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The wave equations

◮ Joint work with Sagun Chanillo

◮ Wave Constant Mean Curvature (CMC) equation on R
2

u : R× R
2 → R

3

−∂2
t u +∆u = 2ux ∧ uy

(system of equations)

◮ Wave Liouville equation on S
2

u : R× S
2 → R

∂2
t u −∆gu = α

(

e2u
ffl

S2
e2u

− 1

)

(α is a real parameter, g standard metric on S
2)



The elliptic analogs

◮ (Case |ux | = |uy | = 1, ux · uy = 0)
Constant Mean Curvature (CMC) equation on R

2:

∆u = 2ux ∧ uy

The image of any such u is a surface with mean curvature
H ≡ 1 in R

3

◮ (Case α = 1,
ffl

S2
e2u = 1) Liouville equation on S

2:

−∆gu = e2u − 1

If u is as such, then e2ug is another metric on S
2, conformal

to g , that has Gaussian curvature equal to 1 everywhere, and
that has area equal to 4π.



The CMC equation

◮ The static equation:

∆u = 2ux ∧ uy

◮ Energy (Ḣ1) critical: if u is a solution, then a dilation of u
preserving its Ḣ1 norm is also a solution.

◮ (Entire) Ḣ1(R2) solutions classified by Brezis-Coron: All are
of the form

u(z) = π

(

P(z)

Q(z)

)

+ C

where P , Q are polynomials in z and π : C → S
2 ⊆ R

3 is the
stereographic projection, and C is a constant vector in R

3.

◮ For such u,

‖∇u‖2L2 = 8πmax{deg P , deg Q};

kinetic energy quantized.



◮ Now let W (z) be a ground state solution to the static CMC
equation; in other words, W (z) is a non-constant solution of
the form

W (z) = π

(

P(z)

Q(z)

)

+ C

where max{deg P , deg Q} = 1 and ‖∇W ‖2
L2

= 8π.

◮ Sobolev inequality: for all functions v ∈ Ḣ1(R2) taking values
in R

3, we have

∣

∣

∣

∣

ˆ

R2

v · (vx ∧ vy )dxdy

∣

∣

∣

∣

1/3

≤ C‖∇v‖L2 .

(Compensation compactness/Wente’s inequality)

◮ Brezis-Coron (also Caldiroli-Musina): The W we have above
are minimizers of this inequality.

◮ W is also a stationary solution to the wave CMC with initial
data u(0) = W and ∂tu(0) = 0.



The wave CMC equation

◮ The wave CMC equation again:

−∂2
t u +∆u = 2ux ∧ uy

◮ Conserved energy (for ‘nice’ solutions):

E (u(t)) :=

ˆ

R2

1

2
(|∂tu|

2 + |∇u|2) +
2

3
u · (ux ∧ uy)dxdy

is preserved along the flow of wave CMC (hence depends only
on initial data). Sometimes we write

E (u0, u1) :=

ˆ

R2

1

2
(|u1|

2 + |∇u0|
2)+

2

3
u0 · ((u0)x ∧ (u0)y )dxdy

◮ The non-linearity of previous Sobolev inequality arises in this
conserved energy.



Theorem (Failure of global existence)

Suppose u : [0,T )× R
2 → R

3 is a smooth solution to wave CMC
with initial data u(0) = u0, ut(0) = u1, and that u has compact
support at each time slice t. Suppose also that

E (u0, u1) < E (W , 0) and ‖∇u0‖L2 > ‖∇W ‖L2 .

Then T is finite; in fact ‖u(t)‖L2(R2) cannot remain finite for an
infinite amount of time.

◮ Analog of the finite time breakdown result of Kenig-Merle for
the energy critical semi-linear focusing wave equation

∂2
t u −∆u = |u|4/(N−2)u on R×R

N , N ≥ 3.



Proof of Theorem

◮ For the moment u will be a map from R
2 into R

3 independent
of time.

◮ Stationary energy:

E(u) :=

ˆ

R2

1

2
|∇u|2 +

2

3
u · (ux ∧ uy).

◮ Recall the Sobolev inequality for such u:
∣

∣

∣

∣

ˆ

R2

u · (ux ∧ uy )

∣

∣

∣

∣

≤ C‖∇u‖3L2 .

◮ Let C be the best constant of this inequality and

f (λ) =
1

2
λ2 −

2

3
Cλ3 for λ > 0.

Then for all u as above, by this Sobolev inequality,

f (‖∇u‖L2) ≤ E(u).



