A smooth subadditive homogeneous norm on a homogeneous group

by

WALDEMAR HEBISCH and ADAM SIKORA (Wroclaw)

Abstract. We prove that on every homogeneous group there exists a smooth, subadditive and homogeneous norm.

Introduction. Around 1970 E. M. Stein introduced the notion of a homogeneous group. Such a group G admits a homogeneous norm $\| \cdot \|$, which for a $\gamma \geq 1$ satisfies
\[\|xy\| \leq \gamma (\|x\| + \|y\|) \quad \text{for all } x, y \in G. \]
The group equipped with $\| \cdot \|$ and the Haar (Lebesgue) measure is a space of homogeneous type in the sense of [1]. A number of estimates become easier if $\gamma = 1$, i.e. if the homogeneous norm is subadditive, so that it gives rise to a left-invariant metric. It is known that for some homogeneous groups such a norm exists, e.g. for Heisenberg groups and the like [2]. Also for stratified groups the optimal control metric is homogeneous.
The aim of this note is to show that a homogeneous and subadditive norm exists for every homogeneous group and in fact the construction is quite simple. More information about such norms is supplied by Theorem 2.
The authors are grateful to Andrzej Hulanicki and Tadeusz Pytlik for their helpful suggestions.

A smooth subadditive homogeneous norm on a homogeneous group.
A family of dilations on a nilpotent Lie algebra G is a one-parameter group \[\{ \delta_t \}_{t>0} \quad \delta_t \circ \delta_s = \delta_{ts} \] of automorphisms of G determined by
\[\delta_t e_j = t^{d_j} e_j, \]
where e_1, \ldots, e_n is a linear basis for G, the d_j are real numbers and $d_n \geq \ldots \geq d_1 \geq 1$. If we put $\langle x_1, \ldots, x_n \rangle = \sum x_i e_i$, then
\[\delta_t \langle x_1, \ldots, x_n \rangle = \langle t^{d_1} x_1, \ldots, t^{d_n} x_n \rangle. \]

1985 Mathematics Subject Classification: 22E25, 43A85.
Key words and phrases: homogeneous group, homogeneous norm, subadditive and homogeneous norm.
If we regard G as a Lie group with multiplication given by the Campbell–Hausdorff formula, then the dilations δ_t are also automorphisms of the group structure on G, and the nilpotent group G equipped with these dilations is called a homogeneous group (cf. [3]).

We are going to show that on every homogeneous group G there exists a subadditive and homogeneous norm, i.e. a function \(\| \cdot \| : G \to \mathbb{R}^+ \cup \{0\} \) such that

\[
\begin{align*}
(a) \quad \| xy \| &\leq \| x \| + \| y \|, \\
(b) \quad \| \delta_t x \| & = t \| x \|, \\
(c) \quad \| x \| = 0 \iff x = 0, \\
(d) \quad \| x \| & = \| x^{-1} \|, \\
(e) \quad \| \cdot \| & \text{ is continuous,} \\
(f) \quad \| \cdot \| & \text{ is smooth on } G - \{0\}.
\end{align*}
\]

The existence of \(\| \cdot \| \) which satisfies (a)-(e) is equivalent to the existence of a set \(A \subset G \) which satisfies the following conditions:

(a) \(A \) is open and \(\bar{A} \) is compact,
(b) \(A \) is convex, i.e. if \(x, y \in A \) and \(1 \geq t \geq 0 \), then \(\delta_t x \cdot \delta_t^{-1} y \in A \),
(c) \(A \) is symmetric, i.e. if \(x \in A \), then \(x^{-1} \in A \).

In fact, given a set \(A \) satisfying (a)-(c), we put
\[\| x \| = \inf \{ t \mid \delta_t x, x \in A \} .\]

Now, if \(\| x \| < \varepsilon \) and \(\| y \| < \varepsilon \), then \(\delta_{1/\varepsilon} x, \delta_{1/\varepsilon} y \in A \) and by (b)
\[
\delta_{1/(\varepsilon + \varepsilon)} xy = \delta_{1/\varepsilon} x \cdot \delta_{1/\varepsilon} y = \delta_{1/(\varepsilon + \varepsilon)} \delta_{1/\varepsilon} x \cdot \delta_{1/\varepsilon} y, \quad y \in A ,
\]

so \(\| xy \| < \varepsilon + \varepsilon \). This proves (a). The rest is easy.

The converse is obtained by putting \(A = \{ x \in G \mid \| x \| < 1 \} \).

Moreover, we see that the condition

(e) (i) the boundary \(\partial A \) of \(A \) is a smooth manifold,
(ii) \((d/dt) \delta_t x |_{t = 1} \neq T_x \partial A \) for every \(x \in \partial A \),

is equivalent to (f).

