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Abstract We study the incompressible two dimensional Navier–Stokes equation
with initial vorticity in the homogeneous Sobolev space PW1;1.R2/. This comple-
ments our earlier work for the case when the initial vorticity is in the inhomogeneous
Sobolev space W1;1.R2/.

The two-dimensional incompressible Navier–Stokes equation

(
vt C .v � r/v D ��v � rp;

r � v D 0;
(1)

models an incompressible flow of a fluid whose velocity and mechanical pressure
at position x 2 R

2 and time t 2 R are represented by the vector v.x; t/ 2 R
2

and the scalar p.x; t/ 2 R; here � is the kinematic viscosity coefficient. Note we
have divided the Navier–Stokes equation by the constant density of the fluid � and
thus � in our equation is the dynamic viscosity coefficient divided by the density,
assumed constant. Throughout this paper, r will refer only to the spatial derivatives
(i.e. derivative in the x variables). We also sometimes use the notation @x to denote
a derivative in the x variables when we have no need to be specific which space
variable we are differentiating in.
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The vorticity of the Navier–Stokes flow is a scalar in the two-dimensional case,
defined by

! D @x1v2 � @x2v1

where we wrote v D .v1; v2/. It propagates according to the convection-diffusion
equation

!t � ��! D �r � .v!/;

which one obtains from (1) by taking the curl of both sides. Formally the velocity
v in the Navier–Stokes equation can be expressed in terms of the vorticity through
the Biot–Savart relation

v D .��/�1.@x2!;�@x1!/: (2)

This follows formally by differentiating! D @x1v2�@x2v1, and using that r �v D 0.
Our theorems concern the solution of the vorticity equation when the initial

vorticity !0 is in the homogeneous Sobolev space PW1;1.R2/. Here PW1;1.R2/ is the
completion of C1

c .R
2/ under the norm kuk PW1;1.R2/ WD krukL1.R2/. The theorems are

as follows:

Theorem 1 Consider the two-dimensional vorticity equation

!t � ��! D �r � .v!/; (3)

where v is defined through the Biot–Savart relation (2). Suppose we are given an
initial vorticity !0 2 PW1;1.R2/ at time t D 0. If

kr!0.x/kL1.R2/ � A0;

then there exists a unique solution to the integral formulation of this vorticity
equation up to time t0 D C�=A20, such that

sup
t�t0

kr!.x; t/kL1 .R2/ � 2A0: (4)

Moreover, the solution ! depends continuously on the initial data !0, in the sense
that if !.i/0 converges to !0 in PW1;1.R2/ as i ! 1, then the sequence of solutions

!.i/.x; t/ to (3) with initial data !.i/0 converges to !.x; t/ in L1.Œ0; t0/; PW1;1.R2// as
i ! 1.

Theorem 2 Let !0 2 PW1;1.R2/, and ! be the solution to the integral formulation
of the vorticity equation (3) given by Theorem 1, with initial vorticity !0. Define
a velocity vector v by the Biot–Savart relation (2). Then v is a distributional
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solution to the two-dimensional incompressible Navier–Stokes (1) up to time t0 WD
C�kr!0k�2

L1.R2/
, in the sense that

8̂̂̂
<
ˆ̂̂:

ˆ t0

0

ˆ
R2

Œv � @tˆC �v ��ˆC v � .v � r/ˆ� dxdt D �
ˆ
R2

v.x; 0/ �ˆ.x; 0/dx
ˆ t0

0

ˆ
R2

v � r dxdt D 0

holds for any  2 C1
c .R

2 � Œ0; t0/;R/, and any ˆ 2 C1
c .R

2 � Œ0; t0/;R2/ that
satisfies r �ˆ D 0 for all t 2 Œ0; t0/. We also have

sup
t�t0

kv.x; t/kL1.R2/ C sup
t�t0

krv.x; t/kL2.R2/ � ckr!0kL1.R2/; (5)

and the pressure p.x; t/ WD .��/�1r � ..v � r/v/ satisfies

sup
t�t0

krp.x; t/kL2.R2/ � ckr!0k2L1.R2/: (6)

