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Abstract. We describe the analytic continuation of the heat kernel on the Heisenberg
group Hn(R). As a consequence, we show that the convolution kernel corresponding
to the Schrödinger operator eisL is a smooth function on Hn(R) \ Ss, where Ss =
{(0, 0,±sk) ∈ Hn(R) : k = n, n + 2, n + 4, . . . }. At every point of Ss the convolution
kernel of eisL has a singularity of Calderón–Zygmund type.

Let Hn(R) denote the (2n+1)-dimensional real Heisenberg group, that is, Rn×Rn×R
with the group law

(x, y, t)(x′, y′, t′) =
(
x + x′, y + y′, t + t′ − 1

2
Im

n∑
r=1

(xr + iyr)(x
′
r − iy′r)

)
for all x, x′, y, y′ in Rn and t and t′ in R. For s in R, we define the set Ss by

Ss = {(0, 0,±sk) ∈ Hn(R) : k = n, n + 2, n + 4, . . . }.
We define Hn(C) like Hn(R). For (x, y, t) ∈ Hn(C), we write x2 for

∑n
r=1 x2

r, and A and
B for it− (x2 + y2)/4 and −(x2 + y2)/2 respectively.

The vector fields Xr, Yr (where r = 1, . . . , n) and T , given by

Xr =
∂

∂xr

− yr

2

∂

∂t
, Yr =

∂

∂yr

+
xr

2

∂

∂t
and T =

∂

∂t
,

form a basis for the Lie algebra of left-invariant vector fields on Hn(R). The Heisenberg
Laplacian L is defined by

L = −
n∑

r=1

X2
r + Y 2

r .

The subelliptic operator L admits a spectral resolution

L =

∫ ∞

0

λ dE(λ) ,

and therefore when Re s ≥ 0, one can define the operator e−sL, bounded on L2(Hn(R)),
by the spectral theorem:

e−sL =

∫ ∞

0

e−sλ dE(λ) .

Let ps be the convolution kernel of the operator e−sL (see [5, (1.10), (1.11)]). When
s > 0, e−sL is the solution operator for the Heisenberg heat equation ∂su = −Lu and ps

is called the heat kernel (see [6, (7.30), p. 71].
The goal of this note is to study the analytic continuation of the heat kernel ps. This

is interesting from the point of view of the theory of analytic hypoellipticity (see [1, 2]).
Another reason to study the analytic continuation of ps is to investigate the operator Lα,
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equal to L + iαT , where α ∈ C (see Remark 2 below and [6, (7.53) p. 73] (see also [3] for
a detailed study of the operators Lα and an explanation of the significance of Lα).

However, we are also motivated by the possibility of explicitly computing the kernel
of the Schrödinger propagator eisL, where s ∈ R, using the analytic continuation of the
heat kernel. Indeed, eisL is the solution operator for the Schrödinger equation

(1) ∂su(x, y, t, s) = iLu(x, y, t, s).

In [5, p. 392–394], Strichartz noticed that “In principle we could attempt to solve (1) by
analytic continuation from the solution of the heat equation”. However, he abandoned
this idea as “this analytic continuation is delicate, so we approach the problem directly”.
Strichartz proved that, when s ∈ R, the convolution kernel of the Schrödinger operator
pis is a smooth function on the open set {(x, y, t) ∈ Hn(R) : |t| < n|s|}.

In this note we propose a simple computation which allows us to handle the analytic
continuation of the heat kernel in a straightforward manner. Then, using the analytic
continuation of the heat kernel we show that pis is smooth on Hn(R) \ Ss when s ∈ R,
and at points in Ss, the kernel pis has singularities of Calderón–Zygmund type. This is
in contrast to the Euclidean case where, for the standard Laplace operator ∆, the kernel
of the operator eis∆ is bounded and smooth. In this context it is interesting to note
that the convolution kernel of the operator eis(L−T 2) is smooth. The smoothness of the
convolution kernel of the operator eis(L−T 2) is the last result proved in this note.

A comprehensive discussion of harmonic analysis on the Heisenberg group can be found
in [5] or [6, Chapter 1].

The following theorem is the main result of this note.

Theorem 1. The function p1 extends to an analytic function on Hn(C) \ S, where S =

{(x, y, t) ∈ Hn(C) : ±it− n− x2+y2

4
∈ 2N}. For all (x, y, t) ∈ Hn(C) \ S,

p1(x, y, t) =
1

2(4π)n+1
(P (x, y, t) + P (x, y,−t)),

where

(2) P (x, y, t) = 2nn!
∞∑

h=0

∞∑
j=0

(
n + j + h− 1

h

)(
n + j

j

)
Bj

(n + 2(j + h)− A)n+j+1 .