Theorem 1. For every homogeneous group \(G \) there exists a set \(A \) which satisfies (a)-(e), hence \(G \) admits a norm which satisfies (a)-(f).

Proof. If \(G \) is abelian we put \(A = \{ x = (x_1, \ldots, x_n) \mid \sum x_i^2 < 1 \} . \) To see that \(A \) satisfies (b) note that \(d_i > 1 \), so
\[
(\sum (t^{d_i} x_i + (1 - t)^{d_i} x_i)^2)^{1/2} = \left(\sum (t^{d_i} x_i)^2 \right)^{1/2} + \left(\sum (1 - t)^{d_i} x_i)^2 \right)^{1/2} \leq t \left(\sum x_i^2 \right)^{1/2} + (1 - t) \left(\sum x_i^2 \right)^{1/2} .
\]

(a), (b) and (e) are obvious.

We notice that if \(G \) is not abelian, then \(d_1 \geq 2 \) and \(e_x \) is in the center of \(G \), for \(\delta_t e_x = (\delta_t e_x, \delta_t e_x) = (e_x, e_x) \) and we assume that \(1 \leq d_1 \leq \cdots \leq d_n \). By the Campbell–Hausdorff formula we have

\[
(x_1, \ldots, x_n)(y_1, \ldots, y_n) = (x_1 + y_1 + P_1(x_1, \ldots, x_n, y_1, \ldots, y_n), \ldots, x_n + y_n + P_n(x_1, \ldots, x_n, y_1, \ldots, y_n)),
\]

where the \(P_i \) are polynomials and since \(e_x \) is in the center of \(G \), \([e_x, e_x] = 0 \) for \(1 \leq i \leq n \), neither \(x_i \) nor \(y_i \) appears in any of the \(P_i \).

Now we proceed by induction on \(\dim G \). Let \(A' \) be a subset of the quotient group \(G' = G/\text{lin} \{ e_x \} = \{ \bar{x} = (x_1, \ldots, x_n) \mid x_i \in \mathbb{R} \} \) which satisfies (a)-(e) and \(\| \cdot \| \) the corresponding norm. There exists a constant \(C \) such that
\[
\| P_t (\delta_t x, \delta_t y) \| \leq 2Ct^t(1-t) \quad \text{for all } x, y \in A', \quad 0 \leq t \leq 1.
\]

Indeed, since \(P_t (x, 0) = P_t (0, y) = 0 \), we see that every monomial in \(P_t \) depends both on \(x \) and \(y \); hence, since \(A' \) is bounded, (a) holds for some \(C \). If \(x = (x_1, \ldots, x_n) \), then put \(\bar{x} = (x_1, \ldots, x_n) \). We prove that the set
\[
A = \{ x \in G \mid \bar{x} \in A' \} \quad \text{satisfies (a)-(e) too, where } \quad C = \text{the constant from (a), } f \in C^\omega (0, 1), \quad f' \leq 0, \quad f'' \leq 0, \quad f(k0) = 0, \quad f(0) = 1, \quad f(k0) = -\infty, \quad f(1) = 0 \quad \text{for } k = 1, 2, \ldots.
\]

Remark. With \(f = 0 \) the construction yields a set \(A \) which satisfies (a)-(e) but of course not (f).

Proof of (a)-(f) for \(A \). (a) and (f) are obvious. To show (b) notice that if \(x, y \in A \) and \(y \in \bar{A} \), then \(\delta_t x \cdot \delta_t^{-1} y = \delta_t \bar{x} \cdot \delta_t^{-1} \bar{y} \in A' \). So, it is sufficient to prove the following inequality:

\[
|t^{d_n} x_n + (1 - t)^{d_n} y_n + P_n(\delta_t \bar{x}, \delta_t^{-1} \bar{y})| < C + f((\delta_t \bar{x} \cdot \delta_t^{-1} \bar{y})
\]

But \(d_n \geq 2 \), \(0 \leq t \leq 1 \), \(f' \leq 0 \), \(f'' \leq 0 \) and hence, by the definition of \(A \\
|t^{d_n} x_n + (1 - t)^{d_n} y_n + P_n(\delta_t \bar{x}, \delta_t^{-1} \bar{y})| < t^2 (C + f((\bar{x} \bar{y})) + (1 - t)^2 (C + f((\bar{x} \bar{y}))) + 2Ct(1-t)
\]

\[
\leq C + f(t(\| \bar{x} \| + (1 - t)\| \bar{y} \|)) < C + f(t(\| \bar{x} \| + (1 - t)\| \bar{y} \|)) < C + f((\delta_t \bar{x} \cdot \delta_t^{-1} \bar{y})).
\]