Note that in these theorems, we are only assuming that the initial vorticity !0 is
in the homogeneous Sobolev space PW1;1.R2/, contrary to [6] where we assumed the
stronger assumption that the initial vorticity is in the inhomogeneous Sobolev space
W1;1.R2/. Giga et al. [8] and Kato [9] showed that the vorticity equation is globally
well-posed under the hypothesis that the initial vorticity is a measure; see also an
alternative approach in Ben-Artzi [1], and a stronger uniqueness result in Brezis [4].
We point out though that the scaling of their results is different from ours: we are
assuming that the gradient of the initial vorticity is in L1. This explains why the
solution constructed by Kato satisfies the estimate

kv.�; t/kL1.R2/ C krv.�; t/kL2.R2/ � Ct�
1
2 ; t ! 0

(see Eq. (0.5) of [9]), whereas we can obtain bounds on kv.�; t/kL1.R2/ and
krv.�; t/kL2.R2/ that are uniform in t. Indeed it is known that they could not have
done better, without further assumptions on the vorticity: the famous example of
the Lamb–Oseen vortex for � D 1 [10] consists of an initial vorticity !0 D ˛0ı0,
a Dirac mass at the origin of R2 where ˛0 is a constant (called the total circulation
of the vortex). The corresponding solution ! to the vorticity equation (3) with this
initial vorticity, and its corresponding velocity v, are given by

!.x; t/ D ˛0

4�t
e� jxj2

4t ; v.x; t/ D ˛0

2�

.�x2; x1/

jxj2
�
1 � e� jxj2

4t

�
:

We then have

k!.�; t/kW1;1.R2/ � kv.�; t/kL1.R2/ � krv.�; t/kL2.R2/ � ct� 1
2 ; t ! 0:
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Hence the assumption that the initial vorticity is a measure cannot yield an estimate
like in Theorems 1 or 2.

We mention in passing a result in [7] where an estimate was established for
systems of wave equations with divergence-free inhomogeneties.

In order to prove Theorem 1, we rely on a basic proposition that follows from the
work of Bourgain and Brezis [2, 3].

Proposition 3 If !.�; t/ 2 PW1;1.R2/ at a time t, then one can define a vector-valued
function v.�; t/ via the Biot–Savart relation (2) at this time t, in which case we will
have

kv.�; t/kL1.R2/ C krv.�; t/kL2.R2/ � Ckr!.�; t/kL1.R2/
at this time t. Here C is a constant independent of t and !.

Proof of Proposition 3 For simplicity, let’s fix the time t, and drop the dependence
of ! and v on t in the notation. Note that .�@x2!; @x1!/ is a vector field in R

2

with vanishing divergence. The desired conclusion then follows from (2) and the
two-dimensional result of Bourgain and Brezis [3] (see also [11], [5] and [7]).

Since the proof of the two-dimensional result of Bourgain and Brezis [3] is
actually quite simple, we adapt it here in our particular setting, for the convenience
of the reader.

The main point here is that if ! 2 C1
c .R

2/, then v D .v1; v2/ WD
.��/�1.@x2!;�@x1!/ satisfies

v1.x/ WD 1

2�

ˆ
R2

@2!.x � y/ log
1

jyjdy D 1

2�

ˆ
R2

!.x � y/
�y2
jyj2 dy

so

jv1.x/j � 1

2�

ˆ
R2

j!.x � y/j 1jyjdy � ckr!.x � �/kL1.R2/

the last inequality following from an application of Hardy’s inequality (alternatively,
one can see that the last inequality holds, by writing 1

jyj as r � y
jyj , and by integrating

by parts). This shows

kv1kL1.R2/ � ckr!kL1.R2/:

Similarly one shows kv2kL1.R2/ � ckr!kL1.R2/; so

kvkL1.R2/ � ckr!kL1.R2/:

Finally,

krvkL2.R2/ � kr2.��/�1!kL2.R2/ � k!kL2.R2/ � ckr!kL1.R2/;
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the last inequality following from the Gagliardo–Nirenberg inequality. The above
proves the desired conclusion of the proposition under the extra assumption that
! 2 C1

c .R
2/. Since such functions are dense in PW1;1.R2/, a standard approximation

argument shows that these estimates extend to the general case when ! 2 PW1;1.R2/.
Hence the full proposition follows. ut
Proof of Theorem 1 In the sequel by a scaling we may assume without loss of
generality that the viscosity coefficient � D 1.

Let Kt be the heat kernel on R
2, i.e.

Kt.x/ D 1

4�t
e� jxj2

4t :

Rewriting (3) as an integral equation for ! using Duhamel’s theorem, where !0 is
the initial vorticity, we have,

!.x; t/ D Kt ? !0.x/C
ˆ t

0

@xKt�s ? Œv!.x; s/�ds (7)

where v is given by (2).
We apply a Banach fixed point argument to the operator T given by

T!.x; t/ D Kt ? !0.x/C
ˆ t

0

@xKt�s ? Œv!.x; s/�ds; (8)

where again v is given by (2). Let us set

E D
n
g W R2 � Œ0; t0� ! R j sup

0<t<t0

krg.x; t/kL1.R2/ � A
o
:

We will first show that T maps E into itself, for t0 chosen as in the theorem.
Differentiating (8) in the space variable once, we get

.T!.x; t//x D Kt ? .!0/x C
ˆ t

0

@xKt�s ?
�
vx!

