^{2}\right)^{\frac{p}{2}} d x \leq M \int\left(\sum_{j=1}^{N}\left|f_{j}(x)\right|^{2}\right)^{\frac{p}{2}} d x
$$

Remark 1. Here is an explicit construction of independent Gaussian random variables. View $[0,1]$ as a probability space with the ordinary Lebesgue measure playing the role of the probability measure. Let $h(s)$ be a Gaussian random variable on $[0,1]$, i.e. a real valued function on $[0,1]$ such that

$$
|\{s: h(s)<a\}|=\int_{-\infty}^{a} e^{-\pi \alpha^{2}} d \alpha
$$

for all real values of a. Consider a product probability space $[0,1]^{N}$, equipped with the product probability measure (which of course again happens to be the ordinary Lebesgue measure). We shall write each $t \in[0,1]^{N}$ as $t=\left(t_{1}, \ldots, t_{N}\right)$. Let $h_{1}(t), \ldots, h_{N}(t)$ be random variables on $[0,1]^{N}$, defined by

$$
h_{j}(t)=h\left(t_{j}\right)
$$

for all j. Then they are independent Gaussian random variables; indeed they correspond to repeating a process independently N times. Let now $f(\alpha)$ be the
density of the random variable $\sum_{j=1}^{N} a_{j} h_{j}(t)$. Then

$$
\begin{aligned}
& \int_{-\infty}^{\infty} e^{-2 \pi i \xi \alpha} f(\alpha) d \alpha \\
= & \int_{[0,1]^{N}} e^{-2 \pi i \xi \sum_{j} a_{j} h_{j}(t)} d t \\
= & \int_{[0,1]^{N}} \prod_{j} e^{-2 \pi i \xi a_{j} h\left(t_{j}\right)} d t \\
= & \prod_{j} \int_{0}^{1} e^{-2 \pi i \xi a_{j} h\left(t_{j}\right)} d t_{j}
\end{aligned}
$$

(this is a transparent way of seeing the independence of h_{j} at work)

$$
\begin{aligned}
& =\prod_{j} \int_{-\infty}^{\infty} e^{-2 \pi i \xi a_{j} \alpha} e^{-\pi \alpha^{2}} d \alpha \\
& =\prod_{j} e^{-\pi \xi^{2} a_{j}^{2}} \int_{-\infty}^{\infty} e^{-\pi\left(\alpha+i \xi a_{j}\right)^{2}} d \alpha \\
& =e^{-\pi \xi^{2} \sum_{j} a_{j}^{2}}
\end{aligned}
$$

By inverse Fourier transform now,

$$
f(\alpha)=A^{-1} e^{-\pi \alpha^{2} / A^{2}}
$$

where $A=\left(\sum_{j} a_{j}^{2}\right)^{1 / 2}$, and we are back to the proof of the main theorem.
(The above is basically a proof that if X and Y are independent random variables and f_{X}, f_{Y} are their densities, then f_{X+Y}, the density of $X+Y$, satisfies

$$
\widehat{f_{X+Y}}(\xi)=\widehat{f_{X}}(\xi) \widehat{f_{Y}}(\xi),
$$

i.e.

$$
f_{X+Y}=f_{X} * f_{Y}
$$

Note the Gaussian random variable was chosen for convenience, because convolutions of Gaussians can be easily computed by multiplication on the Fourier side.)