(a)(i) is obvious. We first prove (a)(ii) for \(x = (x_1, \ldots, x_n) \) in \(\partial A \) such that \(\| x \| < C \). Then \(\bar{x} \in \partial A' \) and \(T_{\bar{x}} \partial A = T_{\bar{x}} A' \ominus \mathbb{R} e_x \). So if \((d/dt) \delta_t x |_{t = 1} = T_{\bar{x}} \partial A \), then \((d/dt) \delta_t x |_{t = 1} = (d/dt) \delta_t x |_{t = 1} = T_{\bar{x}} \partial A' \). But this contradicts the induction hypothesis. Now, we observe that the set \(\partial A \cap \{ x \in \mathbb{R}^n \mid \| x \| > C \} \) is the graph of the function \(g(x) = C + f((\| x \|)) \), \(A' \to \mathbb{R} \), and that if \(v = (v_1, \ldots, v_n) \in T_{\bar{x}}(\mathbb{R}^n) \cdot M \), where \(M \) is the graph of a function \(g: \mathbb{R} \to \mathbb{R} \), \(\bar{x} \in \mathbb{R}^n \), then \(v = (d/dt) g(\bar{x} \bar{y}) |_{t = 0} = d\bar{g}(\bar{x}) \). Hence if \((d/dt) \delta_t x |_{t = 1} = T_{\bar{x}} \partial A \), where \(x = (\bar{x}, C + f((\| \bar{x} \|)) \), then by the definition of \(f \) (f' \leq 0),

\[
0 < d_n x = (d/dt) \delta_t x |_{t = 1} \cdot f((\| \bar{x} \|) + C) \leq (d/dt) f((\| \bar{x} \|) + (d/dt) f((\| \bar{x} \|) + f((\| \bar{x} \|) + \| \bar{x} \|') \leq 0.
\]
This contradiction proves (e)(ii) for \(\partial A \cap \{ x \in \mathbb{R}^n : x_n > C \} \). For \(\partial A \cap \{ x \in \mathbb{R}^n : x_n < -C \} \), (e)(ii) follows by symmetry.

Theorem 2 below exhibits a very simple "convex body", i.e., a set satisfying (a)-(e), which yields a homogeneous subadditive norm. The proof, however, is more complicated.

Theorem 2. Let \(G \) be a homogeneous group and \(x = (x_1, \ldots, x_n) \) homogeneous coordinates (\(\delta, x = (t^d x_1, \ldots, t^n x_n) \)). There exists \(\varepsilon > 0 \) such that for \(r < \varepsilon \) the set

\[
A = \{ x : \sum x_i^2 < r^2 \}
\]

satisfies the conditions (a)-(e). Consequently there is a homogeneous subadditive norm on \(G \)

\[
\| x \| = \inf \{ \| (\delta_1, x) \| < r \}
\]

such that the unit ball \(\{ x : \| x \| < 1 \} \) coincides with the Euclidean ball \(\{ x : \| x \| < r \} \) (\(\| x \| = (\sum x_i^2)^{1/2} \)).

Proof. We verify only the condition (\(\beta \)) because the others are satisfied trivially. Put

\[
V_1 = \{ e_i : d_i < 2 \}, \quad V_2 = \{ e_i : d_i \geq 2 \};
\]

then \(G = V_1 \oplus V_2 \) as a linear space. Define \((x_1, x_2) = x_1 + x_2 \), where \(x_1 \in V_1 \), \(x_2 \in V_2 \). Since \(\delta \epsilon_1, \epsilon_2 = t^{d_1 + d_2} \epsilon_1 \), \(\epsilon_2 \) and \(d_4 \geq 1 \), it follows that \(\| (x, y) \| \in V_2 \) for all \(x, y \in G \); so for \(x = (x_1, x_2) \) and \(y = (y_1, y_2) \) we have

\[
x \cdot y = (x_1 + y_1, x_2 + y_2 + R(x, y)).
\]

Let \(R_1(x, y) = R((x_1, 0), (y_1, 0)) \) and \(R_2 = R - R_1 \). In virtue of the Campbell–Hausdorff formula there is a constant \(C_1 \) such that for all \(\| x \|, \| y \| < 1 \)

\[
\| R_1(x, y) \| \leq C_1 \| [x_1, y_1] \|.
\]