◮ Graph of f :

E(W )

‖∇W ‖L2
λ

f (λ)

◮ Any point of the form (‖∇u‖L2 , E(u)) always lie above the
graph of f .



◮ Now recall the conditions of our theorem: Suppose
u : [0,T ) × R

2 → R
3 is a smooth solution to wave CMC with

initial data u0, u1. Suppose also that

E (u0, u1) < E (W , 0) and ‖∇u0‖L2 > ‖∇W ‖L2 .

◮ Then by conservation of energy,

E(u(t)) < E(W ) for all t ∈ [0,T ).

◮ By continuity in t and the above picture, we have the
following observation:

‖∇u(t, x)‖L2(dx) > ‖∇W ‖L2(dx)

for all t ∈ [0,T ).

◮ We want to prove that T must be finite.



◮ Let
y(t) = ‖u(t, x)‖2L2(dx)

for t ∈ [0,T ). Then

y ′(t) =

ˆ

R2

2u · ut

and

y ′′(t) =

ˆ

R2

2|ut |
2 − 2|∇u|2 − 4u · (ux ∧ uy ).

◮ Suppose now E (u0, u1) ≤ E (W , 0)− ε for some ε > 0. By
conservation of energy, we have at any time t ∈ [0,T ),

ˆ

R2

−4u · (ux ∧ uy ) ≥

ˆ

R2

3(|ut |
2 + |∇u|2)− 6E (W , 0) + 6ε.



◮ With a little more work, this implies

y ′′(t) ≥

ˆ

R2

(5|ut |
2 + |∇u|2 − |∇W |2)dx + 6ε

(just use ∆W = 2Wx ∧Wy).

◮ But we observed that at any time t ∈ [0,T ),

‖∇u(t, x)‖L2(dx) > ‖∇W ‖L2(dx).

◮ Hence
y ′′(t) ≥ 5‖ut(t, x)‖

2
L2(dx) + 6ε,

which implies
y ′′(t)

y ′(t)
≥

5

4

y ′(t)

y(t)

for sufficiently large t.

◮ Solving the equation, y(t) becomes infinite in finite time, and
therefore T cannot be infinite.



Local well-posedness of the wave CMC in low regularities

◮ Consider an initial value problem for the wave CMC:

−∂2
t u +∆u = 2ux ∧ uy , u(0) = u0, ∂tu(0) = u1.

Given initial data u0 ∈ Hs , u1 ∈ Hs−1, does this initial value
problem admits a unique solution in C 0

t H
s
x ∩ C 1

t H
s−1
x ?

◮ When s > 2 the answer is yes by standard iteration and
Sobolev inequalities. We are interested going below s > 2.

◮ Difficulty: non-linearity contains first order derivatives, and
that we are in low (2+1) dimensions

◮ Fortunately, the non-linearity has a certain null structure.

◮ Best hope: since the wave CMC is energy critical, we hope to
go as low as s = 1.

◮ c.f. well-posedness of wave maps in 2 + 1 dimensions in Hs ;
there one can actually go as low as s = 1.



Null structures

◮ Given two functions u and v on the Minkowski space R
1,n,

define the null forms

Q00(u, v) = −∂t u∂tv +∇xu · ∇xv

Qij(u, v) = ∂xiu ∂xjv − ∂xju ∂xiv

Q0i (u, v) = ∂tu ∂xiv − ∂xiu ∂tv

Here i , j ranges over 1, . . . , n.

◮ Q00 arises in the nonlinearity of the wave map equation, while
Qij arises in the nonlinearity of the wave CMC.

◮ The null forms are better nonlinearities than things like
∂tu ∂tv . They ‘damp’ the interactions of the waves along the
light cone, which are usually the hardest to control.



The wave Sobolev spaces

◮ To proceed further, we need some Sobolev spaces adapted to
the study of wave equations.

◮ A function u(t, x) is said to be in Hs,b , if

ˆ

R1+2

(1 + |ξ|2)s(1 + ||τ | − |ξ||2)b|ũ(τ, ξ)|2dτdξ < ∞.

Here ũ(τ, ξ) is the space-time Fourier transform of u(t, x).

◮ We say u ∈ Hs,b, if u ∈ Hs,b and ∂tu ∈ Hs−1,b .

◮ Note that these are L2 Sobolev spaces; s and b refer to
differentiability in two different directions.



The iteration scheme

◮ To solve the initial value problem for the wave CMC, we fix
initial data u0 and u1. Given a function u(t, x), let S(u) be
the solution of the following linear initial value problem:

−∂2
t v +∆v = 2ux ∧ uy , v(0) = u0, ∂tv(0) = u1.