The sum (2) is absolutely uniformly convergent on compact subsets of Hn(C) \ S. More-
over,

(3) ps(x, y, t) =
1

sn+1
p1(

x√
s
,

y√
s
,
t

s
)

for all s such that Re s ≥ 0.
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Proof. By virtue of the well known formula for the heat kernel on the Heisenberg group
(see [6, (7.36), p. 71], or [5, (5.20)])

2p1(x, y, t) =
2

(4π)n+1

∫ ∞

0

λn cos tλ

(sinh λ)n
exp

(−λ(x2 + y2) coth λ

4

)
dλ

=
1

(4π)n+1

∫ ∞

0

λneitλ

(sinh λ)n
exp

(−λ(x2 + y2) coth λ

4

)
dλ

+
1

(4π)n+1

∫ ∞

0

λne−itλ

(sinh λ)n
exp

(−λ(x2 + y2) coth λ

4

)
dλ

=
1

(4π)n+1
(P (x, y, t) + P (x, y,−t)),

say. We note that, if λ > 0 and m ∈ N, then

(eλ − e−λ)−m =
∞∑

k=0

(
m + k − 1

k

)
e−(2k+m)λ,

where
(

k−1
k

)
= 1 if k = 0 and

(
k−1

k

)
= 0 otherwise. Now

2−nP (x, y, t)

(4)

=

∫ ∞

0

∞∑
k=0

(
n + k − 1

k

)
λneitλe−(2k+n)λ exp

(λB coth λ

2

)
dλ

=

∫ ∞

0

∞∑
k=0

(
n + k − 1

k

)
λn exp

(
λ(A− 2k − n)

)
exp

(λB(coth λ− 1)

2

)
dλ

=

∫ ∞

0

∞∑
k=0

∞∑
j=0

(
n + k − 1

k

)
λn exp

(
λ(A− 2k − n)

)(λB(coth λ− 1))j

2jj!
dλ

=

∫ ∞

0

∞∑
k=0

∞∑
j=0

(
n + k − 1

k

)
λn exp

(
λ(A− 2k − j − n)

) (λB)j

j!(eλ − e−λ)j
dλ

=

∫ ∞

0

∞∑
k=0

∞∑
j=0

∞∑
l=0

(
n + k − 1

k

)(
j + l − 1

l

)
λn+j exp

(
λ(A− n− 2(k + j + l))

)Bj

j!
dλ

= n!
∞∑

k=0

∞∑
j=0

∞∑
l=0

(
n + k − 1

k

)(
j + l − 1

l

)(
n + j

j

)
Bj

(n + 2(k + j + l)− A)n+j+1 .

Note that, for any compact subset K of Hn(C) \ S, the sum in the last line of (4) is
absolutely uniformly convergent on K and that for all (x, y, t) ∈ Hn(R) all expressions in
the formula (4) are absolutely convergent. Indeed, there exists a constant CK such that

|(n + 2(k + j + l)− A)−n−j−1| ≤ CK(k + j + l + 1)−n−j−1 ∀(x, y, t) ∈ K.

Next, (
n + k − 1

k

)
≤ Cnk

n−1 and

(
j + l − 1

l

)
≤ (j + k + l + 1)j−1/j!.
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Hence
∞∑

k=0

∞∑
j=0

∞∑
l=0

(
n + k − 1

k

)(
j + l − 1

l

)(
n + j

j

)∣∣∣∣∣ Bj

(n + 2(k + j + l)− A)n+j+1

∣∣∣∣
≤ CnCn+1CK

∞∑
k=0

∞∑
j=0

∞∑
l=0

kn−1jn|B|j

j!(k + j + l + 1)n+2

≤ C ′
nCK

∞∑
k=0

∞∑
j=0

kn−1jn|B|j

j!(k + j + 1)n+1

≤ C ′
nCK

∞∑
k=0

∞∑
j=0

|B|jjn

j!(k + j + 1)2

≤ C ′′
nCK

∞∑
j=0

|B|jjn

(j + 1)!

≤ CK,n .