Hence, by the inequality

\[
\| [x, y] \| \leq C_1 \| x \| \| y \| \| [x/y, y/y] \|,
\]

which is an easy consequence of the bilinearity and antisymmetry of \([\cdot, \cdot \])\), we have for some constant \(C_1 \)

\[
(1) \quad \| R_1(x, y) \| \leq C_1 \| x_1 \| \| y_1 \| \| x_1/x_1 - y_1/y_1 \|.
\]

for all \(\| x \|, \| y \| < 1 \). Also by the Campbell–Hausdorff formula there is a constant \(C' \) such that for \(\| x \|, \| y \| < 1 \)

\[
(\ast) \quad \| R_2(x, y) \| \leq C'(\| x_1 \| \| y_2 \| + \| x_2 \| \| y_1 \| + \| x_2 \| \| y_2 \|).
\]

Let \(v = \delta_{x_2} + \delta_{y_1} - \delta_{x_1} - \delta_{y_1} \). By the definition \(d_i \geq 2 \) for \(e_i \in V_2 \), so in virtue of (\ast)

\[
\| v \| \leq t^2 \| x_2 \| + (1 - t^2) \| y_2 \| + C'(1 - t)(\| x_1 \| \| y_1 \| + \| x_2 \| \| y_1 \| + \| x_2 \| \| y_2 \|).
\]

Now, if we assume that \(C'(\| x_1 \| + \| x_2 \| + \| y_1 \|) \leq 1/2 \) and \(0 < t \leq 1 \), then

\[
\| v \| \leq t^2 \| x_2 \| + (1 - t^2) \| y_2 \| + \frac{1}{2} t(1 - t)(\| x_2 \| + \| y_2 \|) \leq \| x_2 \| + \| y_2 \|
\]

and

\[
\| v \| \leq t^2 \| x_2 \| + (1 - t^2) \| y_2 \| + \frac{1}{2} t(1 - t)(\| x_2 \| + \| y_2 \|) = t \| x_2 \| + (1 - t)^2 \| y_2 \| + \frac{1}{2} t(1 - t)(\| x_2 \| + \| y_2 \|).
\]

Therefore

\[
\| v \| + \frac{1}{2} t(1 - t)(\| x_2 \| + \| y_2 \|) \leq t \| x_2 \| + (1 - t) \| y_2 \| \quad \text{and}
\]

\[
(2) \quad \| v \| + t(1 - t) \leq \| v \|^2 + t(1 - t) \| \| x_2 \| + \| y_2 \| \|
\]

\[
\leq \| v \|^2 + \frac{1}{2} t(1 - t)(\| x_2 \| + \| y_2 \|)^2 \leq \| v \|^2 + (1 - t) \| y_2 \|^2.
\]

Note that \(2(t_1, t_2) \leq t(1 - t) \| v_1 \|^2 + 4 \| t_2 \|^2/(1 - t) \), where \((x, y) = \sum x_i y_i \) is the scalar product. Hence

\[
(3) \quad \| v + R_1(\delta, x_1, \delta, y_1) \| \leq \| v \|^2(1 + (1 - t)) + \| R_1 \|^2 \left[1 + 4/(t(1 - t)) \right].
\]

Observe also that

\[
(4) \quad \| (x + y) \|^2 \leq \| x \| \| y \| \| x/y, y/y \|.
\]

Finally, by (1)-(4) we have

\[
\| \delta_i x_1 + \delta_{-1} y_1 \|^2 \leq \| \delta_i x_1 + \delta_{-1} y_1 \|^2 + \| v + R_1(\delta, x_1, \delta, y_1) \|^2
\]

\[
\leq \| \delta_i x_1 \| + \| \delta_{-1} y_1 \|^2 + \| v + R_1(\delta, x_1, \delta, y_1) \|^2
\]

\[
\leq \| \delta_i x_1 \| + \| \delta_{-1} y_1 \|^2 + \| v + R_1(\delta, x_1, \delta, y_1) \|^2
\]

\[
\| v + R_1(\delta, x_1, \delta, y_1) \|^2 \leq \| v \|^2 + (1 - t) \| y_2 \|^2 + (1 - t)y_2^2/4.
\]

\[
\| v + R_1(\delta, x_1, \delta, y_1) \|^2 \leq \| v \|^2(1 + (1 - t)) + \| R_1 \|^2 \left[1 + 4/(t(1 - t)) \right].
\]

However, if \(5C_1^2 \| x_1 \| \| y_1 \| < 1 \), then the sum of the last two expressions will be nonpositive, so

\[
\| \delta_i x_1 + \delta_{-1} y_1 \|^2 \leq \| v + R_1(\delta, x_1, \delta, y_1) \|^2 \leq \| v \|^2 + (1 - t) \| y_2 \|^2.
\]

This proves Theorem 2.