◮ We want to show that S has a fixed point, so we want S to
be a contraction mapping in some suitable function space.

◮ When the initial data has low regularity, say are in Hs ×Hs−1,
the correct space to use is Hs,b, for some b slightly > 1/2.

◮ In fact, need the localization of Hs,b to the time interval
[0,T ], which we denote Hs,b

T .



Energy estimates

◮ Reason for using Hs,b: There is the following energy estimate
(when b > 1/2; here � = ∂2

t v −∆):

‖v‖
Hs,b

T

. ‖v(0)‖Hs + ‖∂tv(0)‖Hs−1 + ‖�v‖Hs−1,b−1 .

◮ When applied to v = S(u), we get

‖S(u)‖
Hs,b

T

. ‖u0‖Hs+‖u1‖Hs−1+‖2ux∧uy‖Hs−1,b−1 , b > 1/2.

◮ Good news: if ux ∧ uy here were the null form Q00(u, u), then
we can finish this off by estimating

‖Q00(u, u)‖Hs−1,b−1 . T ε/2‖u‖
Hs,b

T

for some small ε > 0 (when b is only slightly > 1/2). If T
were sufficiently small, then S is a contraction map.

◮ Bad news: ux ∧ uy is NOT Q00(u, u); it is the null form Qij

instead, which behaves worse than Q00 in 2+1 dimensions.



◮ At this point, it is instructive to compare the energy estimate
in Hs,b (b > 1/2):

‖v‖Hs,b . ‖v(0)‖Hs + ‖∂tv(0)‖Hs−1 + ‖�v‖Hs−1,b−1

to the energy estimate in C 0
t H

s
x ∩ C 1

t H
s−1
x :

‖v‖
C0
t H

s
x∩C

1
t H

s−1
x

. ‖v(0)‖Hs + ‖∂tv(0)‖Hs−1 + ‖�v‖
L1tH

s−1
x

.

◮ The latter is a gain in integrability in t: it says that to control
v in L∞t , one only needs to control �v in L1t . But one needs
the same number of t derivatives of v on both sides.

◮ The former is better because one gains differentiability in b
there: to control b derivatives of v , one only needs to control
b − 1 derivatives of �v .

◮ When the equation says that �v is already one derivative of
v , gain in differentiability is certainly better than gain in
integrability.



Open question

◮ It is still open whether the wave CMC is locally well-posed in
Hs for any s ≤ 2.

◮ Because of our specific null structures (Qij instead of Q00),
some additional difficulties may occur below s > 5/4
(contrary to wave maps)

◮ One may also need to iterate only in a subspace of Hs,b, as in
the case of Maxwell-Klein-Gordon, or Yang-Mills, equations.



The wave Liouville equation

◮ The equation again:

u : R× S
2 → R

∂2
t u −∆gu = α

(

e2u
ffl

S2
e2u

− 1

)

(α is a real parameter, and we use standard metric g on S
2)

Theorem (local well-posedness in Ḣ
1)

Suppose α ∈ R. For any u0 ∈ Ḣ1(S2) and u1 ∈ L2(S2) with
´

S2
u1 = 0, there exists u in C 0

t Ḣ
1
x ∩ C 1

t L
2
x that solves the wave

Liouville with initial data u(0) = u0, ∂tu(0) = u1.

(Proof by standard iteration; omitted)



◮ The facts that
ffl

S2
u1 = 0 and

ffl

S2

(

e2u
ffl

S2 e
2u − 1

)

= 0 are useful

in iterating using the Duhamel formula:

u(t, x) = cos(t
√

−∆g )u0 +
sin(t

√

−∆g )
√

−∆g

u1

+

ˆ t

0

sin((t − s)
√

−∆g )
√

−∆g

(

e2u
ffl

S2
e2u

− 1

)

(s)ds.

◮ The solution in this theorem is guaranteed to exist for time
T > 0 with T depending only on α, ‖u0‖Ḣ1 and ‖u1‖L2 .

◮ Furthermore,
ˆ

S2

u(t) =

ˆ

S2

u0

for all t ∈ [0,T ].



◮ Conservation of energy:

E (u(t)) =

 

S2

(

|∂tu|
2 + |∇u|2

)

− αlog

(
 

S2

e2(u−ū)

)

conserved along the flow, where ū =
ffl

S2
u. Using this and the

Moser-Trudinger inequality, one can prove:

Theorem (global well-posedness in Ḣ
1 when α < 1)

The solution u(t, x) in the previous theorem exists for all time if
α < 1.