�
ds C

ˆ t

0

@xKt�s ?
�
v!x

�
ds:

By Young’s convolution inequality, we have

k.T!.�; t//xkL1.R2/ � k.!0/xkL1.R2/CC
ˆ t

0

.t�s/�1=2.kvx!kL1.R2/Ckv!xkL1.R2//ds:

Now we apply Proposition 3 to each of the terms in the integral on the right
hand side. For the first term we have, by Cauchy-Schwarz followed by Gagliardo–
Nirenberg, that

kvx!kL1.R2/ � CkrvkL2.R2/k!kL2.R2/ � CkrvkL2.R2/k!xkL1.R2/:
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We control krvkL2.R2/ with Proposition 3: this gives

kvx!kL1.R2/ � Ck!xk2L1.R2/:

Similarly, by Proposition 3, for the second term, we have

kv!xkL1.R2/ � kvkL1.R2/k!xkL1.R2/ � Ck!xk2L1.R2/:

Altogether, we have,

k.T!/xkL1.R2/ � kr!0kL1.R2/ C C
ˆ t

0

.t � s/�1=2kr!k2L1.R2/ds:

Thus if kr!0kL1.R2/ � A0, then since ! 2 E, we have

sup
0�t�t0

kr.T!/.x; t/kL1.R2/ � A0 C Ct1=20 A2:

By choosing A so that A0 D A=2 and t0 D 1=.2CA/2, we see that if ! 2 E, then

sup
0�t�t0

krx.T!/.x; t/kL1.R2/ � A;

i.e. T! 2 E. It remains to show that T is a contraction on E.
For this let !1.x; t/, !2.x; t/ 2 E. We just need to observe that from Proposition 3,

we get

kv1 � v2k1 C krv1 � rv2k2 � Ckr.!1 � !2/kL1.R2/:

Thus repeating our earlier computations, we see that

sup
0�t�t0

kr.T!1 � T!2/kL1.R2/ � Ct1=20 A sup
0�t�t0

kr.!1 � !2/kL1.R2/:

By the choice of t0, it is seen that T is a contraction. Thus using the Banach fixed
point theorem on E, we obtain our operator T has a fixed point and so the integral
equation (7) has a unique solution in E. The continuous dependence on initial data
can be proved in an identical way, and we will not repeat the details here. ut
Proof of Theorem 2 Let !0 2 PW1;1.R2/, and !.x; t/ be the unique solution to (7)
given above. Let v.x; t/ be defined by the Biot–Savart relation (2) as in Proposition 3.
If !.i/0 is a sequence of functions in C1

c .R
2/ converging to !0 in PW1;1.R2/, then the

corresponding solution !.i/.x; t/ to the vorticity equation (3) converges to !.x; t/
in L1.Œ0; t0/; PW1;1.R2//. Thus the velocities v.i/ WD .��/�1.�@x2!.i/; @x1!.i//
converges in L1.Œ0; t0/IL1.R2// to v. But since !.i/0 2 C1

c .R
2/, which are

in particular in the inhomogeneous Sobolev space W1;1.R2/, so we may apply
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Theorem II of Kato [9] as in [6], and conclude that the v.i/ defined above solves
the Navier–Stokes equation (1), at least in the distributional sense. We can now pass
to limit as i ! 1, using the convergence of v.i/ to v in L1.Œ0; t0/;L1.R2// we
obtained above, and appealing to the dominated convergence theorem: this shows
that v.x; t/ is also a distributional solution to (1) up to time t0, in the sense that

( ´ t0
0

´
R2
Œv � @tˆC v ��ˆC v � .v � r/ˆ� dxdt D � ´

R2
v.x; 0/ �ˆ.x; 0/dx´ t0

0

´
R2

v � r dxdt D 0

holds for any  2 C1
c .R

2 � Œ0; t0/;R/, and any ˆ 2 C1
c .R

2 � Œ0; t0/;R2/
that satisfies r � ˆ D 0 for all t 2 Œ0; t0/. The estimate (5) then follows from
Propositions 3 and (4). Lastly we observe that the estimate (6) follows, from the
fact that the pressure p.x; t/ satisfies the equation

��p D r � ..v � r/v/;

which is a consequence of taking the divergence of the Navier–Stokes equation. ut
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