Now we note that, for any (x, y, t) ∈ Hn(R),

|(n + 2(k + j + l)− A)| ≥ (n + 2(k + j + l)− B

2
) ,

and supλ∈R+
λ(coth λ− 1) = 1, so

n!
∞∑

k=0

∞∑
j=0

∞∑
l=0

(
n + k − 1

k

)(
j + l − 1

l

)(
n + j

j

)∣∣∣∣ Bj

(n + 2(k + j + l)− A)n+j+1

∣∣∣∣
≤ n!

∞∑
k=0

∞∑
j=0

∞∑
l=0

(
n + k − 1

k

)(
j + l − 1

l

)(
n + j

j

)
(−B)j

(n + 2(k + j + l)−B/2)n+j+1

=

∫ ∞

0

∞∑
k=0

(
n + k − 1

k

)
λn exp

(
−λ(2k + n−B/2)

)
exp

(−λB(coth λ− 1)

2

)
dλ

≤ 2n

∫ ∞

0

λn

(sinh λ)n
exp

(B(λ− 1)

2

)
dλ.

The Lebesgue monotone convergence theorem proves the absolute convergence for all
(x, y, t) ∈ Hn(R).

We obtain (2) by virtue of the identity∑
k≥0
l≥0

k+l=h

(
n + k − 1

k

)(
m + l − 1

l

)
=

(
n + m + h− 1

h

)

and (4). To conclude the proof of (3) we note that L is a homogeneous operator so (3)
holds when s > 0 (see [6, Proposition 7.3, p. 71]) and both sides of (3) are analytic as a
function of s when Re s > 0. �

Corollary 2. When s ∈ R, the convolution kernel of the Schrödinger operator pis is
smooth on Hn(R) \ Ss, where Ss = {(0, 0,±sk) ∈ Hn(R) : k = n, n + 2, n + 4, . . . }. At
every point of Ss, the kernel pis has a singularity of Calderón–Zygmund type.

Proof. Corollary 2 is a straightforward consequence of (3), and (4) or (2). �
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Remark 1. There is an alternative proof of Theorem 1. One can use the formula [5,
(2.28)] to prove that P (x, y, t) is equal to

2n

∞∑
k=0

(
(n + k)!

k!

(B + (−A + n + 2k))k

(−A + n + 2k)n+1+k

)(
1 +

k

n + k

A− n− 2k

B + (−A + n + 2k)

)
.

An argument similar to that in the proof of Theorem 1 shows that the above sum is
uniformly absolutely convergent on any compact subset of Hn(C) \ S.

Remark 2. In [6, (7.53), p. 73], Taylor noticed that, when s > 0 and |Re α| < n,

(5) Ke−sLα (x, y, t) = ps(x, y, t− isα),

where Ke−sLα is the convolution kernel of the operator e−sLα and Lα = L + iαT . By
virtue of Theorem 1, (5) holds also when |Re α| = n. Note that, when |Re α| = n, the
kernel Ke−sLα , s > 0 is no longer smooth and it has a singularity of Calderón–Zygmund
type at the point (0, 0, s Im α).

We would like to end with another observation, concerning a full Laplace operator on
the Heisenberg group. We define this operator by the following formula

L̃ = −
n∑

r=1

X2
r + Y 2

r − T 2 = L− T 2.

Theorem 3. For any s ∈ R \ {0}, the convolution kernel of the operator e−isL̃ extends
to an analytic function on Hn(C).

Proof. Write γ for eiπ/4. We denote the convolution kernels of the operators e−isL̃ and
e−s(γL−T 2) by Ke−isL̃ and Ke−s(γL−T2) respectively. Note that (see [6, (7.36)] and (3))

Ke−s(γL+T2)(x, y, t) =
1

(4πγ)n+1

∫ ∞

0

λn cos(tλ/(γs))

(sinh λ)n
exp

(−λ(x2 + y2) coth λ

4γs

)
e−sλ2

dλ.

Hence Ke−s(γL+T2) is an analytic function on Hn(C). Now to finish the proof it is enough
to note that

Ke−isL̃(x, y, t) = Ke−s(γ·γL+γ2T2)(x, y, t) =
1

γn+1
Ke−s(γL+T2)(

x
√

γ
,

y
√

γ
,
t

γ
)

for all s > 0 and (x, y, t) ∈ Hn(R) (see [4, (18)]). �

Remark 3. When Re s > 0, one can use the theory of analytic hypoellipticity to
investigate the smoothness and analyticity of the kernel Ke−sL̃ see, e.g., [1, 2]. However,
analytic hypoellipticity cannot be used directly to investigate the convolution kernel of
Ke−sL̃ when Re s = 0.
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