◮ Recall Moser-Trudinger on S
2: if u is a function on S

2

satisfying
´

S2
|∇u|2 ≤ 1, then

 

S2

e4π(u−ū)2 ≤ C .

◮ This inequality is sharp in that one cannot replace 4π in the
exponent by anything that is strictly bigger. Note that this
inequality can also be stated as

 

S2

exp

(

(u − ū)2
ffl

S2
|∇u|2

)

≤ C ,

if
ffl

S2
|∇u|2 < ∞.



◮ What we will usually use is the following corollary of the
above inequality, namely

 

S2

e2(u−ū) ≤ C exp

(
 

S2

|∇u|2
)

,

which holds because pointwise 2(u− ū) ≤ (u−ū)2
ffl

S2 |∇u|2
+
ffl

S2
|∇u|2.

Equivalently, the above inequality can be stated

log

(
 

S2

e2(u−ū)

)

≤ 1 ·

 

S2

|∇u|2 + logC .

Note that the left-hand side above arises in the conserved
energy.

◮ Onofri: C can be taken to be zero here. But we will not need
this refinement.



◮ Using Moser-Trudinger and conservation of energy:

E (u(t)) =

 

S2

(

|∂tu|
2 + |∇u|2

)

− αlog

(
 

S2

e2(u−ū)

)

one can then control, as long as the solution exists, the
quantity

‖∂tu(t)‖L2(S2) + ‖∇u(t)‖L2(S2)

uniformly in t when α is small, and this will prove global
well-posedness when α < 1.



◮ Moser also proved the following refinement of
Moser-Trudinger: if u is an even function on S

2 satisfying
´

S2
|∇u|2 ≤ 1, then

 

S2

e8π(u−ū)2 ≤ C .

It follows that for such functions,

log

(
 

S2

e2(u−ū)

)

≤
1

2

 

S2

|∇u|2 + logC .

◮ Using this (and conservation of energy), one can prove

Theorem (global well-posedness in Ḣ
1 for even data when

α < 2)

If both initial data u0 and u1 are even functions on S
2, then the

solution u(t, x) of the wave Liouville exists for all time if α < 2.



◮ We also mention the analogous results for wave Liouville
systems:

∂2
t ui−∆gui =

N
∑

j=1

aijMj

(

e2uj
ffl

S2
e2uj

− 1

)

, i = 1, . . . ,N on S
2.

Here (aij) is a (constant) N by N symmetric matrix, and (Mj)
is a vector.

◮ Key is a Moser-Trudinger inequality for systems: c.f. work of
Shafrir-Wolansky, Wang, Chanillo-Kiessling.



Blow-up for (scalar) wave Liouville when 1 ≤ α < 2

◮ If u is a function defined on S
2, define

CM(u) =

´

S2
xe2u

´

S2
e2u

,

where x is the position vector in R
3 (This is the center of

mass of the measure e2udvolg ).

◮ Thus CM(u) ∈ R
3; in fact |CM(u)| ≤ 1.

◮ Aubin proved the following improved Moser-Trudinger
inequality on S

2 (see also Chang-Yang and Han): if
|CM(u)| ≤ 1− δ for some δ > 0, then for any µ > 1/2, there
exists a constant C = C (µ, δ) such that

log

(
 

S2

e2(u−ū)

)

≤ µ

 

S2

|∇u|2 + logC .

◮ One should compare this with the improved Moser-Trudinger
inequality for even functions, since when u is even,
CM(u) = 0.



We have the following blow-up criteria.

Theorem (Blow up criteria for scalar wave Liouville)

Let 1 ≤ α < 2. Suppose a local in time solution u to wave
Liouville exists on a time interval [0,T0) for some T0 < ∞, and
fails to continue beyond T0. Then there is a sequence of times
ti → T−

0 such that

lim
i→∞

|CM(u, ti )| = 1, lim
i→∞

ˆ

S2

e2u(ti ) = ∞,

and
lim
i→∞

‖∇u(ti )‖L2 = ∞,

where CM(u, t) is the center of mass of u(t). Furthermore, if
α = 1, then there is some point p ∈ S

2 such that for any ε > 0,

lim
i→∞

´

B(p,ε) e
2u(ti )

´

S2
e2u(ti )

≥ 1− ε.

Here B(p, ε) = geodesic ball on S
2 centered at p and of radius ε.



Proof of Blow-up criteria

◮ The fact that one can take ti → T− such that

lim
i→∞

|CM(u, ti )| = 1

follows from Aubin’s improvement of Moser-Trudinger when
the center of mass stays away from the unit sphere; if
lim supt→T− |CM(u, t)| < 1 then one can continue the
solution past T .



◮ The fact that one can take ti → T− such that

lim
i→∞

ˆ

S2

e2u(ti ) = ∞

follows from conservation of energy:

lim sup
t→T−

(

‖∂tu‖
2
L2 + ‖∇u‖2L2

)

.E (u0, u1) + α log

(

lim sup
t→T−

 

S2

e2u(t)
)

+ 2α|ū(0)|

If lim supt→T−

´

S2
e2u(t) < ∞ then one can continue the

solution past T .



◮ Since

lim
i→∞

ˆ

S2

e2u(ti ) = ∞,

it follows from Moser-Trudinger that

lim
i→∞

‖∇u(ti )‖L2 = ∞.



◮ The last part of the theorem follows from the following
concentration lemma of Chang-Yang:

Lemma (Chang-Yang)

Suppose vi ∈ Ḣ1(S2) is a sequence of functions with
ffl

S2
e2vi = 1

and supi
ffl

S2
(|∇vi |

2 + 2vi ) = C < ∞. We have either

sup
i

 

S2

|∇vi |
2 = C ′ < ∞,

or there exists a point p ∈ S
2 and a subsequence of vi (which we

still denote by vi ) such that for any ε > 0, we have

lim
i→∞

1

4π

ˆ

B(p,ε)
e2vi ≥ 1− ε.

Here B(p, ε) is the geodesic ball on S
2 centered at p and of radius

ε.



◮ Remember what we want to prove: let α = 1 and u solve the
wave Liouville on [0,T ) that does not extend past T . Then
there is some point p ∈ S

2 such that for any ε > 0,

lim
i→∞

´

B(p,ε) e
2u(ti )

´

S2
e2u(ti )

≥ 1− ε.

◮ To do so, let mi =
ffl

S2
e2u(ti ) and vi (x) = u(ti , x)−

1
2 logmi .

One can apply Chang-Yang lemma on these vi : it is easy to
check that

ffl

S2
e2vi = 1, and

sup
i

 

S2

(|∇vi |
2 + 2vi ) =

 

S2

|∇u(ti , x)|
2 − log

(
 

S2

e2(u(ti )−ū(ti ))

)

= E (u(ti ))−

 

S2

|∂tu(ti )|
2 since α = 1

≤ E (u(0))

independent of i .



◮ Hence we have two scenarios: Either
 

S2

|∇vi |
2 = C ′ < ∞,

or there exists a point p ∈ S
2 and a subsequence of vi (which

we still denote by vi ) such that for any ε > 0, we have

lim
i→∞

1

4π

ˆ

B(p,ε)
e2vi ≥ 1− ε.

The first alternative cannot happen since

‖∇vi‖L2 = ‖∇u(ti)‖L2 → ∞ as i → ∞

by the third part of the blow-up criteria. Hence the second
alternative holds, and this is the conclusion of the theorem.



Constructing finite time blow-ups for wave Liouville

◮ Does one have global existence for the scalar wave Liouville in
the critical case α = 1? If not, can one exhibit a finite time
blow up of the equation?

◮ Problem: when α = 1, there is no initial data of negative
energy, thanks to Onofri. So one cannot easily construct
blow-up as we have done before.

◮ One could try an ODE blow-up, but it didn’t work either.



◮ Let’s borrow some analogy from the study of the energy
critical focussing semilinear wave equation in 3 + 1 dimensions
(c.f. Duyckaerts-Kenig-Merle, 2011, 2012): the equation is

∂2
t u −∆u = u5 on R× R

3.

◮ Two kinds of blow-up: (Let T be the blow-up time)

Type I: sup
t∈[0,T )

‖∇u(t)‖L2x + ‖∂tu(t)‖L2x = ∞

Type II: otherwise

◮ Krieger-Schlag-Tataru constructed a type II blow up with

sup
t∈[0,T )

‖∇u(t)‖L2 < ‖∇W ‖L2 + ε

where W is the groundstate for this equation.

◮ Duyckaerts-Kenig-Merle showed a profile decomposition for
type II radial blow-ups



◮ We would be happy to see even just a type I blow-up for the
wave Liouville when α = 1.

◮ Question: understand ‖∇u‖L2 when the Onofri energy of u,
namely

E(u) :=

 

S2

|∇u|2 − log

(
 

S2

e2(u−ū)

)

,

is controlled.


